This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world’s books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

+ **Make non-commercial use of the files** We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.

+ **Refrain from automated querying** Do not send automated queries of any sort to Google’s system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.

+ **Maintain attribution** The Google “watermark” you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.

+ **Keep it legal** Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can’t offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book’s appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google’s mission is to organize the world’s information and to make it universally accessible and useful. Google Book Search helps readers discover the world’s books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/
A MANUAL
OF
MEDICAL JURISPRUDENCE

BY
ALFRED SWAIN TAYLOR, M.D. F.R.S.
FELLOW OF THE ROYAL COLLEGE OF PHYSICIANS
AND
LECTURER ON MEDICAL JURISPRUDENCE IN GUY'S HOSPITAL

Prius est de crime quam de reo - suum commodo

NINTH EDITION

LONDON
J. & A. CHURCHILL, NEW BURLINGTON STREET
1874

151. 92. 208.
PREFACE

TO

THE NINTH EDITION.

In preparing for the press the ninth edition of the Manual of Medical Jurisprudence, I have carried out the plan adopted in the previous editions. My object has been to make this a student’s book, and at the same time to render it a useful guide on medico-legal subjects to medical men and lawyers.

The whole of the work has undergone revision, and such additions have been made in the form of cases and observations as the progress of time had rendered necessary.

In the section on Poisoning, notices of some new poisons have been introduced, as well as descriptions of improved methods for the detection and identification of poisons. Under this head the reader will find that the process of dialysis has been noticed, as one of the new methods of research for many mineral and organic poisons.

In the section on Wounds and Personal Injuries, two chapters have been added on the proofs of Personal Identity furnished by cicatrices and tattoo-marks. Some recent trials in England and on the Continent, have given a prominent interest to these subjects. The application of spectral analysis and of the guaiacum process for the detection of blood-stains on weapons and clothing has been described in the appropriate chapters.

The subject of Criminal Abortion has been almost entirely
rewritten, and to the chapters on INFANTICIDE additions have been made, particularly in reference to medical responsibility in the examination of women charged with this crime.

This edition has been printed in a larger type and on a larger page, so as to render the book not only more convenient to the reader, but to allow the introduction of much additional matter. Seven new illustrations have also been introduced.

I cannot close this Preface without expressing my obligations to many known as well as unknown correspondents in the professions of law and medicine, for the reports of many recent cases introduced into this edition.

A. S. T.

St. James's Terrace, Regent's Park:
January 1874.
CONTENTS.

MEDICAL EVIDENCE.

CHAPTER 1.
The practice of medical jurisprudence—Medical and medico-legal duties—Dying declarations—Inspection of bodies in death from wounds or poisoning—Use of notes—Medico-legal reports PAGES 1—17

CHAPTER 2.
Coroners' inquests—Trial at the assizes—Obedience to subpoenas—Medical fees—Examination in chief—Duties of medical witnesses—Quotations from books—Presence in court—Technical terms—License of counsel—Rules for the delivery of evidence PAGES 17—39

CHAPTER 3.
Causes of death—Sudden death—Syncope, asphyxia, coma—Signs or indications of death—Cessation of circulation and respiration—Cooling of the body—Cadaveric rigidity—Putrefaction—Changes produced in the body—Putrefaction mistaken for gangrene PAGES 39—48

POISONING.

CHAPTER 4.
Definition of the term poison—Mechanical irritants—Influence of habit and idiosyncrasy—Classification—Special characters of irritant, corrosive, and neurotic poisons PAGES 48—58

CHAPTER 5.
Evidence of poisoning in the living body—Action of poisons increased or diminished by disease—Symptoms connected with food or medicine—Several persons attacked simultaneously—Evidence from the detection of poison in the food PAGES 58—66

CHAPTER 6.
On the evidence of poisoning in the dead body—Period at which poisons prove fatal—Chronic poisoning—Appearances produced by the different classes of poisons—Redness of the mucous membrane mistaken for inflammation—Ulceration and corrosion—Softening—Perforation of the stomach from poison and disease PAGES 66—75
CONTENTS.

IRRITANT POISONS.

CHAPTER 7.
Sulphuric acid, or oil of vitriol—Nitric acid, or aqua fortis—Hydrochloric acid—Symptoms—Appearances and analysis . . . PAGES 75—85

CHAPTER 8.
Poisoning by oxalic acid—Symptoms and appearances—Chemical analysis—Dialysis of organic liquids—Acid oxalate of potash or salt of sorrel—Tartaric and acetic acids PAGES 85—91

CHAPTER 9.
Poisoning by alkalies and alkaline salts—Potash, soda and ammonia—Nitrate and sulphate of potash—Chloride of barium PAGES 91—96

CHAPTER 10.
Phosphorus—Symptoms and appearances—Chronic poisoning—Chemical analysis—Red phosphorus PAGES 96—101

METALLIC IRRITANTS.

CHAPTER 11.
Arsenic—Arsenous acid—Symptoms—Chronic poisoning—Appearances after death—Fatal dose—Chemical analysis—Arsenites—Arsenic acid—Orpiment and other compounds PAGES 101—119

CHAPTER 12.
Poisoning by mercury—Corrosive sublimate—Symptoms—Chronic poisoning—Appearances after death—Chemical analysis—Process for mercury in organic liquids—Calomel—White and red precipitates—Other compounds of mercury PAGES 119—127

CHAPTER 13.
On poisoning with lead—Sugar of lead—Symptoms—Appearances after death—Chemical analysis—Lead in organic mixtures—Carbonate or white lead—Chronic poisoning—Poisoning with copper—Blue vitriol—Symptoms—Appearances—Chemical analysis—Copper in organic liquids PAGES 127—134
CONTENTS.

CHAPTER 14.
Tartar emetic—Symptoms—Appearances—Chronic poisoning—Chemical analysis—Chloride or butter of antimony—Poisoning with salts of zinc and iron PAGES 134—140

VEGETABLE AND ANIMAL IRRITANTS.

CHAPTER 15.
Vegetable irritants—Aloes—Savin—Croton-oil—Colchicum—Hellebore—Veratrum—Carbolic acid—Animal irritants: Cantharides—Noxious animal food PAGES 140—150

NEUROTIC POISONS.

CHAPTER 16.

CHAPTER 17.
Prussic acid—Symptoms and appearances—Tests for the acid—Process for organic mixtures—Cyanide of potassium—Essential oil of bitter almonds—Nitrobenzole PAGES 156—164

CHAPTER 18.

CHAPTER 19.
Nux vomica—Strychnia—Symptoms and appearances—Chemical and microscopical analysis of Nux vomica and strychnia—Process for organic mixtures—Dialysis—Brucia PAGES 174—181

CHAPTER 20.
Conium maculatum—Hemlock—Conio—Osanthæ crocata—Æthusa cyna-pium—Aconite or monkshood—Aconitina . . PAGES 181—189

CHAPTER 21.
Atropa belladonna, or deadly nightshade—Poisoning by atropia—Lobelia—Foxglove—Digitaline—Datura stramonium or thorn-apple—Daturia—Other vegetable poisons PAGES 189—198
CONTENTS.

WOUNDS AND PERSONAL INJURIES.

CHAPTER 22.
Definition of a wound—Danger to life—Grievous bodily harm—Examination of wounds—Description of wounds—Characters of wounds inflicted on the living and dead body—Echymosis in the living and dead—Effects of violence on the dead body—Echymosis not always a result of violence. PAGES 198—207

CHAPTER 23.
Evidence of the use of a weapon—Characters of wounds caused by weapons—Incised, punctured, lacerated, and contused wounds—Stabs and cuts—What are weapons?—Examination of the dress—Imputed or self-inflicted wounds PAGES 207—218

CHAPTER 24.
Wounds indicative of homicide, suicide, or accident—Evidence from the situation of a wound—Evidence from nature and extent—Evidence from the direction of a wound—Wounds inflicted by the right or left hand—Several wounds—Use of several weapons PAGES 218—225

CHAPTER 25.
Evidence from circumstances—The position of the body—Of the weapon—Evidence from blood, hair, and other substances on weapons—Marks of blood on clothing and furniture, on the deceased, and on the assailant PAGES 225—234

CHAPTER 26.
Chemical examination of blood—stains—Stains of blood on linen and other stuffs—Age or date of the stains—Other stains resembling blood—Blood on weapons—Arterial and venous blood—Varieties of blood—Blood of man and animals—Microscopical evidence PAGES 234—249

CHAPTER 27.
The cause of death from wounds—Wounds directly or indirectly fatal—Death from haemorrhage—Internal bleeding—Death from mechanical injury—From shock—Death from numerous personal injuries irrespective of any mortal wound PAGES 249—256

CHAPTER 28.
Death of wounded persons from natural causes—Distinction between real and apparent cause—Death from wounds or latent disease—Accelerating cause—Death from wounds after long periods—Avoidable causes of death—Neglect—Imprudence—Unskilful treatment—Unhealthy state of body PAGES 256—258
CONTENTS

CHAPTER 29.
Wounds indirectly fatal—Tetanus following wounds—Erysipelas—Delirium tremens—Gangrene—Death from surgical operations—Primary and secondary causes of death—Unskilfulness in operations—Pyemia—Medical responsibility in reference to operations—Actions for malapraxis

PAGES 268–278

CHAPTER 30.
Cicatrisation of wounds—Evidence from cicatrices—Changes in an incised wound—Is a cicatrix always a consequence of a wound?—Are cicatrices when once formed indelible?—Characters of cicatrices—Their age or date—Cicatrices from bleeding, cupping, setons and issues—Cicatrices from burns—Cicatrices from disease distinguished from those of wounds

PAGES 278–288

CHAPTER 31.
Medical evidence of identity from coloured cicatrices or tattoo-marks—Mode and date of production—Durability of these marks—Their alleged spontaneous disappearance—Cases of identity from tattooing—Simulated marks—Tattoo-marks on the dead—Medical responsibility

PAGES 288–296

CHAPTER 32.
Wounds of the head—Concussion—How distinguished from intoxication—Effusion of blood as a result of violence, disease, or mental excitement—Wounds of the face—Deformity as a consequence of wounds of the face—Injuries to the spine and spinal marrow—Fractures of the vertebra

PAGES 296–310

CHAPTER 33.
Wounds of the chest—Wounds and ruptures of the lungs and heart—Wounds of large blood vessels—Wounds and ruptures of the diaphragm—Direction of wounds in the chest—Wounds of the abdomen—Death from blows on the cavity—Ruptures of the liver, gall-bladder, spleen, kidneys, intestines, stomach, and urinary bladder—Wounds of the genital organs

PAGES 310–325

CHAPTER 34.
Fractures—Produced by a blow with a weapon or by a fall—Brittleness of the bones—Fractures caused by slight muscular exertion—In the living and dead body—Has a bone ever been fractured?—Locomotion—Dislocations from violence or natural causes—Medical opinions—Actions for malapraxis

PAGES 325–329

CHAPTER 35.
Gunshot wounds—In the living and dead body—Was the piece fired near or from a distance?—Accidental, suicidal, or homicidal wounds—Position of the wounded person when shot—Wounds from small shot—Wounds from wadding and gunpowder

PAGES 329–338

CHAPTER 36.
Death from burns and scalds—Symptoms—Stupor—Cause of death—Post-mortem appearances—BURNS ON THE DEAD BODY—Accident, homicide, or suicide—Wounds caused by fire—Scalding—Burns by corrosive liquids

PAGES 338–347
CONTENTS

ASPHYXIA.

CHAPTER 37.

Drowning—Cause of death—Secondary causes—Post-mortem appearances—Medical proofs of death from drowning—Specific gravity of the body—Co-incidental causes of death—Marks of violence—Accidental fractures—Homicidal and suicidal drowning . . . PAGES 347—365

CHAPTER 38.

Hanging—Cause of death—Death from the secondary effects—Post-mortem appearances—Mark of the cord or ligature—Was death caused by hanging?—Hanging after death—Summary of medical evidence—Marks of violence on the hanged—Was the hanging the result of accident, suicide, or homicide?—The position of the body . . . PAGES 385—384

CHAPTER 39.

Strangulation—Cause of death—Appearances after death—Was death caused by strangulation, or was the constriction applied to the neck after death?—Marks of violence—Accidental, homicidal, and suicidal strangulation PAGES 384—401

CHAPTER 40.

Suffocation—From mechanical causes—Cause of death—Appearances after death—Evidence of death from suffocation—Accidental, suicidal, and homicidal suffocation—Smothering PAGES 401—416

CHAPTER 41.

LIGHTNING, COLD, HEAT, STARVATION.

CHAPTER 42.

Effects of the electric fluid—Post-mortem appearances—Cold an occasional cause of death—Symptoms—Circumstances which accelerate death—Post-mortem appearances—Effect of heat—Starvation a rare cause of death—Symptoms—Appearances after death—Legal relations PAGES 443—461
CONTENTS.

PREGNANCY.

CHAPTER 43.
Signs of pregnancy—Suppression of the menses—Quickening—Sounds of the fetal heart—Feigned pregnancy—Concealed pregnancy—Pregnancy in the dead—Impregnation in a state of unconsciousness—Legal relations

PAGES 461—473

DEVELOPMENT.

CHAPTER 44.
Delivery in the living—Concealed delivery—Signs of abortion in the early stages of pregnancy—Signs of recent and remote delivery—Feigned delivery—Delivery in a state of unconsciousness—Signs of delivery in the dead—True and false corpora lutea—Characters of the ovum or embryo—Moles—Concealment of birth

PAGES 473—489

CRIMINAL ABORTION.

CHAPTER 45.
Abortion from natural causes—Criminal causes—Mechanical means—Medicinal substances—Signs of abortion—Specific abortive—Local applications—Feigned abortion—Meaning of the word noxious as applied to drugs—On inducing premature labour—Proof of pregnancy not necessary—Abortion of monsters—Moles and hydatids

PAGES 489—512

INFANTICIDE.

CHAPTER 46.
Nature of the crime—Medical evidence at inquests—Uterine age or maturity of the child—Characters of the child from the sixth to the ninth month—Signs of maturity—Rules for inspecting the body

PAGES 512—517

CHAPTER 47.
Evidence of life before respiration—Putrefaction in utero—Evidence of life after respiration—Colour, volume, consistency, and absolute weight of the lungs—Static test—Weight increased by respiration

PAGES 517—526
CONTENTS.

CHAPTER 48.
The hydrostatic test—Sinking of the lungs from disease or atelectasis—Life with perfect atelectasis or entire absence of air from the lungs—Erroneous medical inference from sinking of the lungs—Floating of the lungs from putrefaction—Effects of putrefaction on the lungs
PAGES 526—533

CHAPTER 49.
Floating of the lungs from artificial inflation—Inflation not distinguishable from imperfect respiration—Results of compression—Improper objections to the hydrostatic test—Respiration before birth—Respiration a sign of life, not of live birth—General conclusions
PAGES 533—540

CHAPTER 50.
On the proofs of a child having been born alive—Evidence from respiration—from marks of violence—From natural changes in the fetal vessels—From the discovery of food in the stomach—General conclusions
PAGES 540—551

CHAPTER 51.
PAGES 551—558

CHAPTER 52.
PAGES 558—573

CHAPTER 53.
Death of the child from strangulation—Strangulation by the navel-string—Accidental marks resembling those of strangulation—Constriction before and after death—Before and after breathing—Before and after the severance of the navel-string—Examination of women—Medical responsibility
PAGES 573—584

BIRTH. INHERITANCE.

CHAPTER 54.
Live birth in civil cases—Date of birth—Signs of live birth independently of respiration or crying—Vagitus uterinus—Tenancy by courtesy—Legal birth—Post-mortem births—Minority and majority—Plural and monstrous births
PAGES 584—595
CONTENTS.

LEGITIMACY.

CHAPTER 55.
Presumption of legitimacy—Natural period of gestation—Duration of pregnancy from one intercourse—Premature births—Short periods of gestation—Viability—Earliest period at which a child may be born living—Evidence from the state of the child—Protracted births—The period of gestation not fixed by law PAGES 595—614

Paternity.

CHAPTER 56.
Disputed paternity—Parental likeness—Affiliation—Posthumous children—Superfetation in relation to legitimacy—Supposititious children—Sexual malformations PAGES 614—626

IMPOTENCY. STERILITY.

CHAPTER 57.
Impotency—Causes—Procreative power in the male—Puberty—Age for virility—Virility of cryptorchides and monorchides—Sterility—Procreative power in the female—Earliest and latest periods for child-bearing—Legal relations PAGES 626—646

RAPE.

CHAPTER 58.
Sources of medical evidence—Rape on infants and children—Marks of violence—Purulent discharges from the vagina—Evidence from gonorrhoea and syphilis—Rape on girls after puberty—Defloration—Signs of virginity PAGES 646—665

CHAPTER 59.
Rape on married and adult women—Circumstances under which it may be perpetrated on adult women—Loss of physical evidence—Pregnancy following rape—Microscopical evidence—Sodomy . PAGES 665—679
CONTENTS.

INSANITY.

CHAPTER 60.
What is insanity?—Medical definitions—Distinction of sane from insane persons—Moral insanity—Legal definitions—"Non compos mentis"—Symptoms of incipient insanity—Hallucinations and illusions—Lucid intervals. PAGES 679—686

CHAPTER 61.
Varieties of insanity—Mania—Abstinence from food—Delusions regarding poison—Delirium distinguished from mania—Monomania—Dementia—Idiocy—Imbecility—Hereditary transmission—Feigned insanity—Appearances after death—Eccentricity PAGES 686—697

CHAPTER 62.
Medico-legal questions in relation to the insane—Application of restraint—Illegal imposition of restraint—Violence of temper—Certificates of insanity—Rules for the discharge of lunatics PAGES 697—709

CHAPTER 63.
Lunatics as witnesses—Interdiction—Commissions of lunacy—Examination of alleged lunatics—Medical and legal tests of competency—Conflict of evidence and opinion PAGES 709—719

CHAPTER 64.
Civil responsibility—Testamentary capacity—Wills made by the insane—Test of capacity—Evidence of delusion—Eccentricity PAGES 719—724

CHAPTER 65.
The plea or defence of insanity—Circumstances under which it is admissible—Homicidal insanity—Moral insanity—Symptoms—Legal tests—Medical tests—Delusion—Tests of irresponsibility—Medical evidence PAGES 724—740

CHAPTER 66.
Puerperal Mania—Pyromania—Kleptomania—Dipsomania—Responsibility of drunkards—Delirium tremens—Somnambulism PAGES 740—749
ILLUSTRATIONS.

<table>
<thead>
<tr>
<th>FIG.</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beaker and tube for dialysis</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>Crystals of oxalic acid</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>Crystals of oxalate of lime obtained by dialysis</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>Octahedral crystals of white arsenic sublimed</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>Reduction tube with sublimates of metallic arsenic</td>
<td>104</td>
</tr>
<tr>
<td>6</td>
<td>Crystals of arsenious acid from a solution</td>
<td>106</td>
</tr>
<tr>
<td>7</td>
<td>Deposite of arsenic from Marsh's process</td>
<td>108</td>
</tr>
<tr>
<td>8</td>
<td>Apparatus for separating arsenic from the tissues</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>Apparatus for testing chloride of arsenic obtained from the tissues</td>
<td>112</td>
</tr>
<tr>
<td>10</td>
<td>Deposit of arsenic from arsenuretted hydrogen</td>
<td>112</td>
</tr>
<tr>
<td>11</td>
<td>Flask and funnel used for Reinsch's process</td>
<td>114</td>
</tr>
<tr>
<td>12</td>
<td>Stellated crystals of corrosive sublimate obtained by sublimation</td>
<td>122</td>
</tr>
<tr>
<td>13</td>
<td>Prismatic crystals of corrosive sublimate from solution</td>
<td>123</td>
</tr>
<tr>
<td>14</td>
<td>Sublimate of mercury in globules</td>
<td>124</td>
</tr>
<tr>
<td>15</td>
<td>Crystals of acetate of lead from a solution</td>
<td>128</td>
</tr>
<tr>
<td>16</td>
<td>Crystals of tartar emetic from a solution</td>
<td>136</td>
</tr>
<tr>
<td>17</td>
<td>Leaves of savin magnified</td>
<td>141</td>
</tr>
<tr>
<td>18</td>
<td>Crystals of cantharidine from chloroform</td>
<td>148</td>
</tr>
<tr>
<td>19</td>
<td>Crystals of morphia from a solution in alcohol</td>
<td>153</td>
</tr>
<tr>
<td>20</td>
<td>Crystals of morphia from the hydrochlorate, by ammonia</td>
<td>163</td>
</tr>
<tr>
<td>21</td>
<td>Crystals of cyanide of silver from the vapour of prussic acid</td>
<td>169</td>
</tr>
<tr>
<td>22</td>
<td>Berry and kernel of Cocculus indicus</td>
<td>171</td>
</tr>
<tr>
<td>23</td>
<td>Seeds of henbane</td>
<td>173</td>
</tr>
<tr>
<td>24, 25</td>
<td>Seeds of Nux vomica</td>
<td>177</td>
</tr>
<tr>
<td>26</td>
<td>Hairs or fibres of Nux vomica seeds</td>
<td>177</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS.

<table>
<thead>
<tr>
<th>FIG.</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Crystals of strychnia from alcohol</td>
<td>178</td>
</tr>
<tr>
<td>28</td>
<td>Crystals of strychnia from the sulphate</td>
<td>178</td>
</tr>
<tr>
<td>29</td>
<td>Crystals of chromate of strychnia</td>
<td>179</td>
</tr>
<tr>
<td>30</td>
<td>Crystals of brucia</td>
<td>180</td>
</tr>
<tr>
<td>31</td>
<td>Seeds of hemlock</td>
<td>182</td>
</tr>
<tr>
<td>32</td>
<td>Seeds of Oenanthe crocata</td>
<td>184</td>
</tr>
<tr>
<td>33</td>
<td>Seeds of Æthusa cynapium</td>
<td>185</td>
</tr>
<tr>
<td>34</td>
<td>Root of aconite</td>
<td>187</td>
</tr>
<tr>
<td>35</td>
<td>Root of horseradish</td>
<td>187</td>
</tr>
<tr>
<td>36</td>
<td>Seeds of aconite</td>
<td>188</td>
</tr>
<tr>
<td>37</td>
<td>Seeds of belladonna</td>
<td>191</td>
</tr>
<tr>
<td>38</td>
<td>Seeds of Lobelia inflata</td>
<td>194</td>
</tr>
<tr>
<td>39</td>
<td>Seeds of foxglove</td>
<td>195</td>
</tr>
<tr>
<td>40</td>
<td>Seeds of Datura stramonium</td>
<td>196</td>
</tr>
<tr>
<td>41</td>
<td>Crystals of daturia</td>
<td>197</td>
</tr>
<tr>
<td>42</td>
<td>Blood corpuscles magnified</td>
<td>241</td>
</tr>
<tr>
<td>43</td>
<td>Blood corpuscles on linen</td>
<td>242</td>
</tr>
<tr>
<td>44</td>
<td>Human blood corpuscles with fibrin</td>
<td>243</td>
</tr>
<tr>
<td>45</td>
<td>Blood corpuscles from a dried specimen</td>
<td>243</td>
</tr>
<tr>
<td>46</td>
<td>Blood crystals from human blood</td>
<td>246</td>
</tr>
<tr>
<td>47</td>
<td>Section of skull and the three membranes of the brain</td>
<td>305</td>
</tr>
<tr>
<td>48</td>
<td>The ergot of rye with a magnified section</td>
<td>501</td>
</tr>
<tr>
<td>49</td>
<td>Granules of wheat-starch and arrow-root</td>
<td>545</td>
</tr>
<tr>
<td>50</td>
<td>Oil-globules of human milk and cow's milk</td>
<td>546</td>
</tr>
<tr>
<td>51</td>
<td>Oil-globules of human milk and colostrum</td>
<td>546</td>
</tr>
<tr>
<td>52</td>
<td>Epithelial scales</td>
<td>547</td>
</tr>
<tr>
<td>53</td>
<td>Meconium and cholesterine</td>
<td>550</td>
</tr>
<tr>
<td>54</td>
<td>Spermatozoa magnified</td>
<td>672</td>
</tr>
<tr>
<td>55</td>
<td>Spermatozoa in stained linen after two years</td>
<td>673</td>
</tr>
</tbody>
</table>
MEDICAL JURISPRUDENCE.

MEDICAL EVIDENCE.

CHAPTER 1.

THE PRACTICE OF MEDICAL JURISPRUDENCE.—MEDICAL AND MEDICO-LEGAL DUTIES.—DYING DECLARATIONS.—INSPECTION OF BODIES IN DEATH FROM WOUNDS OR POISONING.—USE OF NOTES.—MEDICO-LEGAL REPORTS.

Medical Jurisprudence—or, as it is sometimes called, Forensic, Legal, or State Medicine—may be defined to be that science which teaches the application of every branch of medical knowledge to the purposes of the law; hence its limits are on the one hand, the requirements of the law, and on the other, the whole range of medicine. Anatomy, physiology, medicine, surgery, chemistry, physics, and botany lend their aid as necessity arises; and in some cases all these branches of science are required to enable a Court of law to arrive at a proper conclusion on a contested question affecting life or property.

The purpose of this work is to bring as far as possible within a small compass those subjects which especially demand inquiry, and which more particularly concern the duties of the educated physician and surgeon. The definition above given necessarily implies that a medical jurist should have a theoretical and practical knowledge of all branches of the profession, a large range of experience, and the rare power of adapting his knowledge and experience to emergencies. He should be able to elucidate any difficult medico-legal question which may arise, and be prepared at all times to make a cautious selection of such medical facts, and a proper application of such medical principles, as may be necessary to enable a judge to place the subject in an intelligible light before a jury, and to enable a jury to arrive at a just conclusion.

The variety of subjects of which a medical jurist is required to have a knowledge, may well alarm a student and lead him to suppose that, as he cannot make himself perfectly acquainted with all, he may well forego the labour of preparing himself in any. But this
would be taking an erroneous view of his position. This description of the qualifications necessary to constitute a normal witness in a Court of law must not deter him from entering on the study. It is assuredly beyond the mental power of any individual that he should be at the same time profoundly versed in all the principles of medicine and jurisprudence, and that he should be able to answer all possible questions, and encounter and remove all medical difficulties that may occur during the trial of a civil or criminal case. All that the law expects from a medical man is a fair average knowledge not merely of his profession, but of that which falls more particularly under the province of a medical witness. There can be no doubt that the more perfectly a man has made himself master of his profession, the better will he be fitted to follow the principles and apply himself to the practice of medical jurisprudence; but he must divest himself of the notion that these principles can be spontaneously acquired, or that they are necessarily derived from the study of those isolated branches of medicine upon which medical jurisprudence is based. The materials for the medical jurist undoubtedly exist in these collateral sciences: but they require to be assorted, selected, and moulded into shape, before they can be applied to any useful or practical purpose.

The duties of a medical jurist are distinct from those of a physician or surgeon; the latter looks only to the treatment of disease or accident and the saving of life; but the object of the former, in a large proportion of cases, is, whether in reference to the living or dead, to aid the law in fixing on the perpetrator of a crime, or to rescue an innocent person from a falsely imputed crime. Thus he may be required to determine whether, in a particular case, the cause of death is natural or violent; and for this purpose it will be necessary for him to make an entirely new application of his professional knowledge. He has now the difficult task of making a selection from those parts of the medical sciences which bear upon the legal proof and development of crime.

Some members of the profession have been inclined to look upon medico-legal practice as an unnecessary addition to their ordinary duties; but there are few who have been long engaged in practice, who have not found themselves occasionally placed in situations of difficulty from the accidental occurrence of cases demanding medico-legal investigation. A medical man is summoned to attend a person labouring under the effects of poison criminally administered, but at the time he may have no knowledge or even suspicion that poison is the cause of the symptoms. In spite of the best treatment, death ensues: here the functions of the medical man end, and those of a medical witness begin. It is utterly impossible that he can now avoid giving evidence, or shift the responsibility on another—the law will insist upon his appearance, first in the Court of the Coroner, and afterwards at the Assizes. It will here be assumed that as a registered member of the profession he is fully competent to answer every question put to him by judge and coun-
SURGEONS IN ACTING AS WITNESSES.

The use of poisons is relative to the general effects of poisons; the quantity required to destroy life; and the time within which a poison may prove fatal. It may be objected to his evidence, that the deceased had died from the effects of disease and not from poison, in which case the cross-examination will lead to a searching inquiry into all those diseases which resemble poisoning in their symptoms and post-mortem appearances as well as the means of making a certain distinction between them; and the fallacies to which the chemical processes for the detection of poison are liable.

On another occasion a medical man may be called to render assistance to one who has been stabbed in a quarrel, and who speedily dies from the wound. The office of the surgeon here ceases, while that of the medical jurist commences. He must now be prepared to answer numerous questions, all bearing upon the legal proof of crime, all necessary in law, although apparently superfluous in surgery. Thus he may be asked to state the precise characters of a wound inflicted upon the body of a man soon after death; and by what means a particular wound was inflicted? Was it homicidal or accidental? The amount of blood lost? Whether the person could have moved or performed any act after receiving it? Are certain red spots found upon his clothes, or upon a knife belonging to him, owing to effused blood or other causes? Whether any, and what statements were made by the dying man, and what were the precise circumstances under which they were made? It need hardly be observed that questions of this nature are rarely noticed, except in a cursory manner, by professors of chemistry and surgery, and a medical man is not likely to acquire the means of answering them by intuition. On the other hand, regarding ourselves as living in a civilized state, in which the detection and punishment of crimes against life and property are indispensable to the security of all, it is impossible to overrate their importance. Unless a witness is able to return answers to these questions when a public necessity occurs, a guilty man may escape punishment, or an innocent man may be condemned. He may thus most seriously injure his own reputation, for it is certain that his qualifications as a physician, surgeon, or general practitioner, however great, will not shield him from general reprobation.

Thus, then, it is obvious that the duties of a medical jurist are of a highly responsible nature and of great importance to society, while the cases which call them into exercise are of purely accidental occurrence. A medical practitioner who thinks himself secure in the most retired corner of the kingdom, is liable to find himself suddenly summoned as a witness on a trial, to answer questions which perhaps during a long period of practice he had been led to regard as unimportant. Under the circumstances it is scarcely possible that he can avoid exposing his deficiencies, and the final question will be, Have you ever attended to or thought of these subjects before? A negative answer to this question, while it commonly
brings with it public censure, will in most instances lead to the acquittal of the accused in spite of strong presumptions of guilt.

I have endeavoured to avoid overdrawing this picture; its truth will, I am sure, be felt and acknowledged by those who have been a few years engaged in practice. The records of our Courts of law contain many unfortunate exposures, which might have been easily avoided, had the witnesses only availed themselves of the opportunities afforded to them while students, of acquiring a knowledge of the subject; but they had unreflectingly acted on the principle, that medical jurisprudence was a dry, dull, and useless study, and that the practice of it was remote and speculative. This feeling is, however, fast disappearing. Those who have been compelled by circumstances to give their attention to it, have, in subsequent cases, taken care to prepare themselves for the ordeal through which every medical witness must pass.

Some medical men who have treated legal medicine with indifference have occasionally ventured to act as witnesses, thinking that the subjects on which they were likely to be examined were so little known to judge and counsel, that even hazardous or rash statements would escape observation: such witnesses, however, have often found to their cost that they were labouring under a fatal delusion. Various circumstances have led, in recent times, to the acquisition of much medico-legal knowledge by lawyers, especially in relation to questions connected with wounds, child-murder, and poisoning, and they are not slow in detecting and exposing a mere pretender who attempts to shelter himself by vague or evasive statements and technical language. Another fact must be borne in mind:—there are few counsel engaged in any civil or criminal case of importance who do not take care to fortify themselves, under medical advice, with a full knowledge of the views of standard medical writers on the subject in dispute; and with these works before them, and with their proverbial acuteness, he must indeed be a clever witness who can succeed in passing off an erroneous or evasive answer to a medico-legal question.

It is a frequent charge against members of the medical profession that they are the worst witnesses on matters of fact and opinion. I believe this to be an unmerited censure. Those who are ready to make this charge overlook the number, complexity and difficulty of the questions which are put to medical men compared with those put to other witnesses. They also forget that medical men are much more frequently summoned as witnesses than the members of the two other learned professions. Their evidence obtains much greater publicity, and is necessarily exposed to a wider circle of criticism. The fact is, that good and bad witnesses are to be met with in every profession, and under equal conditions there is no reason to suppose that one would furnish a greater number of incompetent witnesses than another. It is certainly the fault of medical men that they are not generally prepared for the questions which are likely to arise in a case on which they know they will be required to give evidence.
MEDICO-LEGAL OBSERVATION.

This want of preparation frequently applies to facts as well as to opinions. Thus, in reference to a case on which a charge of murder or manslaughter may be ultimately founded, a medical man who is called in, omits to observe many circumstances, because at the time they appear to him to have little importance, although at the subsequent trial he may find, to his dismay, that they actually become the turning points of innocence or guilt. Medical observation as a result of professional habits is, on those occasions, in general confined to only one set of circumstances—the recognition and treatment of accident or disease; but medico-legal observation should take a much wider range than this, and should be directed to all the surrounding facts and incidents of a case. The essential difference in the two kinds of practice is, that circumstances which are of no interest in a medical or surgical point of view, are often of the greatest value and importance in legal medicine. It is obvious that if they are not observed by a medical witness when he is first summoned to the injured person, whether dying or dead, it will be out of his power to meet many of the questions which must arise in the progress of the case. The non-observance of these facts is a serious evil, and often carries with it; although unjustly, an imputation of professional ignorance.

The first duty, therefore, of a medical jurist is to cultivate a faculty of minute observation of medical and moral circumstances. This, when combined with a general knowledge of what the law requires as evidence, will enable him to meet in a satisfactory manner all the scientific questions that may be necessary for the elucidation of a case. The exercise of this faculty is by no means inconsistent with the performance of his duties as a surgeon. A learned judge on one occasion remarked that 'a medical man, when he sees a dead body, should notice everything.' Undoubtedly he should observe everything which could throw a light upon the production of wounds or other injuries found upon it. It should not be left to policemen to say whether there were any marks of blood on the dress or on the hands of the deceased, or on the furniture in the room. The dress of the deceased as well as the body should be always closely examined on the spot by the medical man.

It may stimulate the attention of a medical practitioner in reference to these inquiries if he is informed that the great art of counsel who defend persons charged with murder or manslaughter, consists in endeavouring to discover what he omitted to do. Although sometimes the omission may be really of no medical importance whatever, yet it is usually placed before the jury in such a strong light that the accused obtains the benefit of a doubt. The omission may be attributed to professional ignorance, or, what is worse, to professional bias—a determination to find proofs of guilt against the 'unhappy prisoner at the bar'—when the facts might be innocently explained by a want of experience on the part of the witness in dealing with cases of this nature.

If we except medical experts, who are selected according to their
§ Dying Declarations.

Experience in different branches of the profession, medical men have no option respecting medico-legal practice; for the cases which give rise to medico-legal questions are always more or less connected with the practice of medicine and surgery.

Thus before any inquiry is instituted by a magistrate or coroner, and before any suspicious circumstances have come to light, a medical man may be summoned to a person dying from the effects of a wound, or from the secret administration of poison. The dying person may make to him a declaration or statement as to the circumstances under which the wound was inflicted or the poison administered: he may also mention the names of the person or persons concerned in the assault or the administration. This dying declaration or statement, according to the circumstances under which it is made, may become of material importance in the prosecution of a party charged with murder or manslaughter. It is therefore proper that a practitioner should observe and make notes of the exact condition of the patient;—whether, when he makes the statement, he is under the conviction or belief that he is about to die. It has been thought that it was also necessary to prove that the wounded man had lost all hope of recovery; but as a learned judge has justly remarked, it is very difficult, if not impossible, to say on these occasions, when, if ever, the feeling of hope completely deserts a man. Again, a man may express an opinion that he shall 'not recover,' but this is not sufficient. The law admits these declarations not because recovery is impossible, but because the person making the statement has in his mind at the time of making it a full conviction of approaching death. It is therefore the duty of the medical attendant on these occasions, to see how far the person making the statement believes that his death is impeding or approaching. This belief is considered in law to be equivalent to the obligation of an oath.

Hence, when the case is likely to prove fatal, the medical man should warn the patient, in the presence of his relatives or friends, of his dangerous condition. If the wound or poison is not likely to prove rapidly fatal, the attendance of a magistrate to take down the statement in due legal form, would relieve the medical man of all responsibility. Should any statement, however, be made to him under these circumstances, it is his duty to make, on the spot, a note of the words actually used. There should be no paraphrase or translation of them, but they should be the ipsissima verba of the dying man. It is not for the witness, but for the Court, to interpret what is thus stated. A medical man on these occasions should not render himself officious in extracting information. He may receive that which is voluntarily uttered, and, either immediately or on the earliest possible opportunity, write down the statement as it was made. Any question should be simply confined to the purpose of explaining what may appear to him to be ambiguous or contradictory in the declaration itself.

In reference to persons who have died from the effects of wounds,
poison, or other violent causes, the initiatory proceedings connected
with the inquiry usually take place in the Court of the Coroner;
and unless the medical man in attendance is supposed to be implic-
icated by maltreatment or otherwise in the death of the person, the
duty of making an examination of the dead body devolves upon
him. He may not have seen the person while living; and in this
case it will be necessary that he should give his attention to those
circumstances which may be of importance in the future inquiry.
He should note as far as it can be ascertained: 1. The exact
time of death, if known, and thus determine how long a period the person
has survived. 2. The attitude, position, and condition of the body.
3. The state of the dress. 4. All surrounding objects. Any
bottles, paper-packets, weapons, or spilled liquids lying about should
be collected and preserved, and their position with regard to the
body of deceased should be noted. 5. Any vomited matters near
the deceased should be collected. In making a post-mortem exami-
nation of the body the following additional points should be at-
tended to: 6. The external appearance of the body, whether the
surface is livid or pallid. 7. Note the state of the countenance.
8. Note all marks of violence on the person, or decomposion of
the dress, marks of blood, &c. 9. The situation, form, and direc-
tion of all wounds should be accurately noticed. 10. The presence
or absence of warmth or coldness in the legs, arms, abdomen, mouth,
or armpits. 11. The presence of cadaveric rigidity in any part of
the body. To give any value to the two last-mentioned characters,
it is necessary for the practitioner to observe the nature of the floor
on which the body is lying,—whether the body is clothed or naked,
young or old, fat or emaciated. These conditions create a difference,
in respect to the cooling of the body and the access of rigidity.
12. If found dead—When was the deceased last seen living, or
known to have been alive? 13. Note all circumstances leading to
suspicion of suicide or murder. 14. The time after death at
which the inspection is made. 15. Observe the state of the abdo-
mental viscera. If the stomach and intestines are found inflamed,
the seat of inflammation should be exactly specified; also all marks
of softening, ulceration, effusion of blood, corrosion, or perforation.
The stomach should be removed and placed in a separate vessel,
ligatures being applied to the two ends. If cut open for examina-
tion at this period, this operation should be performed in a clean
dish, and with such care that none of the contents are lost or are
allowed to mix with the contents of the intestines. 16. The con-
tents of the stomach, if this organ is opened during the inspection,
should be collected in a clean graduated vessel:—notice a, the quan-
tity; b, the odour tried by several persons; c, the colour; d, acid
or alkaline reaction; e, presence of blood, mucus, or bile; f, pre-
sence of undigested food; and here it may be as well to observe,
that the presence of farinaceous matters (bread) would be indicated
by the addition of iodine water, if the contents were not alkaline
—of fat, by heat; g, other special characters. 17. The contents
of the duodenum should be separately collected, ligatures being applied to it. 18. Observe the state of the large intestines, especially the rectum, and note the condition of their contents. The discovery of hardened feces in the rectum would prove that purging had not existed recently before death. 19. The state of the windpipe, throat, and gullet, and whether there are in these parts any foreign substances or marks of inflammation and corrosion. This is of essential importance, as it throws a light upon a variety of questions which may arise respecting death by suffocation from mechanical causes, or the nature of a substance swallowed. 20. The state of the lungs and heart; all morbid changes noted. 21. The state of the brain and spinal marrow. 22. The condition of the uterus, ovaries, and genital organs should be examined, as, in the female, poison has been sometimes introduced into the system by the vagina, or wounds have been inflicted internally. 23. The liver with the gall bladder should be removed for a chemical examination. 24. The urinary bladder, with any fluid contained in it, should be removed and placed in a separate jar.

Such are the points to which, in the greater number of cases of violent death, a medical jurist should give his attention. By means of these data, noted according to the particular case to which they are adapted, he will in general be enabled, without difficulty, to determine the probable time of death, and the actual means by which death was brought about. He may thereby have it in his power, if the case be one of poisoning, to point out the dish or article of food which had contained the poison, and to throw light upon any disputed question of suicide or murder in relation to the deceased. Many cases of death from wounds or poison are rendered obscure, owing to these points not having been attended to in the first instance.

It is not necessary in this place to enter into any details respecting the mode of performing an inspection. A medical practitioner is supposed to have acquired a knowledge of this part of his duties during his study of anatomy; and any additional information which may be required will be found in the appropriate sections of this work. The only essential points in addition to those above mentioned, are, 1. To examine all the important organs for marks of natural disease: and 2. To note down any unusual pathological appearances or abnormal deviations; although they may at the time appear to have no bearing on the cause of death. It is useful to bear in mind on these occasions that the body is inspected, not merely to show that a person has died from poison, but to prove that he has not died from any natural cause. Medical practitioners commonly give their attention exclusively to the first point; while lawyers, who defend accused parties, very properly direct a most searching examination to the last-mentioned point, i.e. the healthy or unhealthy state of those organs which are essential to life. The usual causes of sudden death have their seats commonly in the brain, the heart and its great vessels, or in the lungs. Marks of
INSPECTION OF EXHUMED BODIES.

Effusion of blood, congestion, inflammation, suppuration, or a diseased condition of the valves of the heart, should be sought for and accurately noted. It has also been recommended that an examination of the spinal marrow should be made. If the cause of death is obscure after the general examination of the body, there is good reason for inspecting the condition of this organ.

Examination of Bodies.—Sometimes the inspection of a body is required to be made long after interment. So long as the coffin remains entire, there may be the expectation of discovering certain kinds of mineral poison in the organs; but decomposition may have advanced so far as to destroy all pathological evidence. The inspection in such cases is commonly confined to the abdominal viscera. The stomach is often found so thin and collapsed that the anterior and posterior walls appear to form only one coat. This organ should be removed with the duodenum, and ligatures should be applied to each. The liver and the spleen should also be removed, in order that they may, if necessary, be separately analysed. If poison is not found in one or more of these parts, it is not likely that it will be discovered in the body. It has been recommended that a portion of earth immediately above and below the coffin should be removed for analysis, as it may contain arsenic; but this appears to me to be an unnecessary piece of refinement when the coffin is entire, or when the abdominal parietes still cover the viscera. If decomposition has so far advanced as to have led to an admixture of earth with the viscera, and the poison is found in minute quantity in the tissues only, the source of the poison may be regarded as doubtful: and in this case the earth in which the remains are found should undergo a chemical examination.

The body of a deceased person, when exhumed, should be identified by some friend or relative, in the presence of the medical examiner. In one case of murder by poison, the evidence almost failed, owing to this precaution not having been taken.

It is important that the viscera taken from a body which has been long in the grave should be sealed up immediately. They should not be allowed to come in contact with any metal, nor with any surface except that of clean glass, porcelain, or wood. It has been recommended that they should be washed with chloride of lime or carbolic acid; but this is decidedly improper: the use of any preservative chemical liquid would not only embarrass the future analysis, but would render a special examination of an unused portion of the liquid necessary, the purity of which would have to be unequivocally established. Preservation from air in clean glass vessels, with well-fitted corks covered with skin, or what is still better, sheet-coutchouc, is all that is required in practice.

Identity of Substances.—It is necessary to observe that all legal authorities rigorously insist upon proof being adduced of the identity of the vomited matters or other liquids taken from the body of a deceased person, when poisoning is suspected. Supposing that, during the examination, the stomach and viscera are removed from
the body, they should never be placed on any surface or in any vessel until we have first ascertained that the surface or vessel is perfectly clean. If this point be not attended to, it will be in the power of counsel for the defence to raise a doubt in the minds of the jury, whether the poisonous substance might not have been accidentally present in the vessel used. This may be regarded as a very remote presumption; but, nevertheless, it is upon technical objections of this kind that acquittals follow in spite of the strongest presumptions of guilt. This is a question for which every medical witness should be prepared, whether he is giving his evidence at a coroner’s inquest or in a Court of law. Many might feel disposed to regard matters of this kind as involving unnecessary nicety and care, but if they are neglected it is possible that a case may be at once stopped; so that the care subsequently bestowed upon a chemical analysis will be labour thrown away. Evidence of the presence of poison in the contents of a stomach was once rejected at a trial for murder, because they had been hastily thrown into a jar borrowed from a neighbouring grocer’s shop; and it could not be satisfactorily proved that the jar was clean and entirely free from traces of poison (in which the grocer dealt) when used for this purpose. When the life of a human being is at stake, as in a charge of murder by poisoning, the slightest doubt is always very properly interpreted in favour of the accused.

Not only must clean vessels be used for receiving any liquid destined for subsequent chemical analysis, but care must be taken that the identity of a substance is preserved, or the most correct analysis, afterwards made, will be inadmissible as evidence. The suspected substance, when once placed in the hands of a medical man, should never be let out of his sight or custody. It should be kept sealed under his private seal, and locked up while in his possession in a closet, to which no other person has a key. If he has once let it out of his hands, and allowed it to pass through the hands of several other persons, then he complicates the evidence for the prosecution, by rendering it indispensable for these persons to state under what circumstances it was placed while in their possession. The exposure of a suspected substance on a table, or in a closet or room, to which many have access, may be fatal to its identity; for the chemical evidence, so important in a criminal investigation, will probably be altogether rejected by the Court. When any article (e.g. a stomach or other organ) is reserved for analysis, care should be taken to attach immediately to it, or to the vessel containing it, a parchment or wooden label, upon which is plainly written, in ink, the name of the deceased and the date of removal, including the day of the week and month. This is especially necessary when there are two or more articles for analysis. I have known the greatest inconvenience to result from the neglect of this simple precaution.

Preserving articles for Analysis.—In removing viscera or liquids from the body, and reserving them for analysis, it is necessary to
observe certain precautions. A clean vessel with a wide mouth should be selected; it should be only sufficiently large to hold the organ or liquid (the less air remaining in it the better); it should be secured by a closely fitting cork, covered with fine skin or bladder. Another piece of skin should then be tied over the mouth, or, for this, sheet caoutchouc or gutta percha may be substituted with advantage. It should lastly be covered with tinfoil, and a layer of white leather. In this way any loss by evaporation or decomposition is prevented, and the viscera may be preserved (in a cool place) for some time. If the mouth of the vessel be too wide for a cork, the other articles cannot be dispensed with. Paper only should not be used: I have known the appearances after death in the viscera of an infant, suspected to have died from poison, entirely destroyed by drying, owing to the evaporation which took place through the layers of paper with which the vessel containing them was covered. The practitioner should bear in mind that all these matters are likely to come out in evidence; and whatever is worth doing at all, is worth doing well. For reasons already stated, antiseptic chemical compounds should not be used. The addition of a small quantity of chloroform to the viscera will, without complicating the analysis, tend to preserve them.

The articles used for the preservation of viscera should be in all cases scrupulously examined. Some kinds of calico are dressed with arsenic and starch paste, and many kinds of wrapping-paper as well as wall-papers are strongly impregnated with this poison. An observation made by Mr. Aickin, of Belfast, shows that this is not an unnecessary caution. This gentleman was engaged in examining the body of a child, in order to determine the cause of death. The organs were healthy, and as no sufficient cause presented itself, he removed the stomach with a view of making an analysis of its contents. He was suddenly called away; and, to preserve the stomach, he wrapped it in a piece of paper (used for papering rooms), placing it on the uncoloured side, and he locked it in a closet until the following day. Assisted by a friend, he then analysed the contents, and found a trace of morphia with a pretty large quantity of arsenic. As the symptoms from which the child had died were not those of poisoning with arsenic, and there were no appearances of the action of this substance on the body, he came to the conclusion that its presence must have been owing to some extraneous cause. He examined a portion of the wall-paper in which the stomach had been wrapped, and then found that that part of it which was coloured yellow was tinted with sulphide of arsenic or orpiment! It was therefore evident, as orpiment contains white arsenic, that the stomach and its contents had imbibed a portion of the poison during the night. ('Lancet,' June 23, 1855, p. 632.) This satisfactorily accounted for the presence of arsenic, under circumstances which might have given rise to a false charge of murder. Nearly all wall-papers, having any tinge of green or golden yellow in them, contain arsenic, and this arsenic spreads by imbibition to other parts of the
paper not so tinted. It would, of course, be proper to avoid in all cases the use of any wrapper having upon it mineral colours of any description. Mr. Aickin's case shows in a striking point of view the danger of trusting to chemical analysis alone. Unless we look to physiology and pathology, a most erroneous opinion may be expressed.

The results of an analysis, in the shape of sublimates or precipitates, should be preserved as evidence, distinctively labelled in small glass-tubes, hermetically sealed. They can then, if asked for, be produced for examination at the inquest or trial.

On the use of Notes.—It has already been recommended, as a rule in these criminal investigations, that a practitioner should make notes of what he observes in regard to symptoms, appearances after death, and the results of a chemical analysis. His own observations should be kept distinct from information given to him by others. He may base his conclusions on the former, but not on the latter. From the common forms of law in this country, a person charged with the crime of poisoning may remain imprisoned, if at a distance from the metropolis, for some months before he is brought to trial. It is obvious, however clear the circumstances may at the time appear to a practitioner, that it will require more than ordinary powers of memory to retain, for so long a period, a distinct recollection of all the facts of the case. If he is unprovided with notes, and his memory is defective, then the case will turn in favour of the prisoner, for he will be the person to benefit by the neglect of the witness. In adopting the plan here recommended, such a result may be easily prevented. It may be remarked that the law relative to the admissibility of notes or memoranda in evidence is very strict, and in trials for murder is rigorously enforced by the judges. In order to render such notes or memoranda admissible, it is indispensably necessary that they should have been taken on the spot at the time the observations were made, or as soon afterwards as practicable; and, further, it must be remembered that a witness can refer to them only for the purpose of refreshing his memory. If from indistinctness of writing or other causes, a copy of the notes has been subsequently made,—a witness should not destroy the original notes, but have them ready for production. He must also be prepared to give a reasonable explanation of any alterations or interlineations which may appear in his original notes.

So in reference to all other written memoranda connected with the case, as, for example, the medicines prescribed for the deceased, the visits made to him, &c., the witness should be prepared to produce them and explain any remarks which may be found in his books. Counsel are entitled to look at and examine all documents of this kind which are produced or used by the witness in giving his evidence.

Medico-legal Reports.—One of the duties of a medical jurist is to draw up a report of the results of his examination: 1, in regard to symptoms; 2, in regard to appearances after death; and 3, in re-
garding the results of an analysis. With respect to the two first
divisions of the report, I must refer the reader to the rules for
investigating cases of poisoning (p. 7). It need hardly be observed
that the time at which the person was first seen, and the circum-
cstances under which the attendance of the practitioner was first re-
quired, as well as the time of death, should be particularly stated.
The hour, the day of the week, and the month, should be invariably
mentioned. Some medical witnesses merely state the day of the
week, without that of the month, or vice versa. At a trial this
times creates great confusion, by rendering a reference to
almanacs necessary. The words yesterday, next day, &c., should
never be used. The facts which it will be necessary to enter in the
report are specially stated under the heads of investigation (see p. 8).
If these facts are not observed in the order there set down, their
value as evidence of the cause of death, or of the criminality or
innocence of particular persons, will be entirely lost.

In drawing up a report of symptoms and appearances after death,
the facts should be in the first instance plainly and concisely stated
scritum, in language easily intelligible to non-professional men. A
reporter is not called upon to display his erudition, but to make
himself understood. If technical terms are employed, their mean-
ing should be stated in parentheses. When a subject is thoroughly
understood, there can be no difficulty in rendering it in simple lan-
guage; and when it is not well understood, the practitioner is not
in a position to make any report. Magistrates, coroners, and barr-
risters are very acute, and easily detect ignorance, even when it
appears under the mask of erudition.

In recording facts a reporter should not encumber his statements
with opinions, inferences, or comments. The facts should be first
stated and the conclusion should be reserved until the end of the
report. The language in which conclusions are expressed, should
be precise and clear. It must be remembered that these are intended
to form a concise summary of the whole report, upon which the
judgment of a magistrate, or the decision of a coroner's jury, will
be ultimately based. They should be most strictly confined to the
matters which are the subject of inquiry, and which have actually
fallen under the observation of the witness. Thus, they commonly
refer to the following questions:—What was the cause of death? What
are the medical circumstances which lead you to suppose that
death was caused by violence? What are the circumstances which
lead you to suppose that death was not caused by natural disease?
Answers to one or all of these questions comprise, in general, all
that a reporter is required to introduce into the conclusions of his
report.

The reporter should remember that his conclusions are to be based
only upon medical facts,—not upon moral circumstances, unless he
is specially required to express his opinion with regard to them when
they are of a medico-moral nature. Further, they must be founded
only on what he has himself seen or observed. Any information
derived from others, should not be made the basis of an opinion either in evidence or in a medico-legal report. It is scarcely necessary to remark that a conclusion based upon mere probabilities is of no value as evidence.

In drawing up a report on the results of a chemical analysis, the following rules may be borne in mind. A liquid or solid is received for analysis. 1. When, and of whom, or how received? 2. In what state was it received—secured in any way, or exposed? 3. If more than one substance received, each to be separately and distinctly labelled; appearance of the vessel, its capacity, and the quantity of liquid (by measure) or solid (by weight) contained therein. 4. Where and when did you proceed to make the analysis, and where was the substance kept during the intermediate period? 5. Did any one assist you, or did you make the analysis yourself? 6. Physical characters of the substance. 7. Processes and tests employed for determining whether it contained poison. All the steps of these processes need not be described—a general outline of the analysis will suffice. The magistrate may thus satisfy himself by an appeal to others (if necessary) whether the analysis has or has not been properly made. 8. Supposing the substance to contain poison—is this in a pure state or mixed with any other body? 9. The strength of the poison, if an acid, or if it be in solution: in all cases, the quantity of poison found, determined if possible by actual weighing. 10. Supposing no poison to be contained in it, what was the nature of the substance? Did it contain anything of a noxious nature, i.e., likely to injure health or destroy life? 11. Could the supposed poisonous substance exist naturally or be produced within the body? 12. Was it present in any of the liquids or solids employed in the chemical analysis? 13. Was it contained in any of the articles of food or medicine taken by the deceased? 14. Is its presence to be ascribed to the use of any mineral matter employed by injection after death for the preservation of the body of the deceased? 15. What quantity of poison was actually separated in the free or absorbed state? 16. How much of the substance found would, under the circumstances, be likely to destroy life?

There are few reports in which answers to some of these questions, although not formally put, will not be required; and unless the whole of them are borne in mind by the operator at the time an analysis is undertaken, those which are omitted can never receive an answer, however important to the ends of justice that answer may ultimately become.

There are frequently defects in these reports which it is desirable to point out. The statements are sometimes drawn up in exaggerated language: at others they are overloaded with technical and therefore unintelligible terms, and the writer is seldom sufficiently careful to keep his facts distinct from his comments. The former may be useful as evidence; the latter are inadmissible.

With respect to the first of these defects, it is very much the
practice of medical men, in drawing up reports of medical cases for professional purposes, to use, unthinkingly, exaggerated language. Thus it may be observed in the description of an ordinary post-mortem examination, the lining membrane of the stomach is described as being 'intensely' inflamed, or some part is 'considerably' injected, or a cavity is 'enormously' distended. Expressions thus loosely employed, convey to the legal mind a widely different meaning from that intended by the reporter. They create also great difficulty in evidence if withdrawn or modified, a change which other circumstances may show to be necessary, and at the same time they place the witness in an undesirable position before the Court. On the other hand, if retained, they may render the facts unsusceptible of explanation upon any theory of natural disease. Such descriptions obviously imply a comparison with similar conditions in numerous other dead bodies; but what is the standard by which they are really measured, and what opportunity has the witness had of creating such a standard from his own experience? In general it will be found that such expressions have been used without proper consideration from a habit acquired by the writer in reporting cases for the information of medical men only. Let him who is inclined to use them, bear in mind that barristers look much more closely to the strict meaning of words than medical men, and that they are always disposed to distrust the judgment of one who cannot speak or write without resorting to the use of the superlative degree.

The free use of technical terms in drawing up reports may be attributed to a similar practice in the profession. Putting aside those cases in which a medical man believes that he is displaying his erudition by the selection and use of such terms, there can be no doubt that the greater number of medical practitioners fall into this practice from mere habit. They think they are addressing the report to the president and members of some medical debating society, instead of a coroner and jury who have never in their reading or experience met with such terms, and to whom therefore they are perfectly unintelligible. In a report on the appearances in the body of a man who had suffered from chronic insanity, which was submitted to me for explanation, the following passage occurred:—

'The only morbid appearance in the brain was an atheromatous deposit in the Pons Varolii, near the situation of the locus niger.' In another document the reporter stated for the information of a coroner's jury, that the 'integuments of the cranium were reflected, and the calvarium was exposed.' If a reporter will use such terms as these or others of a similar kind, such as 'parietes of the abdomen,' 'epigastrium,' 'hypertrophy of the liver,' when it would require no more trouble to put what he means in plain English, he must be prepared to have his meaning perverted or wholly misunderstood. Setting aside the men who act as jurors, it may be observed that educated persons, such as coroners and magistrates, do not commonly include professional terms within the range of their
studies. There are but few of them who understand the difference between perineum and peritoneum, or the meaning of the words hemispheres of the brain, pia mater, puncta crucias, corpora quadrigemina, centrum ovale, &c. They are not likely to know the difference between the cardia and pylorus, nor the nature or situation of the duodenum, jejunum, ileum or cecum, and are as ready to consider them to be parts of the liver or urinary bladder as of the intestines. On one occasion, I heard a learned judge ask for an explanation of the meaning of the terms 'alimentary canal.' A slight consideration will show to any medical practitioner, that refined professional language is wholly misplaced in a report which is intended to inform and convince the minds of ordinary men upon plain matters of fact.

The last point which calls for comment in reference to medical reports, is the loose manner in which facts and comments on facts, as well as hearsay statements, are sometimes found blended. If a reporter takes care to eliminate facts from comment, his report is admissible and may be read at the inquest or trial as evidence. The facts are for the jury—the comments upon the facts, introduced by the reporter, may or may not be correct, and are therefore not evidence. Their correctness or relevancy to the case will be elicited in the cross-examination. As a rule, nothing should be entered in a report which is not connected with the subject of inquiry, and which has not actually fallen under the observation of the reporter. The introduction of hearsay statements, i.e. statements made by others, or of circumstances which have come to his knowledge through public rumour, should be carefully avoided.

Upon the medical report, and such evidence as may be required to explain it, an accused person may be committed for trial at the Assizes, either by a coroner or magistrate. In the first stage of the proceedings, under these circumstances, the medical witness goes before the Grand jury, and there, after the administration of an oath, he is required to make a general statement of what he knows of the matter. Such questions are put as may be necessary to elucidate the cause of death; and on the finding of a true bill for murder or manslaughter, the accused is placed upon his trial before one of the learned judges of Assize. According to the variable circumstances attending such cases, the medical evidence is called for at an early or late stage of the proceedings. When it is at all doubtful whether the cause of death was owing to any criminal act, it is called for at the commencement of the case in order to lay a foundation for further inquiry.

It is necessary that a medical witness should remember that copies of his report and depositions, either before a coroner or magistrate, are usually placed in the hands of counsel as well as of the learned judge, and that his evidence, as it is given at the trial, is compared word for word with that which has been already put on record. There is reason to believe that this is not generally known to members of the medical profession, and thus it happens that
CORONERS' INQUESTS.

Either from failure of memory, want of accurate observation, or carelessness in giving evidence at a coroner's inquest, medical witnesses have laid themselves open to severe censure, either by stating matters differently at the trial, or by giving a very different complexion to the facts. Any serious deviations from what is on record will of course tell unfavourably for the witness, supply ample materials for a severe cross-examination, and form an excellent ground of defence for the prisoner. The witness's weakness is the prisoner's opportunity, and of course his counsel will not lose the occasion of impressing upon the jury that a man who can on oath give two different accounts of the same transaction, is not to be believed on either.

CHAPTER 2.

CORONERS' INQUESTS.—TRIAL AT THE ASSIZES.—OBSERVANCE TO SUBPOENAS.—MEDICAL PROOF.—EXAMINATION IN CHIEF.—DUTIES OF MEDICAL WITNESSES.—QUOTATIONS FROM BOOKS.—PRESENCE IN COURT.—TECHNICAL TERMS.—LICENSE OF COUNSEL.—RULES FOR THE DELIVERY OF EVIDENCE.

Coroners' Inquests.—The proceedings at Coroners' inquests are treated too lightly by medical men. The ignorant and uneducated class of persons who often constitute the jury, as well as the circumstances under which the inquiry usually takes place, are not calculated to inspire great respect for these initiatory proceedings; but still by law and custom coroners' inquisitions are and have been for ages in this country, the only tribunals for inquiring into and determining the cause of death in cases of suspected violence; and they are therefore deserving of more attention than is usually shown to them by medical witnesses. As a rule, in all inquests which are likely to end in a committal of the accused person, a medical man who is giving his evidence before a coroner, in the room of a small country inn or in a village school-room, is virtually delivering it before a judge of Assize; and this fact alone, if not a respect for the Court, should induce him to give his evidence guardedly, and with a due consideration to the serious results to which it may ultimately lead. The 4th Edward I., stat. 2, on which coroners profess to act, directs that 'upon information,' they shall 'go to the place where any be slain or suddenly dead,' and make due inquiry as to the cause, &c., before a jury selected from persons living in the neighbourhood. The information upon which a coroner generally acts is—1. Notice from a beadle, or other officer of the parish (whose zeal is sometimes stimulated by a fee or salary), of any death from sudden or supposed unusual causes. 2. Notice from a medical man who may have attended the deceased, and who communicates his suspicion that the cause of death is not natural. 3. Notice from a registrar of deaths that no cause has been assigned in a particular case, or that there has been a rapid death after a short illness. The
conclusion to which experience leads in reference to these inquiries is, that the system affords no certainty for the detection of crime; that it affords no protection to those who are wrongly charged with crime; and lastly, that in some cases it screens a criminal by a verdict based upon an imperfect inquiry, in which the important medical facts are either not understood or are misinterpreted by the jury.

Many persons who occupy the office of coroner are neither medically nor judicially qualified for the proper performance of the duties of the office. The system of electing a man to hold such an office as this (one demanding special medical knowledge of the causes of death, and good legal knowledge of the law of evidence) by freeholders of the lowest degree, is so intrinsically absurd, that it is quite wonderful how, with improved civilisation, it has maintained its ground in such a country as England. The election of a Lord Chancellor, of the judges of our Courts of Law, or of County Court judges, might be with equal reason left in the hands of voters of this class—men who have no knowledge of the duties of the office, or of the skill and learning required of one who is really competent to fill it. The election of a good and capable person as coroner, is therefore a matter of pure accident. No preliminary test of ability or capacity is required.

In Scotland, the office of coroner does not exist, but in place of this, there is an officer named Procurator Fiscal, generally a skilled solicitor, nominated by competent authority, and not elected by scot and lot voters. The general order issued to these officers by the Lord Advocate, enjoins that in cases where a dead body is discovered, the Procurator Fiscal shall obtain a medical report of the cause of death; and in cases of persons found dead, the body is generally inspected for this purpose. This, however, is at the option of the appointed officer, the instruction being in these words:—"Wherever, in his opinion, a written medical report is necessary for the due consideration of the case, he, the Procurator Fiscal, shall obtain such a report from a duly qualified medical practitioner." The usual practice in England is to select the nearest medical practitioner, whether he has had any experience or not, and often to trust an important and delicate pathological and chemical inquiry, in the hands of one who probably has never before made an inspection or an analysis.

Under the present system coroners are empowered by the Medical Witnesses' Act (6 and 7 William IV. c. 89) to issue an order for the attendance of any legally-qualified practitioner, 'being at the time in actual practice in or near the place where the death has happened.' A fee of two guineas is the maximum allowed for making a post-mortem examination, and, if considered necessary by the jury, a chemical analysis of the stomach and intestines! A penalty of five pounds is attached to disobedience of this order, except for reasonable cause. Mr. Rumsey has correctly represented the unsatisfactory position in which medical men are placed by such an arrangement. He observes: 'It is no discredit to a practitioner
engaged in the toilsome routine of ordinary medical duties, if he should feel himself at a loss when called upon for a decisive opinion in some obscure case of poisoning or infanticide. His scanty opportunities for the study of these subjects and for making post-mortem examinations cannot suffice to qualify him for answering the delicate and important questions which he must answer before a jury can find a proper verdict. 'The custom of indiscriminately summoning medical practitioners of all sorts, and of all degrees of pathological knowledge and forensic skill, has sadly depreciated the value of medical evidence in Courts of justice. Public confidence in the profession has been shaken, and the appearance of a "doctor" in the witness-box is but too often a signal for sport among gentlemen of the long robe.' (Essays on State Medicine, p. 356.)

No medical man can be compelled to undertake that which he feels incompetent to perform, and some medical practitioners who have felt this want of experience have properly declined to make chemical analyses involving so serious a responsibility. It is thus that, in many cases of importance, analyses for coroners' inquests are now referred to chemical experts, and the practitioner discharges himself of that responsibility which the Medical Witnesses' Act imposes upon him without any adequate remuneration.

Before quitting this subject, it is necessary to observe that medical men are too ready to give their opinions of the cause of death for a coroner's inquest without making an inspection of the body. No man is compelled to give an opinion upon insufficient data, and if by the institution of a judicial inquiry there are grounds for believing that a death has not been natural, no medical opinion of the cause should be given in the absence of an inspection. Such an opinion must always be conjectural, and may involve the medical man in an unpleasant responsibility.

Trial at the Assizes.—The next stage of the proceedings in a criminal case brings a medical witness before a superior court. For this purpose a subpoena is issued. It need hardly be observed that every witness is bound to obey a subpoena, when with it, his reasonable expenses for the journey, &c., are tendered to him, but he is not bound to attend at the trial except upon a subpoena. There are some questions connected with this subject which it will be proper to consider in this place. If a subpoena is served on an ordinary or skilled medical witness, is he bound to obey it? In Betts v. Clifford (Warwick Lent Assizes, 1858) the late Lord Campbell stated, in answer to a question, that a scientific witness was not bound to attend upon being served with a subpoena, and that he ought not to be subpoenaed. If the witness knew any question of fact he might be compelled to attend, but he could not be compelled to give his attendance to speak to matters of opinion.

In Rich v. Pierpoint, an action for malapraxis, Dr. Lee was summoned against his will to give evidence on the part of the plaintiff. He stated that on the evening before the trial a solicitor called on him and left a subpoena with him. Dr. Lee would not hear any
account of the case which the solicitor proposed to give, and expressed his resolution to have nothing to do with the trial. The solicitor informed him that he would be required to pay the usual penalty if he did not attend. He went down to Kingston, and was warned not to leave the Court until the trial was over. He heard the evidence on the part of the plaintiff, and upon this and the medical evidence he gave his opinion—not much in favour of the party who summoned him, and not much against him. Dr. Lee considered that he could not avoid attending the trial under these circumstances. (‘Medical Times and Gazette,’ April 12, 1862, p. 389.)

In the case of Webb v. Page (‘Carrington and Kirwan’s Reports,’ p. 23) the late Mr. Justice Maule ruled as follows:—‘There is a distinction,’ said his Lordship, ‘between the case of a man who sees a fact and is called to prove it in a Court of justice, and that of a man who is selected by a party to give his opinion on a matter on which he is peculiarly conversant from the nature of his employment in life. The former is bound, as a matter of public duty, to speak to a fact which happens to have fallen within his own knowledge, for without such testimony the course of justice must be stopped. The latter is under no such obligation; there is no such necessity for his evidence, and the party who selects him must pay him.’ In the case referred to by Mr. Justice Maule, a skilled witness had been subpoenaed, but he refused to give evidence unless first paid for his services and loss of time (‘Medical Times and Gazette,’ April 26, 1862, p. 432). A barrister, who quotes this ruling, goes on to say:

‘There is one reason why I should not advise any person in the position of a skilled witness totally to disregard a subpoena. It is quite clear that should such a person fail to attend a trial no attachment could issue, even if he were called as is usual upon the subpoena, because the party subpoenaing him could not make the requisite affidavit that he was damned by the witness’s absence and in what respect. But such party might bring an action for damages; and although he would recover none, he might not only worry, but might even put the defendant to a considerable expense, as taxed costs by no means include the entire costs in such cases. Although, therefore, I could not advise a total neglect of the subpoena, the safest course would be to obey it, and demand expenses before giving evidence. Such expenses would be only those allowed for a professional witness (not special fees), but if the person so subpoenaed were willing to run the risk of an action, he might safely absent himself without any fear of an attachment from the Court for contempt.’ With regard to the question whether a skilled witness would be permitted to demand a high fee for his attendance under such circumstances, the writer adds: ‘To permit him legally to demand a high fee would perhaps look somewhat like legally countenancing a bribe.’ At all events there is no such legal recognition.

In a case which came before the Court of Exchequer in May 1868 (Maxsted v. Morris), a witness wilfully disobeyed a subpoena. In
consequence of this the trial was postponed, and the parties were put to great expense. An arrangement was made by which the witness bound himself to pay a part of the expenses. The Chief Baron said: It must be distinctly understood that in all cases where it appeared to the Court that there had been a wilful disobedience of a subpoena after proper service, such a contempt of Court would be visited with the punishment it deserved. Martin, B.: It was not to be tolerated that a man should exercise any discretion as to whether he would or would not attend a Court in pursuance of subpoena. Enormous costs were incurred in preparing a case and bringing it down to trial, the whole of which were to be thrown away and wasted, because a man refused to obey a lawful summons to attend as a witness. Pigott, B.: A subpoena was not to be treated as mere waste paper. Public justice required that persons wilfully committing contempt of Court should be dealt with in such a manner as to teach them that they could not commit a contempt of Court with impunity.

Lord Campbell’s dictum in reference to the distinction between fact and opinion confers no practical benefit on witnesses. It is at all times difficult in science, and in the medical sciences particularly, to separate them; and if a man appears to testify to a medical or scientific fact, he cannot avoid giving an opinion arising out of the fact. In an action against a druggist for a mistake in compounding medicine, an attempt was made to procure my opinion as a skilled witness at the trial, by reason of facts obtained from the report of a chemical analysis, the real object of which was at the time entirely concealed. The suit was fortunately compromised, and my attendance was not necessary, but such a case should convey a caution to chemical experts. They may be employed secretly and under untrue statements to make analyses; these become facts on which they may be summoned like ordinary witnesses to give opinions as skilled witnesses, while the payment of the usual fee for a skilled witness is evaded.

It would appear from the following recent case (Maskerry v. O’Connor, Q.B., June 1873) that medical gentlemen residing within the Bills of Mortality are placed under exceptional circumstances. The plaintiff, a girl seven years old, appeared by her father, claiming damages of defendant by reason of personal injuries sustained from careless driving. Dr. P. Leslie was called to prove the nature of the injuries, but he declined to give evidence unless his medical fees were first paid. It appeared that he had been served with a subpoena without any fee. A shilling was then tendered to him, but he still declined to give evidence until either his expenses were paid or there was an undertaking to pay them. Quain, J., ruled that as Dr. Leslie resided within the “Bills of Mortality,” all that he was entitled to was one shilling on his subpoena. The witness then produced a report of a case in which a medical man had successfully insisted on his fees being paid before giving evidence, but it appeared that he did not reside within the Bills of Mortality. Dr. Leslie was accordingly sworn. The jury returned
a verdict of damages against defendant, and the judge refused to certify. It may be remarked of these Bills, which were commenced in 1692, that since 1840 they have been superseded in fact but not in law by the Registrar-General's weekly returns. They included latterly 148 parishes in Middlesex and Surrey, but excluded the large parishes of Marylebone and St. Pancras. The payment of medical fees should not depend upon the witness living within or without an antiquated boundary of this kind.

In a case tried at the Carnarvon Assizes, August 1872, a medical man had refused to sign the depositions which had been taken before the magistrates without being guaranteed a higher fee than that allowed by the county tariff. Bovill, C.J., told the witness that the Act of Parliament imposed an obligation upon him, and he had no power to refuse, and if he did so on another occasion he would be liable to be indicted for disobedience. The judge held that a medical man has no right to fix the amount of his expenses, but must always take the allowance which the law gives him. (Lancet,'1872, vol. 2, p. 204.)

Medical Witnesses.—Assuming that the medical man has obeyed a subpoena, he will now be required to attend before the Court, and to state, in the face of adverse counsel, the opinions which he has formed from the medical facts of the case, as well as the grounds for these opinions. He will then, for the first time, undergo the ordeal of a public examination.

Some medico-legal writers have considered it necessary to lay down rules respecting the manner in which a medical witness should give his evidence; how he is to act on a cross-examination, and in what way he is to recover himself on re-examination. Any advice upon this head appears to me to be quite superfluous; since experience shows that these rules, like those given to prevent drowning, are invariably forgotten at the very moment when a person is most in need of them. A man who goes to testify to the truth to the best of his ability should bear in mind two points: 1. That he should be well prepared on all parts of the subject on which he is about to give evidence. He should act on these occasions upon the advice contained in the Latin motto, ne tenes aut perfica. 2. That his demeanour should be that of an educated man, and suited to the serious occasion on which he appears, even although he may feel himself provoked or irritated by the course of examination adopted. A medical witness must not show a testy disposition in having his professional qualifications, his experience, his means of knowledge, or the grounds for his opinions very closely investigated: he should rather prepare himself to meet with good humour the attempts of an adverse counsel to involve him in contradiction, and shew by his answers that he has only a desire to state the truth. Law and custom have long established that a barrister, in defending a prisoner charged with murder, has a right to make use of all fair and even what may appear to the witness unfair means for the defence. Nothing can tend more to
LICENSE OF COUNSEL

Loser a witness in the opinion of the Court and jury, or diminish the value of his evidence, than the manifestation of a disposition to deal with his examiner as if he were a personal enemy, to evade the questions put, or to answer them with flippancy or anger. All such exhibitions invariably end in the discomfiture of the witness. It has been suggested that medical men on these occasions might take a lesson from lawyers, and observe how little they allow forensic differences, which they put on with their professional costume, to influence them in their intercourse with each other or with an adverse judge or jury.

Medical men have complained, and on many occasions justly, of the license of counsel. On this subject it may be well to consider what has been said by one of the highest authorities on the Bench, Chief Justice Erie:—'The law trusts the advocate with a privilege in respect to the liberty of speech which is in practice bounded only by his own sense of duty; and he may have to speak upon subjects concerning the deepest interests of social life, and the innermost feelings of the soul. The law also trusts him with a power of insisting upon answers to the most painful questioning, and this power again is in practice only controlled by his own view of the interests of truth.' (Judgment in Kennedy v. Brown, 1862.)

Thus it will be seen that almost unlimited powers of interrogation are intrusted to counsel by the law, and it is a serious question whether the unrestricted use (which it has been justly remarked means only the frequent abuse) of these enormous powers, is necessary or even favourable to the administration of justice.

One of the most severe reprimands on this abuse came from the same learned judge in a case which was before him in 1857; it was addressed to a learned sergeant, now deceased, and was to this effect,—'A question had been put throwing on the witness an imputation for which there was really no foundation. The learned judge then said: 'The freedom of question allowed to the bar was a public nuisance, and the barrister who made such an imputation ought to be prosecuted. If a question had relation to the truth, he was most anxious it should be put, but to cast haphazard imputations at the suggestion of a person (an attorney) who might have no scruples as to what he did, was a degree of mischief that made him wish that a party should be prosecuted. He begged leave to say that in his experience he had seen counsel so abuse their privilege, that he had cordially wished a power could be instituted that they might be prosecuted for a misdemeanor.' It is the general practice to say that the obnoxious questions are in the instructions, but a barrister can always exercise a power of putting or not putting a question which may be found there. By putting it he clearly adopts it, and frequently to the great damage of his own case. This is at present the only check upon the practice, for learned judges seldom interfere unless directly appealed to by the witness.

Some medical men have claimed a privilege not to answer certain questions which are put to them, on the ground that the matters
have come to their knowledge through private and confidential communications with their patients. It is right to state at once that the law concedes no special privilege of this nature to members of the medical profession. No man is bound to reply to any question if the answer would tend in any way to incriminate himself—for no man is compelled to be a witness against himself. With this exception all questions must be answered, provided they are relevant to the case, and their relevancy is a matter for the consideration of the learned judge who presides.

Sometimes a witness makes a frivolous objection and refuses to answer an ordinary question, thus bringing only ridicule upon himself. A skilled expert, at an important trial, was asked his age. Instead of answering so simple a question at once, he angrily appealed to the judge to know whether he was bound to give an answer on a matter which, as he said, could have nothing to do with the case. The judge informed him that unless he had some very strong reasons for concealing it, he had better state it. I was once present at a trial for murder by poison, when, in the course of a cross-examination, counsel for the prisoner asked the medical witness what remedy or antidote he had employed when he was first called to attend the deceased. He appealed to the judge to know whether he was bound to answer such a question as that. Judge: ‘Yes, unless you have reason to believe that your antidote killed the deceased. In that case you are not bound to answer it.’ The question was immediately answered.

As there is no special privilege granted to members of the profession, a witness must remember that there are no medical secrets.

In the case of the Duchess of Kingston this privilege of withholding statements was claimed by a medical witness, but rejected. In a case in which a woman was indicted for the murder of her infant, a surgeon was called to prove certain confessions made to him by her during his attendance on her. He objected, on the ground that he was then attending her as a private patient. The learned judge (Park, J.) said this was not a sufficient reason to prevent a disclosure for the purposes of justice, and he was ordered to answer the questions. (Beck’s ‘Med. Jurisprudence,’ vol. 2, p. 922.) Any statements therefore which are made to physicians or surgeons while attending persons in a private capacity, although they are not to be volunteered in evidence, must be given in answer to questions, whatever consequences may ensue. Cases of poisoning and wounding, duelling and child-murder, as well as cases which involve questions of life-insurance, divorce or the legitimacy of offspring, may be materially affected by the answers of a medical man on matters which have been the subject of private communications. A professional man who claims a privilege where none is allowed, is simply endeavouring to set himself above the law. It is absurd to suppose that there is any real breach of confidence under these circumstances, because, as Dr. Gordon Smith justly observes, ‘Society in general receives the authority of Courts as paramount.'
to all obstacles and private considerations,' so that in yielding to such an authority, a professional man will be fully acquitted even in the opinion of those who may be the sufferers. The expressed opinion of the judge will be a full indemnity for the witness. ("Analysis of Medical Evidence," p. 98.) Any medical man, however, who voluntarily violated the confidence reposed in him by a patient, or who communicated professional secrets to counsel apart from a public necessity in Court, would justly lay himself open to severe censure.

In Wright v. Wilkin (June 1865), a suit involving the validity of the will of a lady, the only question before the Vice-Chancellor (Kinderley), was as to the costs, occasioned by the refusal of a medical witness to answer a question in reference to the disease of which the testatrix had died. The witness had attended the testatrix, and on being asked of what disease she died, he refused to answer, on the ground of professional privilege and also that the question was irrelevant. The Vice-Chancellor said, that he could not possibly see the relevancy of the question, and, further, of what use it was to examine witnesses at all in the cause. No reason was given for so doing. The question of costs would, prima facie, have been left till the hearing but that it was a dangerous precedent to allow a witness to decline answering on such grounds. His Honour was clearly of opinion that the witness could not claim professional confidence or irrelevancy, as an excuse for not answering the question, and he must pay the costs. From this judgment it will be perceived that even the refusing to answer an irrelevant question may lead to the infliction of a heavy penalty on a medical practitioner. A man who refuses to answer a question which the Court considers to be revelant and proper, may render himself liable to imprisonment for contempt of Court.

This question of medical privilege has presented itself on some recent occasions in a medico-ethical aspect, as where, for instance, during his attendance on a patient, a suspicion arises in the mind of a medical man that the person is undergoing slow poisoning. It has been supposed that when, under these circumstances, the poisoner was himself in the medical profession, there would be a breach of etiquette in communicating to others the suspicion entertained. There is no code of medical etiquette by which any member of the profession is bound to conceal the fact of poisoning which he believes to be going on before his eyes, whether perpetrated by a medical man or any other person; and at the same time there is a higher code of ethics which makes the prevention of secret murder and the safety of society paramount to all other considerations.

A medical man must take care not to charge another with a serious crime upon loose suspicion. If, from the nature of the symptoms, the absence of any natural cause for the illness, and the inefficiency of ordinary remedies, he suspects that the patient is under the influence of poison, it is his duty to lose no time in confirming or removing that suspicion by a proper medical and chemical
investigation. If his suspicion is confirmed by the discovery of poison in the food or urine, then steps must be immediately taken to save the life of the patient. In Reg. v. Wooten (Durham Winter Assizes, 1865), in which the prisoner was charged with the murder of his wife by secretly administering to her arsenic, three medical gentlemen were in attendance. There was a suspicion that arsenic was being administered to the deceased nineteen days before her death, but the fact was not made known because these gentlemen were unable to satisfy themselves conclusively that arsenic was present in the urine. They appealed to a high authority to aid them, but the advice reached them too late,—the patient had died, and, as it was clearly proved, from the effects of arsenic. The learned judge who tried this case said, 'When the idea of poisoning struck them they ought to have communicated their suspicion to the husband if they did not suspect him, and if they did suspect him they ought to have gone before a magistrate, and not have gone on from the 8th to the 27th June seeing the woman murdered before their eyes.' Dr. Christie, in commenting upon this case, very properly takes exception to this advice, and there can be no doubt that any man acting upon it would expose himself to an action for slander. ‘Ideas’ of poisoning often arise in cases of disease where the symptoms deviate a little from the ordinary course, but they are dismissed on further observation. If, in the absence of the means or knowledge of applying chemical tests, or of taking the opinion of others experienced in toxicology, a medical man charged the husband of a lady with secret poisoning, or went before a magistrate and charged him publicly, he would be acting with rashness, ruin his own practice and reputation, and be mulct in heavy damages for the irreparable injury done by a false accusation. Such a step should be taken upon something more than an idea or a suspicion. A prudent and conscientious man will always await the result of a chemical analysis before giving publicity to a suspicion which may after all turn out to be quite unfounded; and he will lose no time in obtaining this necessary confirmation or a removal of his doubts.

When the suspicion is confirmed, there is some difference of opinion as to the course to be pursued. Dr. Christie advises that when a medical man is satisfied of the fact of poisoning, he should communicate his conviction to the patient himself, and that he ought not to be deterred by the chance of injury to his patient from making even so dreadful a disclosure. He will have thus taken the surest preparative step to prevent a repetition of the poisoning. Whether this communication be made to the patient or not, the proper course will be to place the matter immediately in the hands of a magistrate for investigation. Some years since I was consulted in a case of supposed slow poisoning. The symptoms suffered by a lady, taken as a whole, were not reconcileable with any disease. The medical gentleman had an ‘idea’ that poison might possibly be the cause, but before acting upon this idea he sent to
me a portion of urine for examination. Antimony was found in it, and the cause of the symptoms was at once explained. He communicated the result of the analysis to the members of the family, and the symptoms of poisoning ceased from that time! The error committed by medical men is on these occasions, not in claiming a privilege of concealment, but in allowing a doubt upon so serious a question to remain in their minds for days or weeks.

This question was again brought into prominence at the trial of Dr. Pritchard at Edinburgh (July 1865), on the charge of poisoning his wife with antimony. One of the medical witnesses, who saw the deceased a fortnight before her death and at other times, stated in his evidence at the trial that he suspected she was suffering from the effects of antimony when he first saw her, but it seems that there the matter was allowed to remain. No one was accused, but no step was taken to prevent the continuance of the poisoning, the suspicion of which turned out to be well-founded. The Lord Justice Clerk, who tried this case, is reported to have said that no notions of medical etiquette should be permitted to interfere with those higher duties which every right-minded man owes to his neighbour, and which are to be expected in a tenfold degree from every medical man, because his life is solemnly devoted to the preservation of life and the prevention of its destruction.

Examination-in-chief.—The ordinary course of proceeding in a criminal case is thus concisely stated by Mr. Fitzjames Stephen ("Criminal Law of England," pp. 168, 232). After opening the case, the counsel for the Crown calls the witnesses, and examines them according to the rules of evidence—that is, he brings out, by questions which do not suggest their answers, the facts relevant to the issue to be tried which are within his personal knowledge. Those questions which do suggest the answers, are called "leading" questions. With one exception it is not the practice to allow these to be put in this part of the examination. The exception, according to Mr. Stephen, is: "When the judge is satisfied, either by a witness's demeanour or by contradictions between the evidence and the depositions, that he is trying to keep back the truth and favour the prisoner, he may, in his discretion, allow the counsel for the Crown to ask leading questions and, as the phrase is, to treat the witness as hostile." When the examination-in-chief is closed, the next step is the cross-examination.

Cross-examination.—In this, the second stage, the counsel for the prisoner extracts from the medical witness, by questions which may suggest the answers in the strongest form, any facts that may appear to be favourable to his client, and which he believes to be within the witness's knowledge. Leading questions are not only allowable in this part of the examination, but, according to good authority, a counsel for the defence can hardly lead too much. The theory of the law is that the witness is unfavourable to the prisoner and has come to bear evidence against him. The more he has shown himself by conduct or conversation a partisan in the
case, the more severely will he be treated. Anything which he may have said in the hearing of others, or published in journals, or even written in private letters (if the contents transpire), in reference to the case, or the guilt of the prisoner, is now brought to light, although he may have supposed that what he did say was in perfect confidence. It is at this stage of the case that any exaggerations which may have been most favourably received by the counsel for the prosecution, are reduced to their true proportions. Any bias by which the mind of a witness may have been influenced, or any imperfection or confusion of memory as to facts, is here brought out. (Stephen, p. 177.) It is in this part of his examination that a witness will be closely questioned as to his qualifications, his age, the time during which he has been engaged in practice, the accuracy of his judgment, his general professional knowledge, and his special experience in reference to the matter in issue, the number of cases he has seen, &c. Straightforward answers should be given to all these questions. No harm can be done to the witness by the answers unless they are given evasively, since it is not to be supposed that a witness wishes to represent himself differently from what he is. If he does make the attempt he will assuredly fail. The most striking distinction between the examination-in-chief and cross-examination is in reference to leading questions. It rests upon the assumption that there is a danger that a witness will say whatever is suggested to him by the one side, and conceal everything that is not extorted from him on the other. It need scarcely be observed that witnesses whose evidence is of little importance in the case, are rarely cross-examined. This is reserved in its most stringent form for those whose facts and opinions are likely to affect the fate of a prisoner on a criminal trial. In dealing with a skilled witness whose evidence may be of importance, the questions in cross-examination are usually put by the counsel for the prisoner with great caution, or the answers brought out may be even more adverse to his own case than those elicited in the examination-in-chief.

Re-examination.—The cross-examination is usually followed by a re-examination on the part of the counsel for the Crown, or of the counsel by whom the witness has been called. The object of this is to clear up or explain any portion of the evidence which may have been rendered obscure or doubtful by the cross-examination. It is sometimes unnecessary to put a question, and if the witness has given his evidence consistently and fairly no questions may be asked. As a rule the re-examination must be confined to those matters which have arisen out of the cross-examination. Any questions upon new subjects may render a further cross-examination on them necessary. In reference to facts, a medical witness must bear in mind that he should not allow his testimony to be influenced by the consequences which may follow from his statement of them, or their probable effect on any case which is under trial. In reference to opinions, their possible
influence on the fate of a prisoner should inspire caution in forming them, but when once formed, they should be honestly and candidly stated without regard to consequences. It will be well to remember, in reference to each stage of the examination, what a great medical authority has said:—'To make a show and appear learned and ingenious in natural knowledge may flatter vanity. To know facts, to separate them from supposition, to arrange and connect them, to make them plain to ordinary capacities, and above all to point out their useful applications, should be the chief object of ambition.' (William Hunter.)

Quotations from Books.—It is a not unfrequent custom with counsel to refer to medical works during the examination of a witness. He is expected to have a fair knowledge of the writings of professional men on the subject of inquiry. The authority is mentioned, the passage is quoted, and the witness may be then asked whether he agrees with the views of the author or whether he differs, and if so, his reasons. In cases connected with medical treatment, the views of the profession are and have been so various, that a barrister would have no great difficulty in finding some book to oppose to the opinions of a witness. Standard works of recent date are so well known to the profession, that there are few medical men engaged in practice who are not well acquainted with and able to explain the views of the writers, and how far they agree or conflict with his own. The witness must be on his guard that the quotation is fairly made, and that it is properly taken with the context, or he may unexpectedly find himself involved in a difficulty. On one occasion I found that a learned gentleman stopped in his quotation at a comma, and on another occasion the quotation ended at a colon, the remainder of the sentence in each case materially weakening the inference which it was intended to draw with the apparent sanction of the witness.

When a quotation from a standard work is thus opposed to the evidence of a medical witness, he should take care by reference to the work itself to see that the passage is correctly quoted. A remarkable instance of the importance of this caution has been communicated to me by a former pupil. At the Swansea Lent Assizes, 1869, an action was brought against a Railway company for compensation for personal injury. Plaintiff was proved to have had pneumonia shortly after the accident, and the counsel for the company wished to show that the pneumonia had not arisen from any physical injury. In cross-examining the medical witness he asked, 'Cannot pneumonia be produced by shock?' Witness: 'I do not believe it to be possible.' Counsel: 'What! do you mean to say you do not believe what is asserted in fact by no less an authority than Professor Taylor? Have you read Dr. Taylor's work on Medical Jurisprudence?' Witness: 'Yes.' Counsel: 'Have you seen the last edition?' Witness: 'No.' Counsel: 'I have it here (turning over the leaves of a book), and a case is given of pneumonia being caused by shock.' (Witness in confusion.) It
was subsequently discovered, on referring to the work, that the case in question was one in which the lung had been wounded by a fractured rib. The cause of the pneumonia was thus sufficiently explained; it was proved to have been the simple result of physical injury and not of shock! A reference at the time to the work which is quoted, is always necessary if any use is to be made of a quotation. Without suggesting that there is intentional misrepresentation to bear out a particular view of the case, a barrister, in dealing with the medical facts, may wholly misunderstand the author's views and statements, and in some instances wrongly assign to the author himself opinions which he has merely quoted from other authorities for comment or illustration.

Presence in Court.—In England medical and scientific witnesses, except under special circumstances, are allowed to be present in court and hear the whole of the evidence in a case. This is in some instances absolutely necessary if the Court requires medical opinions, for unless the witnesses are fully acquainted with the facts they can give no opinions, and they can only become well acquainted with the facts by being allowed to be present and hearing the evidence in court. If excluded, the judge or counsel will be compelled to read to the witness notes of the evidence before an opinion can be given, and it may then appear that some small point which counsel did not think of importance, has been omitted; this, if known to the witness, might, however, materially affect his opinion. A failure of justice is likely to occur when medical witnesses are excluded, and it is generally when there is no defence or a false defence that the right of excluding them is exercised. The rule in Scotland is similar; medical and scientific witnesses are allowed to be in court during the trial.

The examination of the witnesses for the Crown is followed by the defence of the prisoner, either in person or by his counsel, who acts throughout the part of an advocate, simply securing for his client every advantage the facts or the law may afford him. In other words, he sees that his client is strictly tried according to law, and not condemned contrary to law. A key to some of the difficulties which medical witnesses must be prepared to encounter will be found in the exposition given by Mr. Stephen of the tacit rules which regulate the duties of counsel for the prosecution and defence:

—"In practice it is universally admitted that the counsel for the prosecution is morally and professionally bound always to keep in sight the ultimate object—namely, the discovery of truth; whereas no such obligation is laid upon the prisoner and those who represent him, because it is too much to expect of human nature that they should discharge it, and it is better not to impose an obligation which is sure to be systematically violated. Both sides, on the other hand, are bound in the strongest way not to do anything to propagate falsehood. The counsel for the Crown is bound not to suppress any fact within his knowledge favourable to the prisoner; and, on the other hand, the counsel for the prisoner is bound not
to bring to light facts within his knowledge unfavourable to the prisoner. 'The counsel for the Crown may not use arguments to prove the guilt of the prisoner which he does not himself believe to be just, and he is bound to warn the jury of objections which may diminish the weight of his arguments: in short, as far as regards the evidence which he brings forward, his speech should as much as possible resemble the summing-up of the judge. He should contend not for the success of his cause at all events, but for the full recognition by the judge and jury of that side of the truth which makes in favour of it. On the other hand, the counsel for the prisoner may use arguments which he does not believe to be just. It is the business of the jury, after hearing the judge, to say whether they are or are not just.' (Op. cit. pp. 160 and 168.) The last remark shows what appears to be a serious defect in the administration of the criminal law. While in a case of misdemeanour a prisoner may be tried by a special jury, in a case of felony, involving an analysis of important questions of medical science in reference to murder or manslaughter, the trial takes place before a common and comparatively ignorant jury. Such a jury is hardly in a position to cope with an ingenious counsel, who has in his power to misrepresent and distort medical facts and opinions in any manner that he pleases. The defences are frequently such as no barrister would venture to place before a jury of educated men. These 'powerful' or 'forcible' addresses, as they are termed by the press, full of burning eloquence and impassioned logic, have frequently withdrawn the attention of the jury from the real facts, and have procured verdicts of acquittal contrary to the evidence and all the medical circumstances of the case.

Another observation made by Mr. Stephen more nearly concerns the medical witness:—'There are many obligations which affect each side equally. Neither is at liberty to attempt to browbeat, intimidate, or confuse a witness, although they may expose any real confusion which exists in his mind, or test, by the strictest cross-examination, the accuracy of his statements. Neither is at liberty wilfully to misunderstand a witness, or to misstate, in his address to the jury, the effect of what he has said, either by distortion or suppression. The neglect or observation of these and other rules of the same kind practically establishes a wide distinction, and one which is easily recognized, between those who exercise a noble profession and those who disgrace it.' (Op. cit. p. 168.)

The treatment of a medical witness, in passing through the ordeal of an examination at a criminal trial, will depend therefore very much upon the class of counsel who is opposed to him. Assuming that he is properly prepared for the discharge of his duties, and that the questions put to him are answered fairly and truly, according to his knowledge and experience, without exaggeration or concealment, he has no reason to fear any attempt at intimidation. Barristers, for the most part, know that by this line of conduct
32 MEDICAL WITNESSES. RULES RESPECTING THE

they lose more with the jury than they gain by the attempt to confuse the witness; and as their ultimate and sole object is a favourable verdict, they will generally avoid conduct which must necessarily place this verdict in jeopardy.

The normal barrister, as depicted by Mr. Fitzjames Stephen, is not at liberty, in his address to the jury, to misrepresent, either by distortion or suppression, the medical facts or opinions given in a case. According to my experience, however, misrepresentation is a not infrequent practice, and one of which medical witnesses have very strong reason to complain. Whether such misstatements are wilful or not it may be difficult to determine, but their effect on the jury is well known to those who employ them, and they frequently escape the observation of the counsel on the other side, and even of the learned judge, unless he is well versed in medical subjects. It is also worthy of remark, that if a misstatement is thus made, it is, by a remarkable coincidence, always in favour of the view of the counsel who makes it, when a proper examination of his notes would, in general, show him that he was wrong.

Then, as to the question of intimidation, this is sometimes carried very far. On a trial for murder by poisoning, I have heard a respectable country practitioner, who had given his evidence for the Crown in a fair and proper manner, thus addressed in cross-examination by a learned counsel now deceased:—‘On your oath, sir, and in the face of the whole profession, will you venture to persist in that statement?’ &c. Again, the intimidating modes of address—‘Do you mean to swear?’ ‘Will you pledge your professional character?’ &c., intermingled with the admonitions, ‘Pray be careful,’ ‘Be cautious,’ &c.—of course suggest to the witness that his examiner already regards him as perjured, and that however truly he may state the facts within his knowledge, he will not be believed.

A public writer, in commenting on this subject, says, ‘But the hardest and most unfair part of the system (of cross-examination) is when witnesses have to bear a loud and insulting tone or gesture without remonstrance or retaliation. A counsel may very plainly imply that a respectable witness is a person of doubtful character, and not to be believed on his oath, or that he is ignorant, and a bungler in his profession; but if the witness retorts that the barrister’s eloquence and sympathies are hired, or if he gives vent to any other words of retaliation in his natural indignation, the Court is against him.’ At the trial of Kelly for the murder of Police Constable Talbot (Reg. v. Kelly, Dublin Commission Court, November 1871), Mr. Tuffnell, a surgeon of repute, and formerly Professor of Surgery, was summoned as a witness for the prosecution. Having deposed to the nature of the wounds, and that the deceased had died from the effects, he was subjected to the usual ordeal of a cross-examination, but in a somewhat unusual form. Counsel for prisoner having begun by addressing him in a loud and offensive tone, he turned to the Chief Baron, and said, ‘My Lord, I am very excitable, and if this gentleman has a right to roar at me, I consider
that I have a right to roar too.' The Court expressed a hope that it would not be necessary for him to roar, and intimated, after a short trial of vocal strength between the two opponents, that counsel's manner to the witness was not what it ought to be. Counsel disclaimed any intention of being offensive, but claimed the liberty which is usually conceded in cases of importance. Whatever may be the importance of a case to a prisoner, nothing can justify the putting of questions in a loud and insulting tone to a skilled professional witness. The very mild rebuke administered to counsel on this occasion was not likely to produce much effect, and accordingly this trial presents, in a concentrated form, all the defects of our method of getting at truth by cross-examination. The result is seen in the unsatisfactory nature of the verdict, which was against the medical and general evidence in the case.

These results may be perhaps explained by assuming that criminal cases fall more into the hands of the second class of barristers to whom Mr. Stephen alludes—namely, those who disgrace a noble profession. But it is a widely spread opinion in the medical profession, that this style of examining educated men, who are perhaps compelled most unwillingly to appear on a subpoena to testify to facts, is certainly not adapted to elicit the truth, but rather to favour the escape of criminals and give impunity to crime.

It may be fairly admitted that the man who puts himself forward as a witness, and attempts to elucidate what he only succeeds in rendering more obscure, should receive no favour at the hands of the bar. Dr. Elwell, a member of the legal as well as of the medical profession, observes that—'No witness is ever compelled to appear and testify to what he does not know. He may be compelled to attend in Court in obedience to a subpoena, but if he attempts to testify upon a subject requiring opinions upon which he has no well-settled or well-defined ideas, it is his own fault, and he alone is to blame; for no one but himself can know so well as he, until he has exposed himself, how unfit he is for the occasion.' (Medico-legal Treatise on 'Malpractice and Medical Evidence,' by J. J. Elwell, M.D., Member of the Cleveland Bar, New York, 1860, p. 302.) But let us take the case of a practitioner who, in a country district, has gone through twenty years of practice with honour and credit in his neighbourhood, and who is suddenly called to a case in which a man is found dead from a wound in his throat. Under the Medical Witnesses' Act he is compelled to make an examination of the body for a Coroner's inquest. At a great loss of time, and for no adequate remuneration, he attends the inquest, and gives his evidence; he is bound over, nolens volens, to appear for the first time as a witness at a criminal trial, and to testify, 1st, to the throat being cut, and 2ndly, to give his opinion to the Court on the cause of death, and whether the wound was inflicted by the deceased on himself, or by another person. A medical man who limited himself to the statement of the bare fact that the deceased's throat was cut, need not appear at all, for this evidence might be supplied by a
constable or policeman; but the law presumes from his profession, that the medical man made a proper examination of the wound, with a view to determine, to the best of his ability, whether it was the cause of death and whether it was or was not self-inflicted. It is difficult to understand how a medical man, although before this occurrence he may never have seen a case of cut-throat, could excuse himself from giving an answer to these questions, both of which involve purely matters of opinion. If he excused himself altogether from giving answers, there would be a failure of justice, and no conviction for such a common form of murder could ever take place. If, on the other hand, he answers these questions to the best of his ability, he may reasonably complain that while thus compelled to appear as a witness, to testify to what he does know, his evidence should, by rules of law, be made the subject of abuse and ridicule before his neighbours, when he expresses his opinion from the facts; and that the counsel who examines him, legally possesses an unlimited power of misrepresenting his views. A medical man is certainly not benefited by being described as an ignoramus or a blunderer in his profession, whom no one ought to trust. The truth is, in medical evidence facts and opinions cannot be separated, and if medical practitioners were restricted in their evidence only to those facts which they had observed in a case, in which no other professional man saw the person living or dead, it is difficult to understand how crime could be detected and punished. These remarks of course do not apply to cases in which the opinions of medical experts can be taken. Here it would be desirable that one who has not had experience on the subject should avoid giving any opinion; he might simply state the facts, and decline from want of experience to give an opinion on the conclusions to which they lead. In pursuing any other course, he will find that the whole weight of the cross-examination will fall upon him.

There are some remarks on this subject made by Dr. Elwell, which those who are compelled to attend as witnesses in a Court of law, will do well to bear in mind:—'However anxious an incompetent witness may be to appear learned, and however hard he may labour to show it, he will ever find it a difficult business to make the Court and counsel believe that he is really so. To appear really learned he must be able to make the subject on which he gives an opinion clear, and to give satisfactory reasons for this opinion. He must be not only a thinker, but must satisfy others that he is master of the subject. Take almost any one of the important scientific questions upon which a professional witness is called to pass an opinion, and unless he has looked at the subject before with a purpose to understand it—comprehending its extent, weight, and relations—he will find it to have suddenly assumed an importance he has not suspected, just at the time when the discovery will add to his confusion. It is better to make this discovery in the quiet stillness and security of solitude, than under the eye of a judge and the severe scrutiny of counsel. A man, whether learned or not—whether in
court or out of court—will talk clearly upon a subject he well understands, whether it is scientific or otherwise, but unless it is clear in his own mind his account of it will be confused and unsatisfactory.’ (Op. cit. p. 303.) This is undoubtedly the test to which every man should rigorously submit himself before entering the witness-box. The case should be viewed in all possible aspects, and if an opinion has been formed, it should be dealt with and criticised as if it were that of an adversary. As in controversy, a disputant should place himself as much as possible in the position of his antagonist, and see the question from his point of view. In this kind of self-examination it may be well to remember two points—1st, that there is no opinion so certain as that the human mind, if left to itself, will not infallibly raise a difference of opinion upon it; and 2ndly, that a man is never so near an error as when he claims a complete immunity from error.

Rules for the delivery of Evidence.—There are a few rules bearing upon medical evidence which, if observed, may save the witness from interruption or reproof and place him in a favourable position with the Court:—

1. The questions put on either side should receive direct answers, and the manner of the witness should not be perceptibly different, whether he is replying to a question put by the counsel for the prosecution or for the defence.

For reasons elsewhere assigned (p. 27), most of the questions put by counsel in cross-examination will admit of an answer ‘yes’ or ‘no.’ If, from the ingenious or casuistical mode in which the question is framed, the witness should feel that the simple affirmative or negative might mislead the Court, then, after giving the answer, he can appeal to the judge to allow him to qualify it, or add to it any matter within his own knowledge and which is at the same time relevant to the case. The witness must remember that he takes an oath to state the truth, the whole truth, and nothing but the truth. On the other hand, while the counsel for the defence is bound not to introduce falsehood, his object is not the discovery or development of truth. Unless the witness is on his guard, he may find, when the learned counsel who has cross-examined him addresses the jury, that his affirmatives and negatives may be worked into a shape representing the reverse of what he intended.

Some counsel adopt the ingenious plan of compressing two or three questions into one. A witness unthinkingly answers the last, or that which most fixes his attention. The same answer may not be strictly applicable to all, but the witness may find, when too late, that it is made so in the defence. In this case he should ask for a severance of the questions and give separate replies.

Direct answers are necessary, because it is only by them that the case can be brought clearly before the Court and jury in all its details. Medical witnesses sometimes forget this, and fall into answers to questions floating in their own minds, or which they think are likely to be put to them. They are also sometimes
disposed to anticipate many questions by one general answer. This simply creates confusion, and the witness will be told by counsel to keep to the question, and that he is coming to the other matters presently.

Care should be taken by a medical witness not to argue with the learned counsel. Argument is not evidence, and the entering into it disturbs the order of the proceedings. Arguments between counsel and witnesses, and even between medical witnesses themselves, are freely allowed in the French Courts, but in England such a practice is not recognised. The mode in which questions are put by counsel in cross-examination sometimes tends to the introduction of argument, but the witness should avoid the temptation to enter into it. What he says under such circumstances is not evidence, except in the form of answers to questions, and he is there only for the purpose of stating what is relevant to the case.

There is a difference between evidence and testimony. A medical witness sometimes gives much in the form of testimony which amounts to very little as evidence. When he does not attend to the questions, he testifies to a variety of subjects which have no bearing on the case, and do not constitute evidence. The decision on what is and what is not evidence lies with the judge.

2. The replies should be concise, distinct and audible, and, except where explanation may be necessary, they should be confined strictly to the terms of the questions. The learned judge who tries the case, generally takes full notes of the medical evidence—hence the necessity for a slow and distinct delivery of the evidence. Some witnesses have a singular habit of not answering the question which is asked, but one which is not asked. Others give an answer in such a voluble form, in the shape of a small speech or lecture, that there is great difficulty in reducing it to its proper proportions. A witness who is so profuse of information generally supplies abundant matter for a long and troublesome cross-examination.

It has been a question whether a witness should volunteer evidence, assuming that the examination-in-chief and cross-examination have failed to bring out all that he knows of the case. If that which he has to state is some matter of fact within his own knowledge, or an opinion based on facts within his knowledge, he will be allowed, on application to the judge, to make the statement in spite of the efforts of counsel on either side to shut it out.

It is scarcely necessary to observe, that the language in which the answers are returned should neither be technical nor metaphorical. Counsel who are unacquainted with medical terms frequently misapply them, or use them in a wrong sense. There are few barristers who are aware that the term 'symptom' is confined to the living body, and 'appearance' to the dead; and the witness may thus find himself questioned on the 'appear-
THE USE OF TECHNICAL TERMS IN MEDICAL EVIDENCE. 37

ances' when he first saw the patient, or the 'symptoms' which he observed on the post-mortem examination of the stomach and bowels. On a trial for murder, in which one of the questions at issue was whether dysentery or poison was the cause of death, the learned counsel puzzled one of the medical witnesses by asking him whether during his attendance he found any traces of 'dysuria' in the faeces! There is no doubt he intended a state of the faeces like that met with in dysentery, but the professional term employed by him signified a 'difficulty in passing urine!' A judicious witness will avoid anything like a triumph over his examiner under such circumstances, and simply put him right.

3. Answers to questions should be neither ambiguous, undecided nor evasive. An ambiguous answer necessarily leaves the witness's meaning doubtful, and calls for an explanation. An undecided answer—indicated by the words 'I believe,' or 'I think,' or 'It might be,' is not sufficient for evidence. Did the wound cause death? Was death caused by loss of blood or poison? If, by a proper consideration of all the medical facts, the witness has come to a conclusion on the subject, his answer should be expressed in plain and decided language, either in the affirmative or negative. A man who has formed no conclusion is not in a position to give evidence. No opinion should be given for which the witness is not prepared to assign reasons, and, except by permission of the Court, no medical opinion should be expressed on facts or circumstances observed by others. A hesitating witness will be met with the question, Have you any doubt about it? or, Was it so or not?—to which a reply in the affirmative or negative must be given. If the witness fairly entertains doubts about the matter at issue, it is his duty to express them, and not allow them to be extorted from him piecemeal by a series of questions.

Chemical witnesses have occasionally certified to the discovery of 'imperceptible,' 'unmistakable,' or 'undoubted' traces of poison in the liver, &c. Such terms naturally convey to the shrewd mind of an examiner that the witness has some lurking doubt or suspicion of mistake in his mind, for that of which we are sure requires no such terms to express our meaning. If poison has been discovered, the statement of the fact is sufficient.

4. The replies should be made in simple language, free from technicality. Some remarks have been elsewhere made in reference to the use of technical terms in drawing up medico-legal reports (p. 15). If medical men could be made aware of the ridicule which they thus bring on their evidence, otherwise good, they would at once strive to dispense with such language. A witness is perhaps unconsciously led to speak as if he were addressing a medical debating club, instead of plain men like the members of a common jury, who are wholly ignorant of the meaning of medical terms, and barristers who are but imperfectly acquainted with them. There are few Assizes which do not afford many illustra-
THE USE OF TECHNICAL TERMS IN MEDICAL EVIDENCE.

tions of the injury done to scientific evidence and the clear understanding of a case, by the technical language in which it is given. A Court may be told that the 'integuments were reflected from the thorax, and the costal cartilages laid bare, when a wound was found which had penetrated through the anterior mediastinum,' and had involved the arch of the aorta, &c. A simple cut in the skin is described as 'an incision in the integuments.' In a case of alleged child-murder, a medical witness being asked for a plain opinion of the cause of death, said that it was owing 'to stelotasis and a general engorgement of the pulmonary tissue.' On a trial for an assault which took place at the Assizes, some years since, a surgeon, in giving his evidence, informed the Court that on examining the prosecutor, he found him suffering from a severe contusion of the integuments under the left orbit, with great extravasation of blood and ecchymosis in the surrounding cellular tissue, which was in a tumescent state. There was also considerable abrasion of the cuticle. 'Judge: You mean, I suppose, that the man had a bad black eye? Witness: Yes. Judge: Then why not say so at once?' It would be easy to multiply examples of this kind.

This is not science but pedantry, and if such language is employed by a witness with a view of impressing the Court with some idea of his learning, it wholly fails of its effect. Barristers and reporters put down their pens in despair, and the time of the Court is wasted until the witness has condescended to translate his ideas into ordinary language. Lord Hatherley well observes that 'a scientific witness in giving his evidence should avoid as much as possible the use of technical scientific language, if the case is before a jury. This is especially desirable when the evidence is medical, for really many technical words in medicine seem to be invented to cover ignorance. But be this as it may, a witness is always suspected of affectation, and the Court and jury are but little instructed when a vast amount of learned phraseology is poured forth instead of a clear statement of the witness's opinion.'

5. In giving evidence of opinion a medical witness must take care not to base it on any statements made by others, or on circumstances which may have come to his knowledge by public rumour. Again, his evidence should be confined only to subjects properly within the range of medical science, and on which, as a professional man, he is competent to speak. In a trial for murder by wounding, in which the identity of the prisoner was in question, a medical man stated that he compared certain footmarks with the boots taken from the prisoner, and he found that they corresponded. A comparison had also been made, but not at the same time, by a police-officer, more accustomed to matters of this kind. On cross-examination, there was such a want of agreement between the surgeon and the constable, respecting the number of nails in the boots and the number indicated by the footprints, that no reliance could be placed on this portion of the evidence. In reference to
this discrepancy, the learned judge remarked that a medical man should confine himself to matters belonging to his own profession, and not take upon himself the duties of a police-constable. There are some points in reference to gunshot wounds which can be better explained by a gun or shot-manufacturer than by a medical witness. —Etsque in sed arte credendum.

Exaggerated language should be avoided. There is a great tendency among some medical witnesses to express their views in the superlative degree. If a part is simply inflamed, it is frequently described as ‘intensely’ inflamed. One witness may speak of patches of ulceration in the intestines, another will describe the same condition as ‘extensive ulceration.’ On a trial for murder by poisoning, a witness when asked by the Court as to his experience of the effects of the poison on man and animals, said that he had seen ‘some dozens of cases.’ These ‘dozens’ on cross-examination as to time, place, and circumstances, were reduced to the modest proportion of about six to eight cases. This use of exaggerated language often leads to apparent conflict in medical testimony. It is not creditable to the witness, and throws a doubt upon the whole of his evidence.

CHAPTER 3.

CAUSES OF DEATH.—SUDDEN DEATH.—SYNCOPE, ASPHYXIA, COMA.—SIGNS OR INDICATIONS OF DEATH.—CESSATION OF CIRCULATION AND RESPIRATION.

COOLING OF THE BODY.—CADAVERIC RIGIDITY.—PUTREFACTION.—CHANGES PRODUCED IN THE BODY.—PUTREFACTION MIStaken FOR GANGRENE.

MEDICAL jurisprudence takes cognisance of all violent causes of death, and is only indirectly involved in those cases of natural death which simulate the effects of violence. Thus all causes which operate to produce death suddenly, as by syncope, asphyxia, or coma, especially demand the attention of a medical jurist. These may be either natural or violent; and the distinction between them is of importance, since the guilt or innocence of a person charged with crime may depend on a correct determination of the cause.

The continuance of life depends upon the proper and regulated action of the heart, the lungs, and the brain; and the interdependence of these organs is such that the arrest of the functions of one of them, is speedily followed by the arrest of the functions of the others. Hence these three organs have been called the tripod of life. When the suspension of the motions of the heart is the primary cause of death, the person is said to die by syncope. The term asphyxia is applied to death which begins by the lungs; and coma to that which arises from a primary disturbance of the functions of the brain.
DEATH FROM SYNCOPE.

Syncope (συνκόπησις, signifying to strike down).—In order that the action of the heart should be maintained, it is necessary, first, that the blood supplied to it should be in sufficient quantity, and secondly, that this blood should be of proper quality. In death from haemorrhage we have an instance of deficiency, and in death from certain poisons as well as diseases, an illustration of defect of blood. In ordinary syncope (fainting or swooning) there is simply a deficiency in the quantity of blood which passes through the heart, although there is no actual loss of this fluid from the circulation. Certain diseases which affect the muscular structure of the heart, as well as its membranous valves and blood-vessels, may also lead to a sudden arrest of its functions. These morbid conditions produce a mechanical impediment to the motions of the organ by which the blood is propelled, and death by syncope is the necessary result.

When death takes place by the heart, the right and left cavities of this organ are found to contain blood in the normal proportion in which that fluid is ordinarily circulated. This retention of blood in these cavities arises from the sudden stoppage of the heart's contractions. Blood is found in the large veins (venae cavae), as well as in the arterial trunks. There is no congestion or accumulation of blood in the lungs or the brain.

Asphyxia (ἀ priv. and σφυκτις pulse, signifying pulselessness).—This state is induced by any cause which arrests the function of respiration. The term apnoea (from ἀ priv. and πνεω I respire) is more appropriate; for the state of syncope might equally be called asphyxia. The various forms of death by suffocation, as in the obstruction of the air-passages from mechanical causes, in drowning, hanging and strangulation, furnish illustrations of death commencing by the lungs, or asphyxia. The effect of cutting off air from the lungs is that the blood is not aerated, and it is therefore circulated in a state unprovided to support the nutrition of the heart and brain, without which life cannot continue beyond a few minutes. It is necessarily distributed with the impurities derived from the waste of tissue, and thus acts as a poison to all the organs. It is incapable of sustaining nerve-force or muscular irritability. It stagnates in the capillary vessels of the lungs, produces a languid action of the heart by its circulation through the muscular structure of this organ, and it causes insensibility by its distribution through the blood-vessels of the brain which then ceases to supply the proper stimulus—nerve-force. The lungs are essential to the circulation by purifying the blood. Death from asphyxia may be therefore regarded as death from defect of blood. The observations of the late Sir B. Brodie ("Lectures on Pathology," 66) and others have clearly proved that in spite of the impurity of the blood, the heart will continue to act and the circulation to be maintained for two or three minutes or longer after breathing has entirely ceased. This may be proved by hanging or strangling an animal, and observing the condition of the heart during the stage.
ASPHYXIA AND COMA

of insensibility. As the action of this organ continues after the animal has ceased to breathe, life is not actually extinct; and under favourable circumstances, it may be restored, if no injury be done to the air-cells of the lungs, so long as this action continues. Supposing that the suspension of respiration is complete, the action of the heart gradually slackens and finally stops. It is at this period of the complete arrest of the motions of the heart that asphyxia passes into death. Apnoea is determined by the time at which respiration is completely arrested. The circulation of the unsaturated blood through the brain, appears to annihilate sensibility, so that no consciousness or feeling exists; the person is, to all appearance, dead. There are many diseases which operate fatally by arresting the functions of the lungs, and these may be regarded as furnishing the natural causes of asphyxia. The violent causes, including not only the ordinary modes of suffocation, but the effects of certain poisons, are not difficult to appreciate, provided a true history of the case can be obtained.

In death by the lungs, as the circulation of the blood is primarily arrested in these organs, the pulmonary artery, the right cavities of the heart, and the vena cavae are found gorged with blood. The pulmonary veins, the left cavities of the heart, and the aorta, are either empty or contain but little blood. In certain cases of asphyxia, the right cavities of the heart, as well as the left, have been found empty. When the access of air to the lungs is suddenly and completely cut off, the circulation of the blood is very speedily arrested; but supposing the occlusion of the air-passages to be partial or gradual, the circulation of the blood may continue for a time, and thus cause congestion of certain organs. Hence the appearances in asphyxia differ greatly. A mixed condition under the name of syncopal asphyxia has been described by some pathologists. In this, the cavities of the heart are found empty.

Coma (from ὄμω, a deep sleep).—Beside a due supply of properly saturated blood, the brain requires for the exercise of its functions a proper quantity of blood, so that either by the sudden withdrawal of this fluid, or by a distribution of impure blood, these are arrested. A person thus affected falls into a state of complete insensibility (coma), so that it is impossible to rouse him. The functions of the heart and lungs are not suddenly arrested under these circumstances. They appear to be less dependent on the brain than the brain is upon them; but this is rather a question of degree. A due supply of nerve-force is required for the action of the muscles, whether of the heart or of the chest; and when this is withdrawn, the heart ceases to pulsate, and the respiratory muscles cease to act; circulation and respiration are thus arrested by the absence of innervation. This is sometimes described as death by paralysis of the heart and lungs. The blood is neither saturated nor circulated. Sudden death from apoplexy is an illustration of death by the brain. Coma may also be a result of the introduction of certain poisons into the blood, and of fractures of the
skull leading to compression of the brain or destruction of its sub-
stance. In death by the brain, the appearances observed consist
chiefly in a congested state of the cerebral membranes and substance
of the brain. As, before death, the breathing is affected, the lungs
are congested and blood accumulates in the cavities of the heart,
more on the right than on the left side.

The appearances described as characteristic of the different modes
of death by the heart, lungs, and brain, are liable to variation by
reason of the intimate relations of these organs. Thus, there may
be a mixed condition of syncope and asphyxia, or of asphyxia with
cerebral congestion.

With regard to the interruption of the functions of the brain as
a result of pressure by the effusion of blood or serum, it is to be
observed that a very small quantity effused at the base or in the
substance of the medulla oblongata, is sufficient to cause death;
while generally speaking a larger quantity is required to be effused
in the membranes, ventricles, or substance of the brain, in order
to produce a fatal result. In cases of chronic hydrocephalus, in
which the brain has resisted the pressure of a large accumulation
of serum for many years, a slight and sudden increase in the
quantity at any period of life may lead to coma and death by apo-
plexy. This condition may be mistaken for narcotic poisoning.

All causes of death, whether from disease or violence, are refer-
able to an effect produced primarily on the heart, the lungs, or the
brain; but, as it has been elsewhere stated, death does not take
place until the action of the heart has entirely ceased. The arrest
of the circulation produces an immediate impression upon the
functions of the brain and lungs; while the lungs and brain are
affected and can only affect each other indirectly through the
medium of the circulation: hence, systemic death, or the death of
the body, is resolvable into death by syncope or a failure of the
action of the heart, and this depends in all cases either upon defect
or deficiency of blood.

The natural causes of sudden death may be generally traced to
some injury or impediment to the action of the heart, lungs, or
brain. It would be foreign to the objects of this manual to give
a description of them. The violent causes are those which demand
the especial attention of a medical jurist; they will be considered
hereafter. In its relation to medicine and medical jurisprudence
the subject of sudden death has been most fully treated by Herrich
and Kopp (‘Der plötzliche Tod aus inneren Ursachen,’ Regensburg,
1848); as well as by M. Devergie (‘Ann. d’Hyyg.’ 1838, 2,145). To
these works I must refer the reader for further information on the
causes, as well as on the appearances met with in the bodies of
persons dying suddenly from natural causes.

The violent causes of death, whether sudden or protracted,
which chiefly require the skill of a medical jurist for their eluci-
dation, are poisoning, wounds, and personal injuries, such as
burns and scalds, as well as those forms of death which com-
SIGNS OR INDICATIONS OF DEATH.

Sickness by the lungs, including drowning, hanging, strangulation, and suffocation. In nearly all cases, the body of the deceased is produced, and a medical opinion can be based upon a careful examination.

Signs or indications of death.—The verification of death is occasionally a duty thrown on the medical jurist. Certain signs or indications have been pointed out as proving that death is real, and not apparent. These are taken in the order of their importance.

1. The cessation of circulation and respiration.—The heart is considered to be the organ in which life begins and ends—the primum viens and ultimum moriens—the first to live and the last to die. The proof of death is the proof of the cessation of the heart's action for a certain period. The more visible indication of death is the cessation of breathing, and, in the opinion of the late Sir B. Brodie, the entire cessation of breathing alone may be regarded as a decisive test of the extinction of life. The movements of respiration cannot be overlooked by any one who does not choose to overlook them, and the heart never continues to act for more than four or five minutes after respiration has ceased. The proofs of the continued action of this organ are, however, less obvious to the unskilled observer than the movements of the chest; hence the visible cessation of these movements, i.e. of breathing, for a period of five minutes furnishes a certain proof that the person is really dead. But the skilled observer would apply the test of auscultation, and before giving an opinion would satisfy himself of the permanent cessation of the heart's action. It is impossible to admit that the heart can remain for even half an hour in a state of inaction in a human being, and then spontaneously recover its activity.

2. Cooling of the body.—The average temperature of the interior of the living body in health, varies from 98° to 100°, and this it retains so long as life continues, whether the temperature of the air is below zero or above 140°. It is liable to be increased in some diseases, and to be diminished in others. In a case of typhoid fever, the blood was found to have a temperature of 113°. When life is extinguished, the body gradually loses the heat which it possessed at the moment of death, just like so much inert organic matter artificially raised to the same temperature, and it cools down to the temperature of the air to which it is exposed. The time usually assigned for the cooling of the dead human body is from fifteen to twenty hours, but it varies according to the condition of the body at the time of death, the mode of death, and the circumstances under which it has been placed. Thus, if exposed naked to a cold atmosphere, the cooling is very rapid. If the body is well covered, the cooling takes place slowly. When death has taken place suddenly from accident, apoplexy, or acute disease, the body has been observed to retain its heat for a long period.
3. Cadaveric rigidity. Rigor mortis.—In from five to six hours after death, and generally while the body is in the act of cooling, the muscles of the limbs are observed to become hard and contracted in the attitude in which the body is placed; the joints are stiff, and the trunk firm and unyielding. This peculiar condition is known under the name of cadaveric rigidity. The first effect of death from any cause is in most cases a general relaxation of the whole of the muscular system. The lower jaw drops, the eyelids lose their tension, the limbs are soft and flabby, and the joints are quite flexible. The muscular tissue may be considered as passing through three stages in a dead body. 1. It is, at first, flaccid, but contractile, although it may be remarked that muscles contracted by living force in the act of dying, do not necessarily become relaxed in death; 2. It becomes rigid and incapable of contraction; and 3. It is once more relaxed, and does not regain its power and contractility. The body now passes into the first stage of putrefaction. The first stage defines the duration of muscular irritability; the second stage, that of cadaveric rigidity; and the third, that of the commencement of chemical changes or putrefaction.

At a certain period after death, the heart is found rigid and firmly contracted. If examined at this time, it may appear to be in a state of spasm, and to have its walls thickened, while the cavity of the left ventricle may be described as being much smaller than in the normal state. Sir James Paget has pointed out that this natural condition of the heart after death has led to pathological mistakes, the walls being described as thickened and the cavities diminished in size, and the heart itself as being in a state of concentric hypertrophy from disease. On the other hand, the perfect relaxation of the heart which follows at a later period after death, has been mistaken for and described as a morbid flabbiness and fasicoidity. Spasm and paralysis cannot be inferred to have existed when we discover these conditions of the heart in the recently dead body.

Under the action of poisons like strychnia, and those alkaloids which cause death by convulsions, the more violent and frequent the convulsions, the sooner cadaveric rigidity sets in. Whatever exhausts muscular irritability before death, appears to accelerate cadaveric rigidity in the muscles after death.

In those instances in which muscular irritability at the time of death is slight, either in consequence of a bad state of nutrition or of exhaustion from over-exertion, or from convulsions caused by disease or poison, it is observed that cadaveric rigidity sets in and ceases soon, and putrefaction appears and progresses quickly. (Brown-Séquard, "Proc. R.S.," May 1861.) For a similar reason it takes place at an earlier period in the very young and the old, than in an adult in the prime of life.

If we allow a proper interval to elapse after the supposed death of a person, there can be no difficulty in solving the ques-
tion, whether the body is really dead even before any of those changes, which arise from putrefaction, have manifested themselves. The circumstances on which we may rely as furnishing conclusive evidence of death, are the following:—1. The absence of circulation and respiration for at least an hour, the stethoscope being employed if necessary; 2. The gradual cooling of the body to the temperature of the air, the trunk remaining warm while the members are cold; and 3. As the body cools, the gradual supervision of a rigid state of the muscles, successively attacking the limbs and trunk, and ultimately spreading through the whole muscular system. When these conditions are observed, the proofs of death are conclusive; it is unnecessary to wait for any sign of putrefaction. These changes are as certainly the forerunners of putrefaction as the process of putrefaction is itself the forerunner of the entire destruction of the body. I believe it may be safely said that there has not been a single instance of resuscitation after rigidity had once commenced in a body. During the raging of epidemics, if additional evidence be required for early burial, it might be obtained by exposing a superficial muscle to the galvanic stimulus. If the fibres do not contract, death is certain. If they do, this is no proof that the person can be restored to active life; but further time may be allowed before the body is committed to the grave.

Putrefaction.—By putrefaction, we are to understand those chemical changes which spontaneously take place in dead animal matter, during which offensive gases are evolved. The ultimate effect of these changes is, after a longer or shorter period, to reduce the organic to the condition of inorganic compounds, consisting chiefly of water, ammonia, and carbonic acid. It is in the stage of transition that noxious effluvia are evolved from which the process derives its name. These consist of compounds of nitrogen, sulphur, phosphorus and carbon with hydrogen.

This process does not begin to manifest itself in the dead body until after the cessation of cadaveric rigidity, and generally about the third day. It is then observed, if the body has been exposed to the atmosphere in an apartment of mean temperature (60°), that the limbs and trunk become supple and pliant, and yield a faint odour. The skin covering the abdomen becomes of a pale greenish colour, which gradually deepens. A similar discoloration slowly makes its appearance in the chest, between the ribs, in the face, the neck, the legs, and, lastly, in the arms. The colour appears to depend on the decomposition and infiltration of the animal fluids, especially of the blood, into the skin. In the neck and limbs it is observed to be more marked in the situation of the large venous trunks; and sometimes, indeed, the course of the superficial veins is accurately traced out by greenish-blue or dark lines, which have been mistaken for marks of violence. Gaseous products are formed, not only in the hollow organs of the abdomen, but beneath the skin generally; so that on making
an incision, the edges of the skin are rapidly forced apart or everted. The reaction of the confined gases accounts for the occasional escape of alimentary and fecal matter from the outlets as a result of pressure—also for the escape of blood some days after death from recent wounds involving any of the large veins.

The gases generated in the cavities of the head and face by putrefaction, appear to meet with the greatest resistance to their escape. The features become generally swollen or bloated, one or both eyes may be protruded, the eyelids swollen and dark-coloured, the lips swollen and the tongue protruded between them, gaseous matter with fluid escaping in bubbles from the mouth and nostrils. As the skin of the face is generally livid or even black, it is impossible, under these circumstances, to recognise a person. In death from drowning, when the body is afterwards exposed to a warm atmosphere, the gases of putrefaction are so copiously produced that the head appears much larger than natural, and the skin of the trunk and limbs is distended with gas, giving to the whole of the discoloured body a bloated appearance.

Changes in the Viscera.—During putrefaction, various discolorations take place on the mucous surface of the stomach and bowels, which often closely simulate the effects of disease or poison. The mucous membrane of the stomach may be found of various tints—from a red brown, becoming of a brighter red by exposure to the air, to a deep livid purple or slate colour, and sometimes black from a decomposition of the blood. At the greater end, where the stomach is in contact with the spleen or liver, the lividity is often well marked and clearly defined through all the coats. The peritoneal or outer coat is of a greenish hue, and the course of the superficial vessels is marked by greenish-brown or black lines. These spontaneous changes, which are the result of putrefaction, may be easily mistaken for the effects of irritant poisoning. There are no rules that I am aware of which will always enable a medical jurist to distinguish such cases. Much must depend on the progress of putrefaction, and the period after death at which the body is examined: hence, each case must be judged by the circumstances which attend it. We may presume that the redness has taken place during life, and is not a result of post-mortem changes.

1. When it is seen soon after death. 2. When it is met with in parts not dependent, nor in contact with other organs gorged with blood. 3. When it is accompanied by a considerable effusion of coagulated blood, mucus or flakes of membrane, the result of ulceration, corrosion, or destruction of the coats of the viscera. When the body is not inspected until a long period after death, it is difficult to distinguish these pseudo-morbid appearances from those depending on the action of irritant poison. In a really doubtful case, it is therefore better to withhold an opinion, than to express one which must be purely conjectural.

Putrefaction takes place with variable rapidity. It commonly shows itself about the second, or third day in warm weather, and
about the fifth or sixth day in cold weather. In some instances, however, the body has been found in an advanced state of putrefaction in the short period of sixteen hours after death, and in others the process has been greatly protracted. The time of its appearance is dependent on the duration of cadaveric rigidity, and the condition of the body at the time of death.

The changes caused by putrefaction in the dead body have in some cases been mistaken for those of gangrene in the living, and a person has in consequence been wrongly charged with manslaughter. Parts which are the seat of severe injury at the time of death, undergo putrefaction more rapidly than those which have not been affected by the accident. When a body has undergone putrefaction generally, the effects of gangrene in a wound may be merged in the changes caused by this process, and great care should be taken in assigning these changes to one or the other condition. Gangrene implies the death of a part in the living body, and putrefactive changes take place in the dead part, as in the entire dead body. If changes resembling those of gangrene are found in a wounded limb while the rest of the body is not in a putresectant state, there may be some reason for the opinion that there was gangrene during life. In this case, however, due allowance should be made for the more rapid decomposition of wounded parts. The best evidence will be that which shows the actual condition of the injured part in the living body. If putrefaction is advanced, the opinion of a person who has not seen the deceased while living, can be little more than a conjecture.
POISONING.

CHAPTER 4.

DEFINITION OF THE TERM POISON.—MECHANICAL IRITANTS.—INFLUENCE OF HABIT AND IDIOSYNCRASY.—CLASSIFICATION.—SPECIAL CHARACTERS OF IRITANT, CORROSIVE, AND NEUROTIC POISONS.

Definition.—A Poison is commonly defined to be a substance, which when administered or taken in small quantity, is capable of acting deleteriously on the body: in popular language, this term is applied only to those substances which destroy life in small doses. This popular view of the nature of a poison is too restricted for the purposes of medical jurisprudence. It would obviously exclude numerous compounds, the poisonous properties of which cannot be disputed—as, for example, the salts of copper, tin, zinc, lead, and antimony; these, generally speaking, act as poisons only when administered in large doses. Some substances, such as nitre, have not been observed to have a noxious action except when taken in large quantity, while arsenic acts as a poison in a small dose; but in a medico-legal view, whether a man dies from the effects of an ounce of nitre, or two grains of arsenic, the responsibility of the person who criminally administers the substance, is the same. Each may be regarded as a poison, differing from the other only in its degree of activity, and in its mode of operation. The result is the same; death is caused by the substance taken, and the quantity required to destroy life, even if it could be always accurately determined, cannot enable us to distinguish a poisonous from a non-poisonous substance. If, then, a medical witness is asked ‘What is a poison?’ he must beware of adopting this popular view, or of confining the term poison to a substance which is capable of operating as such in a small dose taken at once.

In legal medicine, it is difficult to give such a definition of a poison as shall be entirely free from objection. Perhaps the most comprehensive which can be suggested is this:—’A poison is a substance which, when absorbed into the blood, is capable of seriously affecting health or of destroying life.’ There are various channels by which poisons may enter the blood: some are in the form of gases or vapours; these operate rapidly through the lungs; others are liquid or solid, and these may reach the blood either through the skin or through a wound: but more commonly through the
lining membrane of the stomach or bowels, as when they are taken or administered in the ordinary manner. The latter chiefly give rise to medico-legal investigations. Some substances act as poisons, by any one of these channels: thus arsenic is a poison whether it enters the blood through the lungs, the skin, or the stomach and bowels: but such poisons as those of the cobra, the viper, of rabies, and of glanders, appear to affect the body only through a wound. When introduced into the stomach, some of these animal poisons have been found to be inert. In adopting the above definition of a poison in a medical sense, it is proper to remark that there are some substances which are regarded as poisons, although absorption into the blood does not appear to be absolutely necessary to their action. The mineral acids and alkalis belong to this class of bodies. They are corrosive poisons: they operate injuriously by causing the destruction of living parts; and whether applied to the skin, the stomach, or (in the form of vapour) to the air-cells of the lungs, they destroy life chiefly by the local changes to which they give rise, and the inflammation which is a consequence of their action.

It is not easy to define the boundary between a medicine and a poison. It is usually considered that a medicine in a large dose is a poison, and a poison in a small dose is a medicine; but a medicine such as tartarized antimony may be easily converted into a poison, by giving it in small doses at short intervals, either under states of the body not adapted to receive it, or in cases in which it exerts an injuriously depressing effect. Some deaths have been lately occasioned by this wilful misuse of antimony in doses which might be described as medicinal, although in the cases referred to, no other intention could have existed, in the secret administration of this substance, than that of destroying life. A person may die either from a large dose of a substance given at once, or from a number of small doses given at such intervals that the system cannot recover from the effects of one before another is administered. This remark applies to a great number of medicines which are not commonly included in a list of poisons.

In reference to the medical definition of a poison, it is necessary to observe that the law does not regard the manner in which the substance administered acts. If it be capable of destroying life or of injuring health, it is of little importance, so far as the responsibility of a prisoner is concerned, whether its action on the body is of a mechanical or chemical nature, and whether it operates fatally by absorption into the blood or not. Thus a substance which simply acts mechanically on the stomach or bowels may, if wilfully administered with intent to injure, involve a person in a criminal charge, as much as if he had administered arsenic or any of the ordinary poisons. It is, then, necessary that we should consider what the law strictly means by the act of poisoning. If the substance criminally administered, destroys life, whatever may be its nature or mode of operation, the accused is tried on a charge of murder or manslaughter, and the duty of a medical witness consists
in showing that the substance taken was the certain cause of death.
If, however, death is not the consequence, then the accused may
be tried for the attempt to murder by poison (24 & 25 Vict. c. 100,
a. 11, Aug. 1861). The words of this statute are general, and
embrace all kinds of substances, whether they are popularly or
professionally regarded as poisons or not. Thus it is laid down that—

‘Whosoever shall administer, or cause to be administered to or
taken by any person, any poison, or other destructive thing, with
intent to commit murder, shall be guilty of felony.’

Whether the administering be followed by any bodily injury or
not, the act is still a felony, provided the intent has been to commit
murder. The attempt to administer or the attempt to cause to be
administered to, or to be taken by any person, any poison or other
destructive thing, with the like intent, although no bodily injury be
effected, is also a felony (a. 14). If any doubt formerly existed
whether the external application of poison, e.g. by wounds or
ulcerated surfaces, would be included in the words ‘administering
or taking,’ they are now entirely removed by the Criminal Law
Consolidation Act (Aug. 1861). The 22nd section specially applies
to such an offence, and the 16th section provides that ‘Whosoever
shall, by any means other than those specified in any of the preceding
sections of this Act, attempt to commit murder, shall be guilty of
felony.’ Mr. Greaves justly remarks, with regard to this important
addition to the statute law, that ‘the malicious may now rest
satisfied that every attempt to murder which their perverted
ingenuity may devise, or their fiendish malignity suggest, will fall
within some clause of this Act, and may be visited with penal
servitude for life.’ (‘Notes on Crim. Law Consolidation,’ p. 49.)
Under sect. 22 of this statute, in reference to attempted poisoning,
some offences are comprised, which formerly escaped punishment:
‘Whosoever shall unlawfully apply or administer to, or cause to be
taken by, or attempt to apply or administer to, or attempt to cause
to be administered to or taken by any person, any chloroform,
laudanum, or other stupefying or overpowering drug, matter, or
thing, with intent, in any of such cases, thereby to enable himself
or any other person to commit, or with intent, &c., to assist any
other person in committing any indictable offence, shall be guilty
of felony.’ A case under this section of the new statute was
referred to me in September 1863. A medical gentleman was
charged with ‘attempting to cause to be administered’ to an infant,
a poisonous dose of laudanum. It was stated by a woman who
nursed the child that the accused delivered to her two bottles con-
taining a brown liquid, labelled ‘one teaspoonful every three hours,’
and directed her to give it to the child. None was given. Some
months after the death of the child from natural causes, this charge
was raised, and the bottles, still full of liquid, were produced as
evidence against the accused. On analysis I found that the pre-
scribed dose contained about five minims of laudanum, or nearly
one half-grain of opium—a dose likely to prove fatal to an infant only a month old. Assuming the statement of the nurse who made the charge to be true, the only inference to be drawn from the prescription of such a dose for an infant by a medical man, would be that he intended to destroy the life of the child. The charge fell to the ground, as clear proof was given that the woman who made it was not to be believed on her oath, and that it had originated in a desire to extort money.

Poison is not always administered with intent to murder. On many occasions it has been mixed with food, and thus administered with a view to injure or annoy a person. Cantharides have been thus frequently given, and in one instance (Nov. 1859) eight members of a family suffered from severe symptoms of poisoning by reason of the wanton administration of this drug. In April 1860, several members of a family suffered from severe sickness, as a result of tobacco having been put into water contained in a teakettle; and tartar emetic has been in some cases dissolved in beer or other liquids as a mere frolic, without any proved or probable intention on the part of the offender to destroy life. The case of *M'Cullen* (Liverpool Autumn Assizes, 1866), revealed an extensive system of poisoning in the northern counties, in which tartar emetic was the substance employed. This drug, mixed with cream of tartar, was openly sold by druggists under the name of 'quietness powders,' and the evidence established that women gave these powders to their husbands with a view to cure them of habits of drunkenness. Hitherto, when the intent to murder was not proved, the offender has escaped, although great bodily injury may have been done by his wanton or malicious act. Sections 23, 24, and 25 of the Consolidation Act, c. 100, provide for this omission:—

' 23. Whosoever shall unlawfully and maliciously administer to, or cause to be administered to or taken by any other person, any poison or other destructive or noxious thing, so as thereby to endanger the life of such person, or so as thereby to inflict upon such person any grievous bodily harm, shall be guilty of felony.'

' 24. Whosoever shall unlawfully and maliciously administer to, or cause to be administered to or taken by any other person, any poison or other destructive or noxious thing, with intent to injure, aggrieve, or annoy such person, shall be guilty of a misdemeanor.'

' 25. If, upon the trial of any person charged with the felony above mentioned, the jury shall not be satisfied that such person is guilty thereof, but shall be satisfied that he is guilty of the misdemeanor above mentioned, then and in every such case the jury may acquit the accused of such felony, and find him guilty of such misdemeanor.'

It will be perceived that the words of the statute leave the question 'What is a poison?' to depend upon the medical evidence adduced: and in order to include all substances of an injurious nature, although they may not be, strictly speaking, poisons, the
ACTION OF MECHANICAL IRRITANTS.

words 'destructive or noxious thing' are employed. Hence, on these occasions, a medical witness must be prepared to prove that the substance was either a poison or a destructive or noxious thing. In a trial which took place at the Essex Lent Assizes, 1850 (Reg. v. Hayward), a woman was charged with administering white precipitate to her husband with intent to kill. She was acquitted on the ground that there was no evidence to show that white precipitate was either a poison or a destructive thing. It is, however, placed beyond doubt that this substance is not only capable of producing all the effects of an irritant poison, but of destroying human life; hence, this acquittal was based on a pure mistake. White hellebore, Lobelia inflata, and Oil of turpentine have been erroneously pronounced not to be poisons under similar circumstances; in fact, when this question is raised, unless the medical evidence received by a Court is very closely investigated, great mistakes may arise, owing perhaps to want of experience or want of reflection on the part of those to whom the question is put.

Mechanical Irritants.—The substance administered may not be a poison in the medical signification of the term, and it may not be popularly considered as such; yet, when taken, it may be noxious to health or destructive to life. We have examples of substances of this description in iron-filings, powdered glass, sponge, pins and needles, and such-like bodies, which have been administered with the wilful design of injuring, and have on various occasions given rise to criminal charges. In cases of this kind, the legal guilt of a prisoner may often depend on the meaning assigned by a medical witness to the words destructive thing. Thus, to take an example, liquid mercury might be poured down the throat of an infant, with the deliberate intention to destroy it. A question of a purely medical nature will then arise whether mercury is a 'destructive thing' or not; and the conviction of a prisoner will probably depend on the answer. Should a difference of opinion exist, an occurrence by no means unusual in medical evidence, the prisoner will, according to the humane principle of our law, receive the benefit of the doubt. The injuries produced on cattle by mechanical irritants have occasionally given rise to civil actions for damages. In Newton v. Woodhurst (Nottingham Autumn Assizes, 1871), the plaintiff claimed damages for the loss of three horses, by reason of their having been killed by rice-meal supplied by the defendants. The horses were fed on the meal: they were taken ill, and died. In the stomachs of each a large quantity of stuff was found containing five per cent. of sand. This had acted as a mechanical irritant, and had caused death. From the evidence it appeared that the so-called meal consisted of the dust and refuse from the sweepings of the floors. The jury were discharged without a verdict.

Influence of Habit on Poisons.—Habit, it is well known, diminishes the effects of certain poisons:—thus it is that opium, when frequently taken by a person, loses its effect for a time, and requires to be administered in a much larger dose. Indeed, confirmed opium-
Influence of Habit on Poisons.

caters have been enabled to take at once, a quantity of the drug which would have infaullibly killed them, had they commenced with it in the first instance. Even infants and children, who are well known to be especially susceptible of the effects of opium, and are liable to be poisoned by small doses, may, by the influence of habit, be brought to take the drug in very large quantities. This is well illustrated by a statement made by Mr. Grainger, in the 'Report of the Children's Employment Commission.' It appears that the system of drugging children with opium in the factory districts, commences as soon after birth as possible; and the dose is gradually increased until the child takes from fifteen to twenty drops of laudanum at once. This has the effect of throwing it into a lethargic stupor. Healthy children of the same age would be killed by a dose of five drops. The same influence of habit is manifested more or less in the use of tobacco, alcohol, ether, chloroform, morphia, strychnia, and other alkaloids. Sir R. Christison has remarked that this influence is chiefly confined to poisons derived from the organic kingdom; it is so limited with regard to mineral substances that it can scarcely be said to exist.

It is stated on respectable authority that certain peasants in Styria are addicted to the practice of arsenic-eating, and that they carry it on for many years without suffering from the usual effects of this poison. Dr. Roscoe has published a case in which, according to information supplied to him, a Styrian peasant took in one day four grains and a half, and on the day following five grains and a half of arsenic, crushing the mineral between his teeth and swallowing it. The day after he had swallowed the second dose, the man left the place in his usual health, and there is no further record of him. Dr. C. Maclagan states that he saw a Styrian peasant, set. 26, swallow between four and five grains of white arsenic in powder. In two hours some urine which he passed contained arsenic. This man suffered no ill effects; he stated that he had taken arsenic for a year and a half without any injury to his health. He took at first rather less than a grain every fortnight. In another case a man, set. 46, swallowed six grains. In three quarters of an hour it was found that arsenic was eliminated with the urine. ('Ed. Med. Journ.,' Sept. 1864, p. 200.) Dr. Knapp informed Dr. Maclagan that a man once took in his presence seven and a half grains of arsenic, and no injurious effects were produced. ('Ed. Med. Journ.,' Jan. 1865, p. 669.) Such cases as these admit of no explanation on English experience. Habit appears to have so little influence on arsenic, under the most careful medicinal use of it in this country, that I believe no medical practitioner has ever succeeded in causing a patient to take two grains at a dose, the smallest quantity yet known to have destroyed life. Mr. Hunt, who has had a large experience in the use of this mineral, fixes the maximum dose, to be given with safety, at one grain.

The following case, reported in the same journal (August 1864, p. 118), by Dr. Parkes of Halifax, shows the danger incurred by
this practice. A man who had taken arsenic for a period of three or four years died under the usual symptoms of chronic poisoning. As far as it could be ascertained, the daily dose taken by deceased for the last five months of his life, was from two to three grains. From the beginning of the practice he had suffered from symptoms of poisoning with arsenic, which gradually assumed the form of arsenical cachexia; but he referred the symptoms to other causes, and concealed the practice from his friends. His system never became habituated to the poison. This is a result which may be generally expected. If the exceptional cases observed in Styria are supposed to prove that arsenic may be taken in large doses with impunity, they would lead to error. Such cases have no practical bearing in legal medicine. If the practice of arsenic-eating produces no symptoms, then no question of poisoning can arise. If, as in the above case, it does produce symptoms, then the case would fall within the range of ordinary experience. The alleged impunity of the Styrians, in the habitual use of arsenic, may be occasionally quoted to explain the detection of the poison in a dead body or a motive for its purchase; but no scientific witness who has seen anything of the operation of arsenic in this country, can allow these statements to influence his opinion of its effects on human beings. Those who profess to believe in this practice, would be among the last to make a trial of it either on their own persons or among their friends.

The only form in which I have known the question of habit to be seriously raised in medical jurisprudence is this: whether, while the more prominent effects of a poison are thereby diminished, the insidious or latent effects on the constitution are at the same time counteracted. The answer is of some importance in relation to the subject of life-insurance:—for the concealment of the practice of opium-eating by a person whose life was insured, has already given rise to an action, in which medical evidence on this subject was rendered necessary. As a general principle, we must admit that habit cannot altogether counteract the insidious effects of poisons; and that the practice of taking them is liable to give rise to disease or to impair the constitution.

Influence of Idiosyncrasy.—Idiosyncrasy differs from habit:—it does not, like habit, diminish the effect of a poison: for it is not commonly found that any particular state of body is a safeguard against the effects of these powerful agents. Some constitutions are observed to be much more affected than others by certain poisons: thus, opium, arsenic, mercury, lead, and antimony are substances of this description, and this difference in their effects is ascribed to idiosyncrasy. Sir R. Christie mentions a remarkable instance, in which a gentleman unaccustomed to the use of opium, took nearly an ounce of laudanum without any effect. ('On Poisons,' 33.) This form of idiosyncrasy is very rare. Certain substances generally reputed harmless, and, indeed, used as articles of food, are observed to affect some persons like poisons. This is the case with pork, certain kinds of shell-fish, and mushrooms. There may be nothing
poisonous in the food itself; but it acts as a poison in particular
constitutions—whether from its being in these cases a poison per se,
or rendered so by changes during the process of digestion, it is dif-
ficult to say. The subject of idiosyncrasy is of importance in a
medico-legal view when symptoms resembling those of poisoning
follow a meal consisting of a particular kind of food. In such a case,
without a knowledge of this peculiar condition, we might hastily
attribute to poison effects which were really due to another cause. It
would appear that in some instances idiosyncrasy may be acquired—
i.e. a person who, at one period of his life, had been in the habit of
partaking of a particular kind of food without injury, may find at
another period that it will disagree with him. When pork has been
disused as an article of diet for many years, it cannot always be re-
sumed with impunity. In cases in which the powers of life have
become enfeebled by age, the susceptibility of the system to poisons
is increased; thus aged persons may be killed by comparatively small
doses of arsenic and opium. Cases of acquired idiosyncrasy are
very rare; it appears to be, if we may so apply the term, a congenital
condition. There are, however, certain diseases which seem to
conferv a power of supporting large and even poisonous doses of some
substances. Very large doses of opium have been taken without
producing dangerous symptoms by persons labouring under tetanus
and hydrophobia. This condition is called tolerance. It has been
witnessed in diseases of the lungs in reference to the use of anti-
monial medicines.

Classification of Poisons.—Poisons have been divided into
three classes, according to their mode of action on the system;
namely, IRRITANTS, NARCOTICS, and NARCOTICO-IRRITANTS. This
classification is a modification of that originally proposed by Orfila.
The Narcotics and Narcotico-irritants may, however, be regarded as
constituting one large class, the NEUROTICS, as their special action
is to affect directly one or more parts of the nervous system. The
Neurotic poisons admit of a subdivision into Cerebral, Spinal, and
Cerebro-spinal, according to whether the poisonous substance affects
directly the brain, the spinal marrow, or both of these organs.

IRRITANTS.—The irritants are possessed of these common charac-
ters. When taken in ordinary doses, they occasion speedily violent
vomiting and purging. The symptoms are either accompanied or
followed by pain in the stomach and bowels. The peculiar effects
of the poison are manifested chiefly on these organs, which, as their
name implies, they irritate and inflame. Many substances belonging
to this class of poisons, possess corrosive properties; such as the
strong mineral acids, caustic alkalies, bromine, corrosive sublimate,
and others. These, in the act of swallowing, are commonly accom-
panied with an acrid or burning taste, extending from the mouth down
the gullet to the stomach. Some irritants do not possess any cor-
rrosive action—of which we have examples in arsenic, the poisonous
salts of baryta, carbonate of lead, and cantharides; these are often
called pure irritants. They exert no destructive chemical action on
the tissues with which they come in contact; they simply irritate and inflame them.

Difference between Corrosive and Irritant Poisons.—As a result of the action of corrosive poisons, symptoms are commonly manifested immediately, because mere contact produces the destruction of a part. In the action of the purely irritant poisons, the symptoms are generally more slowly manifested, rarely showing themselves until at least half an hour has elapsed from the time of swallowing the substance. Of course, there are exceptions to this remark; for sometimes irritants act speedily, though rarely with the rapidity of corrosive poisons. It is important in a practical view, to ascertain whether, in an unknown case, the poison which a person, requiring immediate treatment, may have swallowed, is irritant or corrosive. This may be commonly determined by a knowledge of the time at which the symptoms appeared after the suspected substance was taken. We may thus often easily distinguish between a case of poisoning from arsenic and one from corrosive sublimate. There is also another point which may be noticed. As the corrosive substance exerts a decidedly chemical action, an examination of the mouth and throat may enable us in some cases to solve the question.

It has already been stated that there are many irritant poisons which have no corrosive properties, but every corrosive may act as an irritant. Thus the action of corrosive sublimate is that of an irritant poison, as, while it destroys some parts of the coats of the stomach and intestines, it irritates and inflames others. So again most corrosive poisons may lose their corrosive properties by dilution with water, and then they act simply as irritants. This is the case with the mineral acids and bromine. In some instances, it is not easy to say whether an irritant poison possesses corrosive properties or not. Thus oxalic acid acts immediately, and blanches and softens the mucous membrane of the mouth and throat, but I have not met with any decided marks of chemical corrosion produced by it in the stomach or viscera. Irritant poisons, for the most part, belong to the mineral kingdom; and they may be divided into the *Non-Metallic* and *Metallic* irritants. There are a few derived from the animal and vegetable kingdoms; but these, if we except cantharides, are not often employed criminally. Some of the gases likewise belong to the class of irritant poisons.

Neurotics.—Neurotic poisons act upon the nervous system, and their operation is confined chiefly to the brain and spinal marrow. Either immediately or some time after the poison has been swallowed, the patient suffers from headache, giddiness, numbness, paralysis, stupor, and in some instances convulsions. They have not an acrid burning taste like the corrosive irritants; and they rarely give rise to vomiting or purging. When these symptoms follow the ingestion of the poison into the stomach, the effect may be generally ascribed either to the form or quantity in which it has been taken, and the mechanical effect on the stomach thereby
produced, or to the poison being combined with some irritating substance, such as alcohol. The pure narcotics, or Cerebral poisons, are not found to irritate or inflame the stomach and bowels.

Notwithstanding the well-defined boundary thus apparently existing between these two classes of poisons, it must not be supposed that the substances arranged in each class, always act in the manner indicated. Some irritants have been observed to affect the brain or the spinal marrow, and this may be either a primary or a secondary consequence of their action. Arsenic and oxalic acid, although classed as irritants, have in some instances given rise to symptoms closely resembling those of narcotic poisoning; namely, coma, paralysis, and tetanic convulsions. In a case of poisoning by arsenic, which occurred to Dr. Morehead, of Bombay, the symptoms of narcotism were so strongly marked that it was believed at first the man had taken a narcotic. (‘Med. Gaz.’ vol. 43, p. 1066.) I have met with a case of poisoning by arsenic in which there was paralysis of the limbs, with an entire absence of purging, during the eight days that the deceased survived. On the other hand, in a case of poisoning by a large dose of opium, there was an absence of the usual symptoms of cerebral disturbance, and the presence of others resembling those of irritant poisoning—namely, pain and vomiting. Thus, then, we must not allow ourselves to be misled by the idea that the symptoms are always clearly indicative of the kind of poison taken. The narcotic or cerebral poisons are few in number, and belong to the vegetable kingdom. Some of the poisonous gases possess a narcotic action.

Narcotic-Irritants. (Spinal and Cerebro-spinal Poisons.)—Poisons belonging to this class have, as the name implies, a compound action. They are chiefly derived from the vegetable kingdom. At variable periods after they have been swallowed, they give rise to vomiting and purging, like irritants; and sooner or later produce stupor, coma, paralysis, and convulsions, owing to their effects on the brain and spinal marrow. In the state of vegetables, as leaves, seeds, or roots, they possess the property, like irritants, of irritating and inflaming the stomach and bowels. As familiar examples we may point to nux vomica, monkshood, hemlock, and poisonous mushrooms. This class of poisons is very numerous, embracing a large variety of well-known vegetable substances; but they rarely form a subject of difficulty to a medical practitioner. The fact of the symptoms occurring after a meal at which some suspicious vegetables may have been eaten, coupled with the nature of the symptoms themselves, will commonly indicate the class to which the poison belongs. Some of these poisons have a hot acrid taste; others, like aconite or monkshood, produce a sense of numbness or tingling, while others again have an intensely bitter taste, as nux vomica, strychnia, veratrum, and picrotoxia. Strychnia may be regarded as a pure spinal poison.
CHAPTER 5.

EVIDENCE OF POISONING IN THE LIVING BODY.—ACTION OF POISONS INCREASED OR DIMINISHED BY DISEASE.—SYMPTOMS CONNECTED WITH FOOD OR MEDICINE.—SEVERAL PERSONS ATTACKED SIMULTANEOUSLY.—EVIDENCE FROM THE DETECTION OF POISON IN THE FOOD.

We now proceed to consider the evidence of poisoning in the living body. To the practitioner the diagnosis of a case of poisoning is of great importance, as by mistaking the symptoms produced by a poison for those arising from natural disease, he may omit to employ the remedial measures which have been found efficacious in counteracting its effects, and thus lead to the certain death of the patient. To a medical jurist a correct knowledge of the symptoms furnishes the chief evidence of poisoning, in those cases in which persons are charged with the malicious and unlawful administration of poison. The symptoms produced during life, constitute also an important part of the evidence in those instances in which a poison proves fatal. At present, however, we will suppose the case to be, that poison has been taken and the patient survives. Most toxicological writers have laid down certain characters whereby it is said symptoms of poisoning may be distinguished from those of disease.

1. In poisoning, the symptoms appear suddenly, while the individual is in health.—It is the common character of most poisons, when taken in the large doses in which they are usually administered with criminal intent, to produce serious symptoms, either immediately or within a very short period after they have been swallowed. Their operation, under such circumstances, cannot be suspended, and then manifest itself after an indefinite interval; although this was formerly a matter of universal belief, and gave rise to many absurd accounts of what was termed slow poisoning.

The symptoms of poisoning by nicotina, prussic acid, oxalic acid, or the salts of strychnia, appear immediately, or generally within a very few minutes after the poison has been swallowed. In an exceptional case, in which the dose of prussic acid was small, and insufficient to produce death, the poison was supposed by the patient not to have begun to act until after the lapse of fifteen minutes. (‘Ed. Med. and Surg. Journ.’ vol. 59, p. 72.) The symptoms caused by arsenic and other irritants, and, indeed, by all poisons generally, are commonly manifested in from half an hour to an hour. It is rare that the appearance of symptoms is protracted for two hours, except under certain peculiar states of the system. It is said that some neurotic poisons, such as the poisonous mushrooms, may remain in the stomach twelve or twenty-four hours without giving rise to symptoms; and this is also affirmed to be the case with some animal irritants, such as decayed meat; but with regard
to mushrooms, it has been shown by Dr. Peddie that they have produced symptoms in half an hour; and a case has fallen under my own observation, in which the symptoms from noxious animal food came on within as short a time after the meal as is commonly observed in irritant poisoning by mineral substances. In some cases of poisoning by phosphorus, no symptoms have occurred until after the lapse of several hours.

Influence of Disease.—A diseased state of the body may render a person comparatively unsusceptible of the action of certain poisons, while in other instances it may increase their action, and render them fatal in small doses. In dysentery and tetanus a person may take, without being materially affected, a quantity of opium sufficient to kill an adult in average health. In mania, cholera, hysteria, and delirium tremens, large doses of opium may be borne with comparative impunity. In a case of hemiplegia, a woman, aged 29, took for six days three grains of strychnia daily without injurious consequences—the dose having been gradually raised (Gaz. Méd. 2 Mai 1845); while one grain of strychnia is commonly regarded as a fatal dose to a healthy adult. In a case of tetanus, Dupuytren gave as much as two ounces of opium at a dose (60 grammes) without serious consequences. (Flandin, 'Traité des Poisons,' vol. 1, p. 231). It has also been remarked that persons affected with tetanus are not easily salivated by mercury. The morbid state appears to create the power of resisting the ordinary effects of poisons. ('Colles's Lectures,' vol. 1, p. 77.) The effect of certain diseases of the nervous system, as well as of habit, either in retarding the appearance of symptoms or in blunting the operation of a poison, it is not difficult to appreciate; they are cases which can present no practical difficulty to a medical jurist. On the other hand, in certain diseased states of the system, there may be an increased susceptibility of the action of poison. Thus, in those persons who have a disposition to apoplexy, a small dose of opium may act more quickly and prove fatal. In a person labouring under inflammation of the stomach or bowels, there would be an increased susceptibility of the effects of arsenic, antimony, or other irritants. In debility from any cause these mineral substances would also act injuriously even in ordinary doses. Antimony is a most powerful depressant, and might, by its effect on the heart, cause sudden death by syncope. The influence of disease in increasing the operation of poison, has been noticed in cases of diseased kidney (granular degeneration), in which small doses of mercury have produced severe salivation, leading to exhaustion and death. In diseases of the lungs affecting aged persons, opium in medicinal doses, has been observed to exert a poisonous action. The effect of the drug appears to be intensified by the disease. This observation applies equally to morphia. Chloroform vapour in ordinary quantity has been found to produce fatal effects, in cases in which there was latent disease of the heart or of the coronary arteries of this organ. A fatty condition of the muscular tissue leading to great feebleness
of the heart's action, appears to be highly favourable to death by
sycope under the use of chloroform. A knowledge of these facts
is of importance in reference to charges of malapraxis when death
has arisen from ordinary or extraordinary doses of medicines, ad-
ministered to persons labouring under disease. In such cases,
another mode of treatment should be substituted, or a smaller dose
than usual given, and its effects carefully watched. In some in-
stances, however, full and large doses of powerful drugs have been
recklessly given, and when a fatal result has followed, there has
been a strong disposition to refer death to the supposed disease, of
which, however, sometimes no trace could be found in the body.
An experienced physician, well acquainted with pathological
anatomy, informs me that since the use of chloroform has become
general, and deaths under its use are not unfrequent, a fattiness
and flabbiness of the muscular structure of the heart has been
sought for and almost universally found! The fatal result has
not been attributed to its real cause, the imprudent or careless
administration of chloroform, but to some minute structural
changes revealed by the microscope in the substance of the organ.

Symptoms appear during a state of health.—Symptoms of poison-
ing may manifest themselves in a person while in a state of perfect
health, without any apparent cause. This rule is of course open to
numerous exceptions, because the person on whose life an attempt
has been made, may be actually labouring under disease; and
under these circumstances, the symptoms may be so obscure as
often to disarm all suspicion. When poison is exhibited in medi-
cine, a practitioner is very liable to be deceived, especially if the
disease under which the person is labouring is of an acute nature,
and is attended with symptoms of disorder in the alimentary canal.
Several cases of poisoning have occurred in which arsenic was
criminally substituted for medicine, and given to the parties while
labouring under a disorder of the bowels. We are, however, justi-
fied in saying, with respect to this character of poisoning, that when,
in a previously healthy person, violent vomiting and purging occur
suddenly and without any assignable cause, such as disease, indis-
ccretion in diet, or pregnancy, to account for them, there is strong
reason to suspect that irritant poison has been taken. When the
person is already labouring under disease, we must be especially
watchful of the occurrence of any sudden change in the character
or violence of the symptoms, unless such change can be easily
accounted for on common or well-known medical principles. In
most cases of criminal poisoning we meet with alarming symptoms
without any obvious or sufficient natural causes to explain them.
The practitioner will of course be aware that there are certain dis-
cases which are liable to occur suddenly in healthy people, the exact
cause of which may not at first sight be apparent; therefore this
criterion is only one out of many on which a medical opinion should
be founded.

2. In poisoning the symptoms appear soon after a meal, or soon
after some kind of food or medicine has been taken.—This is by far the most important character of poisoning in the living body. It has been already stated that most poisons begin to operate within about an hour after they have been swallowed; and although there are a few exceptions to this remark, yet they occur under circumstances easily to be appreciated by a practitioner. Thus, then, it follows that, supposing the symptoms under which a person is labouring, to depend on poison, the substance has most probably been swallowed, either in food or medicine, from half an hour to an hour previously. It must be observed, however, that cases may occur in which the poison has not been introduced by the mouth. Oil of vitriol and other corrosive liquids have been thrown up the rectum in injections, and have thus caused death; the external application of arsenic, corrosive sublimate, and cantharides to ulcerated surfaces has destroyed life. In one case arsenic was introduced into the vagina of a female, and she died in five days under all the symptoms of arsenical poisoning. (Schneider, 'Ann. derges. Staatsarzneikunde,' 229.) Such cases are rare, but, nevertheless, the certainty that they have occurred, where their occurrence could hardly have been anticipated, shows that in a suspicious case a medical man must not deny the fact of poisoning, merely because it may be proved that the person could not have taken the poison in the usual way, by the mouth. Again, persons may be destroyed by the vapours of ether, chloroform, prussic acid, or other powerful volatile poisons, introduced into the body through the lungs. Such a mode of suicide, or murder, might disarm suspicion, from the fact of no noxious material being found in the stomach.

Let us suppose, however, the circumstances to have been such that these secret means of destruction could not have been resorted to, and that the poison is one of those most commonly selected by a murderer, such as arsenic, tartar emetic, oxalic acid, or corrosive sublimate, then we may expect that this character of poisoning will be made evident to us, and that something must have been swallowed by the patient shortly before the alarming symptoms appeared. By observations attentively made, it may be in our power to connect the appearance of the symptoms with the use of a particular article of food, and thus indirectly lead to the detection of a criminal. Supposing that many hours have passed since food or medicine was taken by the patient, without any effect ensuing—it is probable that the symptoms may be due to natural causes and not to poison. When symptoms resembling those of poisoning speedily follow the ingestion of food or medicine, there is, however, reasonable ground for suspicion; but caution should be observed in drawing inferences, since the most extraordinary coincidences sometimes present themselves. In the case of Sir Thedosius Boughton, who was poisoned by his brother-in-law, Donellan, in 1781, the fact of alarming symptoms coming on in two minutes after the deceased had swallowed what was supposed to be a simple medicinal draught, was a most important part of the evidence against the prisoner. There is no
doubt that laurel-water had been substituted for the medicine by the prisoner, and that this had caused the symptoms which preceded death. The practice of substituting poisonous mixtures for medicinal draughts or powders is by no means unusual, although it might be supposed to indicate a degree of refinement and knowledge not commonly to be found among criminals. Medical practitioners are thus apt to be imposed upon, and the following case, related by a deceased judge, will serve as a caution:—An apothecary prepared a draught, into which another person put poison, intending thereby to destroy the life of the patient for whom the medicine was prescribed. The patient, not liking the taste of the draught, and thinking there was something suspicious about it, sent it back to the apothecary, who, knowing the ingredients of which he had composed it, and wishing to prove to his patient that he had done nothing wrong, drank it himself, and died from the effects. He was thus the unconscious agent of his own death; and although the draught was intended for another, the party who poisoned it was held guilty of murder. This case contains a warning to medical witnesses. It is not unusual, on trials for poisoning, when the poison is conveyed through medicine, to find a medical witness offering to swallow his own draught in a Court of law, in order to furnish a convincing practical illustration of the innocence of the medicine! It need hardly be observed that an exhibition of this kind is never required of a medical witness. If any doubt be raised of the innocent properties of a draught or powder, a chemical analysis of its contents will be far more satisfactory as evidence, and attended with no kind of risk to the practitioner.

On the other hand, the occurrence of symptoms resembling those produced by poisoning, soon after food or medicine has been taken, may be a pure coincidence. In such a case, poison is always suspected by the vulgar; and it will be the duty of a medical jurist to guard against the encouragement of such a suspicion, until he has strong grounds to believe it to be well founded. No public retraction or apology can ever make amends for the injury which may in this way be inflicted on the character of another; for those who hear the accusation may never hear the defence. In all such cases, a practitioner may entertain a suspicion, but, until confirmed by facts, he should avoid expressing it, or giving it publicity. When death is not a consequence, it is difficult to clear up such cases, except by the aid of a chemical analysis; but this, as we know, is not always applicable. If death ensue, the real cause is usually apparent, and a suspicion of poisoning is thus often removed by an examination of the body. (See Suffocation.) Cases are there reported in which persons have died suddenly after a meal, and the cause of death has been traced to obstruction of the air-passages by food.

3. In poisoning, when several partake at the same time of the same food or medicine (mixed with poison) all suffer from similar symptoms.—This character of poisoning cannot always be procured;
but it furnishes good evidence of the fact when it exists. Thus, supposing that after a meal made by several persons from the same dish, only one suffers, the suspicion of poisoning is considerably weakened. The poisoned article of food may be detected by observing whether they who suffer under any symptoms of poisoning, have partaken of one particular solid or liquid in common. In a case of accidental poisoning at a dinner-party, a medical man who was present observed that those who suffered had taken port-wine only: the contents of the bottle were examined, and found to be a saturated solution of arsenic in wine. In general, considerable reliance may be placed upon this character, because it is improbable that any common cause of disease should suddenly attack with violent symptoms of a similar character, many healthy persons at the same time, and within a short period after having partaken of food together. We must beware of supposing that, when poison is really present, all will be attacked with precisely similar symptoms; because there are many circumstances which may modify their nature and progress. In general that person who has partaken most freely of the poisoned dish will suffer most severely; but even this does not always follow. There is a well-known case, recorded by Bonnet, where, among several persons who partook of a dish poisoned with arsenic, they who had eaten little and did not vomit, speedily died; while others who had partaken largely of the dish, and had in consequence vomited freely, recovered.

It was just now remarked, that there is no disease resembling poisoning which is likely to attack several healthy persons at the same time, and in the same manner. This is undoubtedly true as a general principle, but the following case will show that mistakes may occasionally arise even under these circumstances. It occurred in London, during the prevalence of the malignant cholera in the year 1832. Four of the members of a family, living in a state of great domestic unhappiness, sat down to dinner in apparently good health; some time after the meal, the father, mother, and daughter were suddenly seized with violent vomiting and purging. The evacuations were tinged with blood, while the blueness of the skin, observed in cases of malignant cholera, was absent. Two of these persons died. The son, who was known to have borne ill-will against his father and mother, and who suffered no symptoms on this occasion, was accused of having poisoned them. At the inquest, however, it was clearly shown by the medical attendant, that the deceased persons had really died of malignant cholera, and there was no reason to suspect that any poison had been administered to them. In this instance it will be perceived that symptoms resembling those of irritant poison, appeared suddenly in several individuals in perfect health, and shortly after a meal. We hereby learn that the utility of any rules for investigating cases of poisoning, depends entirely on the judgment and discretion with which they are applied to particular cases.

It is well to bear in mind, in conducting these inquiries, that
symptoms resembling those produced by irritant poison, may be sometimes traced to food. Meat, rendered unwholesome by disease or decay, pork, bacon, sausages, cheese and bread, as well as mussels and other kinds of shell-fish, may give rise to symptoms of poisoning, and even cause death. Such cases may be regarded as poisoning by animal or vegetable irritants. All the characters above described, as indicative of poisoning, may be observed, and the difficulty of forming an opinion is often increased by the fact that some of the persons attacked may have previously partaken of the same kind of food without inconvenience.

4. The discovery of poison in the food taken, or in the matters vomited. — One of the strongest proofs of poisoning in the living subject, is the detection of poison by chemical analysis, or, if of a vegetable nature, by a microscopical examination, either in the food taken by the person labouring under its effects, or in the matters vomited, or, after the lapse of a few hours, in the urine. The evidence is of course more satisfactory when the poison is detected in the matters vomited or in the urine, than in the food: because this will show that it has really been taken, and it will readily account for the symptoms. If the vomited matters have been thrown away, we must examine the food of which the patient may have partaken. Should the results in both cases be negative, and no trace of poison be found in the urine, it is probable that the symptoms were due to disease.

In investigating a case of poisoning in a living subject, a medical jurist must remember, that poisoning is sometimes feigned, and at others imputed. It is easy for an artful person to put poison into food, as well as to introduce it into the matters vomited or discharged from the bowels, and to accuse another of having administered it. There are few of these accusers who go so far as to swallow poison under such circumstances, as there is a great dread of poisonous substances among this class of criminals; and it will be at once apparent, that it would require a person well versed in toxicology to feign a series of symptoms which would impose upon a practitioner at all acquainted with the subject. In short, the difficulty reduces itself to this: — What inference can be drawn from a chemical detection of poison in food? All that a medical man can say is, whether poison is or is not present in a particular article of food: he must leave it to the authorities of the law to develope the alleged attempt at administration. If the poison has been actually administered or taken, then we should expect to find that the person had suffered from the usual symptoms. The absence of these symptoms would be a strong fact against the alleged administration. The detection of poison in the matters vomited, affords no decisive proof that it has been swallowed, except under two circumstances: — 1. When the accuser has previously laboured under the usual symptoms of poisoning, in which case there can be no feigning, and the question of imputation is a matter to be established by general evidence. 2. When the matters are actually
vomited into a clean vessel in the presence of the medical attendant himself, or of some person on whose testimony perfect reliance can be placed. The detection of absorbed poison in the urine furnishes a clear proof that poison has been taken, that it has passed into the blood, and has been subsequently eliminated.

When a medical man is called to a case of suspected poisoning, it is necessary that he should know to what points he ought to give his attention. It is very proper that every effort should be made by him to save life when the individual is living; but while engaged in one duty, it is also in his power to perform another, supposing the case to be one of suspected criminal poisoning, namely, to note down many circumstances which may tend to detect the perpetrator of a crime. There is no person so well fitted to observe these points as a medical man; but it unfortunately happens that many facts important as evidence, are often overlooked. The necessity for observing and recording them is not, perhaps, generally known. A medical man should not make himself officious on such occasions, but he would be unmindful of his duty as a member of society if he did not aid the cause of justice by extending his scientific knowledge to the detection of crime. It is much to the credit of the medical profession that the crime of murder by poisoning—a form of death from which no caution or foresight can protect a person—is so frequently brought to light by the announcement of suspicious facts of a medical nature to magistrates and coroners; and on several occasions the highest compliments have been passed by judges on medical men who have been thus indirectly the means of bringing atrocious criminals to the bar of justice.

The following appear to me to be the principal points which demand the attention of a medical jurist in all cases of suspected poisoning:

1. With respect to

Symptoms.—1. The time of their occurrence,—their nature.
2. The exact period at which they were observed to take place after a meal, or after food or medicine had been taken.
3. The order of their occurrence.
4. Whether there was any remission or intermission in their progress; or, whether they continued to become more and more aggravated until death.
5. Whether the patient had laboured under any previous illness.
6. Whether the symptoms were observed to recur more violently after a particular meal, or after any particular kind of food or medicine.
7. Whether the patient has vomited: the vomited matters, if any (especially those first ejected), should be procured: their odour, colour, and acid or alkaline reaction noted, as well as their quantity.
8. If none be procurable, and the vomiting has taken place on the dress, furniture, or floor of a room—then a portion of the clothing, sheet, or carpet, may be cut out and reserved for analysis; if the vomiting has occurred on a deal floor, a portion of the wood may be scraped or cut out; or if on a stone-pavement, then a clean sponge soaked in distilled water may be used to remove any traces of the substance. The vessel in which vomited matters have been contained will often
furnish valuable evidence, since heavy mineral poisons fall to the bottom, or adhere to the sides. 9. Endeavour to ascertain the probable nature of the food or medicine last taken, and the exact time at which it was taken. 10. Ascertain the nature of all the different articles of food used at a meal. 11. Any suspected articles of food, as well as the vomited matters, should be sealed up as soon as possible in clean glass vessels, labelled, and reserved for analysis. 12. Note down, in their own words, all explanations voluntarily made by persons present, or who are supposed to be concerned in the suspected poisoning. 13. Whether more than one person partook of the food or medicine; if so, whether all these persons were affected, and how? 14. Whether the same kind of food or medicine had been taken before or since by the patient or other persons without ill effects following.

CHAPTER 6.

ON THE EVIDENCE OF POISONING IN THE DEAD BODY.—PERIOD AT WHICH POISONS PROVE FATAL.—CHRONIC POISONING.—APPEARANCES PRODUCED BY THE DIFFERENT CLASSES OF POISONS.—REDNESS OF THE MUCOUS MEMBRANE MISTAKEN FOR INFLAMMATION.—ULCERATION AND CORROSION.—SOFTENING.—PERFORATION OF THE STOMACH FROM POISON AND DISEASE.

Supposing that the person is dead, and we are required to determine whether the case is one of poisoning or not, we must, in the first instance, endeavour to ascertain all the particulars which have been considered in the last chapter as indicative of poisoning in the living body. Should the deceased have died from poison, the circumstances of the attack, and the symptoms preceding death, ought to correspond with the characters already described; and in these investigations it is well to bear in mind the following rule: There is no one symptom or pathological condition which is peculiar to poisoning; but at the same time there is probably no disease which presents all those characters which are met with in an actual case of poisoning. The points which require to be especially noticed under these circumstances in the living, are described at pp. 7 and 14 ante. The additional evidence to be derived from the death of a person may be considered under the following heads:—

1. The time at which death takes place after the first occurrence of symptoms.—This question requires examination, because the more common poisons, when taken in fatal doses, generally cause death within definite periods of time. By an attention to this point we may, in some instances, be enabled to negative a charge of poisoning, and in others to form an opinion of the kind of poison which has been taken. In a Court of Law, a medical practitioner is often required to state the usual period of time within which poisons prove fatal. It is to be observed that not only do poisons differ from each other in this respect, but the same substance, according to the
form or quantity in which it has been taken, may differ in the rapidity of its action. A large dose of prussic acid, i.e. from half an ounce to an ounce, may destroy life in less than two minutes. In ordinary cases of poisoning by this substance a person dies, i.e. all signs of life have commonly ceased, in from ten to twenty minutes: if he survives half an hour, there is some hope of recovery. In the cases of seven epileptics, accidentally poisoned by a similar dose of this acid in one of the Parisian hospitals, the first died in about twenty minutes; the seventh survived three-quarters of an hour. Oxalic acid, one of the most energetic of the common poisons, when taken in a dose of from half an ounce to an ounce, may destroy life in from ten minutes to an hour: if the poison is not perfectly dissolved when swallowed, it is a longer time in proving fatal. The strong mineral acids, in poisonous doses, destroy life in about eighteen or twenty-four hours. Arsenic, under the form of arsenious acid (white arsenic), operates fatally in from eighteen hours to three or four days. It has, however, in more than one instance, killed a person in two hours. Opium, either as a solid or under the form of laudanum, commonly proves fatal in from six to twelve hours; but it has been known, in several instances, to destroy life in less than three hours; they who survive the effects of this poison for twelve hours are considered to have a fair chance of recovery. This must be understood to be merely a statement of the average results, as nearly as we are warranted in giving an opinion; but the medical jurist will of course be aware that the fatal period may be protracted or shortened, according to all those circumstances which have been elsewhere stated to affect the action of poisons.

There are various forms which this question may assume. It may be said that the death of a person, alleged to have taken poison, has occurred either too rapidly or too slowly to justify a suspicion of poisoning. The following case will serve as an illustration: A woman of the name of Russell was tried and convicted at the Lewes Summer Assizes, in 1826, for the murder of her husband, by poisoning him with arsenic. The poison was detected in the stomach; but the fact of poisoning was disputed by some medical witnesses, for this among other reasons, that the deceased had died three hours after the only meal at which the poison could have been administered to him. The authority of Sir A. Cooper and others was cited to show that, according to their experience, they had never known a case of poisoning by arsenic to have proved fatal in less than seven hours. This may be admitted; but, at the same time, there was sufficient authority on the other side to establish that some cases had actually proved fatal in three or four hours. So far as this objection was concerned, the prisoner was properly convicted. In reference to the medical question raised at this trial, I may observe that two distinct cases have since occurred in which the persons died certainly within two hours after taking arsenic; and several instances have been reported in which death has taken place in from three to four hours after the administration of this
poison. It seems extraordinary in the present day that any attempt should have been made by a professional man to negative a charge of criminal poisoning upon so weak a ground as this; but this opinion was expressed many years ago, when the facts connected with poisoning were but little known. It is quite obvious that there is nothing, so far as we know, to prevent arsenic from destroying life in an hour, or even within a shorter period. A case will be hereafter related, in which death took place from arsenic probably within twenty minutes. These matters can be settled only by a careful observation of numerous cases, and not by any à priori reasoning, or by a limited individual experience.

In all instances of sudden death there is generally a strong tendency on the part of the public to suspect poisoning. They never can be brought to consider that persons may die a natural death suddenly, as well as slowly; or, as we shall presently see, that death may really take place slowly, and yet be due to poison. This prejudice continually gives rise to the most unfounded suspicions of poisoning, and, at the same time, leads to cases of chronic or slow poisoning being frequently mistaken for natural disease. One of the means recommended for distinguishing narcotic poisoning from apoplexy or disease of the heart, is the difference in the rapidity with which death takes place. Thus, apoplexy or disease of the heart may prove fatal either instantly or within an hour. The only poisons likely to operate with such fatal rapidity are prussic acid or nicotina. Poisoning by opium is commonly protracted for five or six hours. This poison has never been known to destroy life instantaneously, or within a few minutes. Thus, then, it may happen that death will occur with such rapidity as to render it impossible, under the circumstances, to attribute it to narcotic poison.

Chronic Poisoning.—When a poison destroys life rapidly, it is called a case of acute poisoning, to distinguish it from the chronic form, i.e. in which death takes place slowly. Chronic poisoning is a subject which has of late frequently required medico-legal investigation. Most poisons, when their effects are not rapidly manifested, owing either to the smallness of the dose or to timely treatment, are capable of slowly undermining the powers of life, and killing the patient by producing emaciation and exhaustion. This is sometimes observed in the action of arsenic, corrosive sublimate, and tartarized antimony, but it has been remarked also in cases of poisoning by the mineral acids and caustic alkalies. Death is here an indirect consequence: in poisoning by the acids or alkalies, either stricture of the gullet is induced, or the lining membrane of the stomach is destroyed, and the process of digestion impaired—a condition which leads to exhaustion and death. The time at which these indirect effects may prove fatal, is of course liable to vary. A person has been known to die from a stricture of the gullet, brought on by sulphuric acid, eleven months after the poison was swallowed; and there is no reason to doubt that instances may occur of a still more protracted nature. In cases of chronic poisoning,
there is sometimes great difficulty in assigning death exclusively to
the original action of the poison, since the habits of life of the
person, a tendency to disease, and other circumstances, may have
concurred either to accelerate or produce a fatal result. To connect
a stricture of the gullet proving fatal, with the effects of poisoning
by a mineral acid, it would be necessary to show that there was no
tendency to this disease before the acid was administered; that the
symptoms appeared soon after the first effects of the poison went
off; that these symptoms continued to become aggravated until the
time of death; and, lastly, that there was no other cause to which
death could with any probability be referred. These remarks apply
equally to the secondary fatal effects of any poison—such, for
instance, as the salivation occasionally induced by corrosive subli-
mate, and the exhaustion and depression which are caused by
tartarized antimony, when the acute symptoms of poisoning by
these substances have passed away.

The characters of chronic poisoning have of late years acquired a
special interest for the medical jurist. There is a difficulty about
them which no accuracy of observation or judgment can surmount.
The poison or poisons, if found in the dead body at all, must
necessarily exist in fractional parts of a grain. This alone will be
sufficient to create a doubt whether death has been caused by the
poison, although it is quite consistent with medical experience that
a person may die from chronic poisoning, and little or none of the
poison be found in the body after death. In the case of Mrs. James
(Reg. v. Winslow), not more than the tenth part of a grain was
found in the whole of the tissues of the body: in the case of
Isabella Banks (Reg. v. Smethurst), the quantity was greater than this,
but less than a grain altogether; while in the case of Mrs. Peters,
of Yeovil, examined by the late Mr. Herapath, none was found
in the body, although this chemist had extracted a quantity of anti-
mony as sulphide, from the urine of the deceased within less than
nine days before her death! In this case Dr. Garland had also found
antimony in the evacuations during life, and had referred the inter-
mittent irritation of the stomach and bowels, from which deceased
had suffered, to the secret use of this mineral. The jury returned
a verdict that deceased had died from disease, and that death was
accelerated by some irritant. (‘Lancet,’ August 4th, 1860, p. 119.)
On some trials for poisoning (Reg. v. William Palmer, C. C. C.
1856), it has been a contested scientific question, whether a person
can die from poison and no trace of the poison remain in the body.
Mr. Herapath’s evidence in Mrs. Peters’s case not only now proves
the affirmative, but goes to show that antimony may act fatally and
be entirely eliminated from the system in about a week. (‘Med.
Times and Gaz.’ Aug. 25, Sept. 15 and 29, 1860, pp. 190, 271,
317.)

3. Evidence from the appearances in the body.—One of the chief
means of determining whether a person has died from poison, is
an examination of the body after death. In relation to external
appearances, there are none indicative of poisoning upon which we can safely rely. It was formerly supposed that the bodies of persons who were poisoned, putrefied more rapidly than those of others who had died from natural disease; and evidence for or against poisoning was at one time derived from the external appearance of the body. This is now known to be an error: the bodies of persons poisoned are not more rapidly decomposed, ceteris paribus, than those of others who have died a sudden and violent death from any cause whatever.

Irritant poisons act chiefly upon the stomach and intestines, which they irritate, inflame, and corrode. We may likewise meet with all the consequences of inflammation, such as softening, thickening, ulceration, perforation, or gangrene. Sometimes the coats of the viscera are thickened, at other times thinned and softened, by the action of an irritant.

Neurotic (Cerebral and Spinal) poisons do not commonly leave any well-marked appearances in the body. The stomach and intestines present no unnatural changes. There may be greater or less fulness of the vessels of the brain and spinal marrow, as well as of their membranes; but even this is often so slight as to escape notice, unless attention be particularly directed to these organs. Effusion of blood is rarely found.

The Narcotico-irritant or Cerebro-spinal poisons may affect either the brain or the stomach and bowels, and commonly all these parts, according to their peculiar mode of action.

It is important to bear in mind that both irritants and neurotics may destroy life without leaving any appreciable changes in the body. To such cases as these, the remarks about to be made do not apply. The proofs of poisoning must, in such exceptional cases, be procured entirely from other sources. Any evidence derivable from the appearances in the body of a person poisoned, will be imperfect unless we are able to distinguish them from those analogous changes often met with as the results of ordinary disease. These are confined to the mucous membrane of the stomach and bowels. They are redness, ulceration, softening, and perforation. Each of these conditions may depend upon disease, as well as upon the action of irritant poisons.

Redness.—It is a main character of the irritants to produce, as a result of inflammation, redness of the mucous or lining membrane of the stomach and small intestines. This redness, when first seen, is usually of a deep crimson colour, becoming brighter by exposure to air. It may be diffused over the whole mucous membrane: at other times it is seen in patches, dots, or lines (strie), spread irregularly over the surface of the stomach. It is sometimes met with at the smaller, but more commonly at the larger, end of this organ; and, again, we occasionally find the folds or prominences only of the mucous membrane presenting this red or inflamed appearance. Redness of the mucous membrane may, however, be due to gastritis or gastro-enteritis as a result of disease; and in order to assign the
true cause of the inflammation, it will be necessary to have an account of the symptoms preceding death, or some chemical proof of the existence of irritant poison in the contents of the stomach or in the tissues of the body.

In the healthy state, the mucous membrane of the stomach is pale and white, or nearly so, except during digestion, when it is slightly reddened; and some observers have remarked that a slight redness has often remained in the stomachs of those who have died during the performance of the digestive process. When in contact with the spleen or liver, after death, the stomach is apt to acquire a deep livid colour from the transudation of blood; and it is well known that the bowels acquire a somewhat similar colour from the gravitation of blood which always takes place after death. None of these appearances are likely to be mistaken for the action of an irritant poison.

There is an important class of cases in which redness of the mucous membrane of the stomach is found after death, not dependent on the action of poison or on any easily assignable cause. These cases, owing to their being so little known, and involved in much obscurity, deserve the attention of a medical jurist, since the appearances closely resemble those produced by irritant poison. A person may die without suffering from any symptoms of disordered stomach; but on an inspection of the body, a general redness of the mucous membrane of this organ will be found, not distinguishable from the redness which is so commonly seen in arsenical poisoning. Several cases of this kind have occurred at Guy's Hospital; and drawings which have been made of the appearance presented by the stomach are preserved in the Museum collection.

The redness of the lining membrane of the stomach, in cases of poisoning, is so speedily altered by putrefaction, when circumstances are favourable to this process, as frequently to render it impossible for a witness to speak with any certainty upon its cause. Putrefactive infiltration from the blood contained in the adjacent viscera and muscles will give a reddish-coloured appearance to a stomach otherwise in a healthy condition. Great dispute has arisen respecting the length of time during which redness of the stomach produced by an irritant will be recognizable and easily distinguishable from putrefactive changes. It is sufficient to say that no certain rule can be laid down on the subject: it must be left to the knowledge and discretion of the witness. I have distinctly seen the well-marked appearances of inflammation produced by arsenic in the stomach and duodenum in an exhumed body twenty-eight days after interment (Reg. v. Jennings, Berks Lent Ass. 1845); and in another instance, referred to me by Mr. Lewis, the coroner for Essex, in August 1846, the reddened state of the mucous membrane, in a case of arsenical poisoning, was plainly perceptible on removing a layer of arsenic nineteen months after interment. (See, on this question, a case of suspected poisoning by Orfila, 'Annales d'Hyg.' 1839, vol. 1, p. 127.) If, however, there should be a reasonable
doubt respecting the cause of the redness, and no poison is detected, it would be unsafe to rely upon this appearance alone as evidence of poisoning. (See p. 46, acute.)

Ulceration.—In irritant poisoning the stomach is occasionally found ulcerated; but this is, comparatively speaking, a rare occurrence. In such cases the mucous membrane is removed in small, distinct, circular patches, under the edges of which the poison (arsenic) may be found. Ulceration of the stomach is a more common result of disease than of the action of poison. As a consequence of disease, it is very insidious, going on often for weeks together, without giving any indications of its existence, except, perhaps, slight gastric disturbance with occasional nausea, vomiting, and loss of appetite. In this case, the ulceration is commonly seen in small, circumscribed patches. It is worthy of remark, as a means of distinction, that ulceration has never been known to take place from arsenic or any irritant poison, until symptoms indicative of irritant poisoning have occurred. In ulceration from disease the mucous membrane is commonly reddened in the neighbourhood of the ulcer. In ulceration from poison the redness is generally diffused over other parts of the stomach, as well as over the duodenum and small intestines. A case, however, occurred in Guy's Hospital, some years ago, in which, with a small, circular patch of ulceration near the cardiac opening, the whole mucous membrane was red and injected; but this singular condition of the stomach, so closely resembling the effects of an irritant poison, was unaccompanied by any marked symptoms of irritation during life. The history of a case previous to death will thus commonly enable us to determine to what cause the ulceration found may be due. Care must be taken to distinguish ulceration from corrosion. Ulceration is a vital process: the substance of a part is removed by the absorbents as a simple result of inflammation. Corrosion, on the other hand, is a chemical action;—the parts are removed by the immediate contact of the poison: they are decomposed: their vitality is destroyed, and they combine with the corrosive matter itself. Ulceration requires time for its establishment, while corrosion is either an instantaneous or a very rapid effect.

Softening.—The coats of the stomach are not unfrequently found so soft as to yield and break down under very slight pressure; and this may be the result either of poisoning, of some spontaneous morbid change in its structure during life, or of the solvent action of the gastric juice after death. As this condition of the stomach, when caused by poison, is produced by those substances only which possess corrosive properties, it follows that, in such cases, traces of their action will be perceived in the mouth, throat, and gullet. In softening from disease, the change will be confined to the stomach alone, and it is commonly found only at the cardiac or greater end of the organ. When softening is really caused by an irritant poison, it is generally attended by other striking and unambiguous marks of its operation. Softening is not to be regarded as a common cha-
racteristic of poisoning: it is only an occasional appearance. I have
met with an instance in which the coats of the stomach were con-
siderably hardened by sulphuric acid. Softening can never be
inferred to have proceeded from poison, unless other well-marked
changes are present, or unless the poison is discovered in the softened
parts. The stomachs of infants have been frequently found softened
from natural causes: such cases could not be mistaken for poisoning,
since the history of them during life, the want of other appearances
indicative of poisoning, and the total absence of poison from the
viscera, would prevent such a suspicion from being entertained.

Perforation.—The stomach may become perforated, either as a
result of poisoning or disease.

Perforation from poisoning.—This may arise:—1, from corrosion;
2, from ulceration. The perforation by corrosion is by far the most
common variety of perforation from poisoning. It is occasionally
witnessed when the strong mineral acids have been taken, especially
sulphuric acid: the stomach, in such cases, is blackened, and ex-
tensively destroyed, the aperture is large, the edges are rough and
irregular, and the coats are easily lacerated. The acid escapes into
the abdomen, and may be readily detected there by chemical analysis.
The perforation from ulceration, caused by irritant poison (arsenic),
it but little known. There are but few instances on record. In a
great number of poisoned subjects examined during many years
past at Guy's Hospital, not a single case has occurred. It must,
then, be looked upon as a rare appearance in cases of irritant
poisoning.

Perforation from disease.—This is by no means an unusual con-
dition. Many cases of this disease will be found reported else-
where. ('Guy's Hosp Rep.' No. 8.) It is invariably fatal when
it proceeds so far that the contents of the stomach escape into the
abdomen; but sometimes the stomach becomes glued to the
pancreas or other organs during the ulcerative process, and then the
person may recover. Several instances of this kind of adhesion
have been met with in inspections. The symptoms from perfora-
tion commonly attack a person suddenly, while apparently enjoying
perfect health. Hence these cases may be easily mistaken for those
of irritant poisoning. The principal facts observed in regard to
this formidable disease are the following:—1. It often attacks young
women from eighteen to twenty-three years of age. 2. The pre-
ceding illness is extremely slight; sometimes there is merely loss of
appetite, or a capricious appetite with uneasiness after eating. 3.
The attack commences with a sudden and most severe pain in the
abdomen, generally soon after a meal. In irritant poisoning the
pain usually comes on gradually, and slowly increases in severity.
4. Vomiting, if it exists at all, is commonly slight, and is chiefly
confined to what is swallowed. There is no purging: the bowels
are generally constipated. In irritant poisoning the vomiting is
usually severe, and purging is seldom absent. 5. The person dies
commonly in from eighteen to thirty-six hours: this is also the
average period of death in the most common form of irritant poisoning, i.e. by arsenic; but in no case yet recorded has arsenic caused perforation of the stomach within twenty-four hours; and it appears probable that a considerable time must elapse before such an effect could be produced by this or any irritant. 6. In perforation from disease, the symptoms and death are clearly referable to peritonitis. 7. In the perforation from disease the aperture is commonly of an oval or rounded form, about half an inch in diameter, situated in or near the lesser curvature of the stomach, and the edges are smooth. The outer margin of the aperture is often blackened, and the aperture itself is funnel-shaped from within outwards; i.e. the mucous coat is the most removed, and the outer or peritoneal coat the least. The coats of the stomach, round the edge of the aperture, are usually thickened for some distance; and when cut they have almost a cartilaginous hardness. These characters of the aperture will not alone indicate whether it is the result of poisoning or disease; but the absence of poison from the stomach, with the want of other characteristic marks of irritant poisoning, would enable us to say that disease was the cause. Besides, the history of the case during life would materially assist us in our judgment. The great risk on these occasions is, that the effects of disease may be mistaken for those of poisoning; for we are not likely to mistake a perforation caused by irritant poison for the result of disease. Notwithstanding the well-marked differences above described, it is common to meet with cases of imputed poisoning where death has really occurred from peritonitis following perforation. I have been required to examine several cases of this kind: one of them will be found elsewhere recorded. (Guy's Hosp. Reports, Oct. 1850, page 226.) In another the body was exhumed after several months' burial, and the stomach was found perforated from disease in the usual situation.

Spontaneous or gelatinized perforation.—The stomach is occasionally subject to a spontaneous change, by which its coats are softened, and give way generally at the cardiac or greater end. As the effusion of the contents of the organ in such a case never gives rise to peritoneal inflammation, and no symptoms occur prior to death to indicate the existence of so extensive a destruction of parts, it is presumed to be a change in the dead body, and the coats of the stomach are supposed to undergo a process of solution or digestion. It is commonly attributed to the solvent action of the gastric juice, the spleen, diaphragm, and other viscera being sometimes softened. My colleague, Dr. Wilks, who has for many years conducted the inspections at Guy's Hospital, informs me that this post-mortem or cadaveric perforation of the stomach is so rare a condition that it is not met with once in five hundred cases. In the last two cases in which it was observed, one patient had died from albuminuria and the other from head-affection; but in neither of these could there be found any peculiarities regarding their food, the time of the last meal, or the state of the bodies to account for the spon-
taneous destruction of the coats of the stomach. (For remarks on this subject by Dr. Budd, see 'Med. Gaz.' vol. 39, p. 896.) In January 1845 I met with an instance of this perforation in a child between two and three years of age. It was seized with convulsions, became insensible, and died twenty-three hours afterwards. After death, the greater end of the stomach was found destroyed to the extent of three inches; and the edges were softened and blackened. There was no food in the stomach, and nothing had passed into this organ for thirty-two hours before death! It was therefore impossible to ascribe death to the perforation, or the perforation to poison. (For a full account of this case, see 'Med. Gaz.' vol. 36, p. 32.) An inspection of the body, with a general history of the case, will commonly suffice to remove any doubt in forming an opinion whether the extensive destruction, so commonly met with, has or has not arisen from poison. Thus, in a cadaveric perforation, the aperture is generally situated in that part of the stomach which lies to the left of the cardia; it is very large, of an irregular form, and ragged and pulpy at the edges, which have the appearance of being scraped. The mucous membrane of the stomach is not found inflamed. There is occasionally slight redness, with dark brown or almost black lines (striae) in and near the dissolved coats, which have an acid reaction. It can only be confounded with perforation by the action of corrosives; but the well-marked symptoms during life, and the detection of the poison after death, together with the changes in the throat and gullet, will at once indicate the perforation produced by corrosive poison.

IRRITANT POISONS.

CHAPTER 7.

SULPHURIC ACID, OR OIL OF VITRIOL.—NITRIC ACID, OR AQUA FORTIS.—HYDROCHLORIC ACID.—SYMPTOMS.—APPEARANCES AND ANALYSIS.

Sulphuric Acid, or Oil of Vitriol.

Symptoms.—When this poison is swallowed in a concentrated form, the symptoms produced came on either immediately, or during the act of swallowing. There is violent burning pain, extending through the throat and gullet to the stomach, and the pain is often so severe that the body is bent. There is an escape of gaseous and frothy matter, followed by retching and vomiting, the latter accompanied by the discharge of shreds of tough mucus and of a liquid of a dark coffee-ground colour, mixed with blood. The mouth is excoriated, the lining membrane and surface of the tongue white, or resembling soaked parchment; in one instance the appearance
of the mouth was as if it had been smeared with white paint. After a time the membrane acquires a grey or brownish colour: the mouth is filled with a thick, viscid substance consisting of saliva, mucus, and the corroded membrane; this renders speaking and swallowing difficult. If the poison has been administered by a spoon, or the phial containing it has been passed to the back of the throat, the mouth may escape the chemical action of the acid. A medical witness must bear this circumstance in mind when he is called to examine an infant suspected to have been poisoned by sulphuric acid. Around the lips and on the neck may be found spots of a brown colour from the spilling of the acid and its action on the skin. There is great difficulty of breathing, owing to the swelling and exorption of the throat and larynx, and the countenance has from this cause a bluish or livid appearance; the least motion of the abdominal muscles is attended with increase of pain. The stomach is so irritable that whatever is swallowed is immediately ejected, and the vomiting is commonly violent and incessant. The matters first vomited generally contain the poison: they are acid, and if they fall on a limestone pavement, there is effervescence; if on coloured articles of dress, the colour is sometimes altered to a red or yellow, or it is entirely discharged and the texture of the stuff destroyed; on a black cloth dress, the spots produced by the concentrated acid are reddish brown, and remain moist for a considerable time. After a time there is exhaustion, accompanied by great weakness; the pulse becomes quick, small, and feeble; the skin cold, mottled, and covered with a clammy sweat. There is generally great thirst, with obstinate constipation of the bowels; should any evacuations take place, they are commonly either of a dark brown or leaden colour, in some instances almost black arising from an admixture of altered blood. There are sometimes convulsive motions of the muscles, especially those of the face and lips. The countenance, if not livid from obstructed respiration, is pale, expressive of great anxiety and intense suffering. The intellectual faculties are quite clear, and death usually takes place very suddenly, in from eighteen to twenty-four hours after the poison has been taken. Sulphate of indigo produces similar symptoms. The vomited matters are, however, bluish black.

Appearances after death.—The appearances met with in the body of a person who has died from the effects of this acid vary, according to whether death has taken place rapidly or slowly. Supposing the case to have proved rapidly fatal, the membrane lining the mouth may be found white, softened, and corroded. The mucous membrane of the throat and gullet is commonly found corroded, having a brown-black or ash-grey colour, and blood is effused in patches beneath it. The corroded membrane of the gullet is occasionally disposed in longitudinal folds, portions of it being partly detached. The stomach, if not perforated, is collapsed and contracted. On laying it open, the contents are commonly found of a dark brown or black colour and of a tarry consistency, being formed
in great part of mucus and altered blood. The contents may or may not be acid, according to the time the patient has survived, and the treatment which has been adopted. On removing them, the stomach may be seen traversed by black lines, or the whole of the mucus membrane may be stained black or of a dark brown colour. On forcibly stretching the coats, the red colour indicative of inflammation may be sometimes seen in the parts beneath, or surrounding the blackened portions. (See Ann De Ley's, 1873, 1, p. 231.)

When the stomach is perforated, the coats are softened, and the edge of the aperture is commonly black and irregular. In removing the stomach, the opening is liable to be made larger by the mere weight of the organ. The contents do not always escape; but, when this happens, the surrounding parts are attacked by the poison. In a case which occurred at Guy's Hospital, the spleen, the liver, and the coats of the sorta were found blackened and corroded by the acid, which had escaped through the perforation. In some rare cases the lining membrane of the sorta has been found strongly reddened. When a person has survived for eighteen or twenty hours, traces of corrosive and inflammatory action may be found in the small intestines. In one case the mucus membrane of the ileum was corroded. The interior of the windpipe, as well as of the bronchial tubes, has also presented marks of the local action of the acid. The acid has thus destroyed life without reaching the stomach. A remarkable instance in which the poison penetrated into and destroyed both lungs has been reported by Sir William Gull. (See 'Med. Gaz.' vol. 45, p. 1102.) It is important for a medical witness to bear in mind that the mouth, throat, and gullet are not always found in the state above described. Dr. Ogle met with a case in which the membrane of the tongue was but slightly affected. ('Med. Times and Gaz.' April 21, 1860.)

Fatal dose.—The dangerous effects of sulphuric acid appear to arise rather from its degree of concentration, than from the absolute quantity taken. The quantity actually required to prove fatal must depend on many circumstances. If the stomach is full when the poison is swallowed, the action of the acid may be spent on the food and not on the stomach; and a larger quantity might then be taken than would suffice to destroy life if the organ were empty. The smallest quantity which is described as having proved fatal was in the following case:—Half a teaspoonful of concentrated sulphuric acid was given to a child about a year old by mistake for castor oil. The usual symptoms came on, with great disturbance of breathing; and the child died in twenty-four hours. The quantity here taken could not have exceeded forty drops. ('Med. Gaz.' vol. 29, p. 147.) It is, however, doubtful whether this small quantity would have proved fatal to an adult. The smallest fatal dose which Sir R. Christison states he has found recorded, is one drachm; it was taken in mistake by a young man, and killed him in seven days. (Op. cit. 162.) Even when diluted, the acid will destroy life rapidly. A
man swallowed, on an empty stomach, six drachms of the strongest acid diluted with eighteen drachms of water. He suffered from the usual symptoms, and died in two hours and a half. ('Med. Times and Gaz.' 1863, vol. 1, p. 183.)

The average period at which death takes place in cases of acute poisoning by sulphuric acid, is from eighteen to twenty-four hours. The shortest case recorded occurred to M. Rapp. A man, aged 50, swallowed three ounces and a half of concentrated sulphuric acid; he died in three-quarters of an hour. ('Gazette Medicale,' Dec. 28, 1850.) On the other hand, there are numerous instances reported in which the poison has proved fatal from secondary causes, at periods varying from one week to several months.

Chemical analysis.—If the acid is in a pure state and concentrated, it possesses these properties:—1. Wood, sugar, or other organic matter plunged into it, is speedily carbonized or charred, either with or without the application of heat. 2. When boiled with wood, copper-cuttings, or mercury, it evolves fumes of sulphurous acid; this is immediately known by the odour, as well as by the acid vapour first rendering blue, and then bleaching, starch-paper dipped in a solution of iodic acid. 3. When mixed with an equal bulk of water, great heat is evolved—nearly 200°F., in a cold vessel.

Sulphuric acid when diluted does not carbonize organic substances. One test only is required for its detection, namely, a solution of a salt of baryta—either the nitrate of baryta, or the chloride of baryum. Having ascertained by test-paper that the suspected liquid is acid, we add to a portion of it a few drops of nitric acid, and then a solution of nitrate of baryta. If sulphuric acid is present, a dense white precipitate of sulphate of baryta will fall down: this is insoluble in all acids and alkalies. If the precipitate is collected, dried, and heated to full redness for some minutes, in a small platinum crucible, or in a folded piece of platinum foil, with five or six parts of charcoal powder, it will, if a sulphate, be converted into sulphide of barium. To prove this, we add to the calcined residue hydrochloric acid, at the same time suspending over it a slip of filtering paper moistened with a solution of acetate of lead. If the precipitate obtained is a sulphate, the gas evolved will be sulphur-rettled hydrogen, known by its odour, and by its turning a salt of lead of a brown colour.

The cyanide of potassium may be used as a reducing agent in place of charcoal, in a proportion of one part to three parts of the sulphate of baryta. The mixture should be strongly heated to fusion in a reduction-tube in the flame of a spirit-lamp. On breaking the glass when cold, and laying the incinerated residue on paper or card wetted with a salt of lead, a brown stain indicative of sulphide of lead is produced, or the residue may be dissolved in water, and a solution of acetate of lead added to it.

In liquids containing organic matter.—If sulphuric acid is mixed with such liquids as porter, coffee, or tea, the process for its detection is substantially the same, the liquid being first rendered
DIALYSIS OF ACIDS.

clear by filtration. The precipitated sulphate of baryta, if mixed with organic matter, may be purified by boiling it in strong nitric acid; but this is not commonly necessary, as the reduction of the dried precipitate may be equally well performed with the impure, as with the pure sulphate. Some liquids, such as vinegar, porter, and most wines, generally contain sulphuric acid or a sulphate, but the acid is in small proportion; therefore, if there is an abundant precipitate, there can be no doubt, ceteris paribus, that free sulphuric acid has been added to them. Should the liquid be thick and viscid, like gruel, it may be diluted with water, and then boiled with the addition of a little acetic acid. The coats of the stomach should be cut up and boiled in distilled water. For the action of the barytic test, it is not necessary that the liquid should be absolutely clear, provided it is not so thick as to interfere mechanically with the precipitation of the sulphate of baryta.

Dialysis.—When the acid is mixed with milk, decomposed blood, and mucus, or other substances, rendering it thick and viscid, it may be readily separated by dialysis; a process which is applicable to the other acid poisons, such as the nitric, hydrochloric and oxalic. A portion of the acid viscid liquid should be placed in a test tube, about five inches long and one inch in diameter, open at both ends, the neck being securely covered with a layer of thin bladder. The tube is then immersed, mouth downwards, in a beaker containing distilled water (Fig. 1). After some hours the acid will pass through the membrane, and may be detected in the water. This process may be employed as a trial test of the contents of the stomach when they have a strong acid reaction. In thus testing for sulphuric acid it must be remembered that a sulphate, like Epsom salts, may be present in the liquid, and an innocent acid, like vinegar or lemon-juice, may give the acid reaction. To remove any fallacy on this ground, a portion of the liquid tested should be evaporated, and the residue incinerated, when the alkaline sulphate, if present, will be obtained in the form of a dry solid.

It is a medico-legal fact of considerable importance, that the contents of a stomach in a case of poisoning by sulphuric acid are sometimes entirely free from any traces of this poison, even when it has been swallowed in large quantity. The acid is not commonly found when the person has been under treatment, when there has been considerable vomiting, aided by the drinking of water or other simple liquids, or when he has survived several days.

Sulphuric acid may be detected on articles of clothing by a similar process. The concentrated acid produces brown stains on black cloth—the spots remain damp, and the fibre of the stuff is gradually softened and corroded. The stained portion of cloth should be
boiled in water, and the solution filtered and tested with a salt of barium. If any free acid is present, the stained stuff and the solution obtained from it will redden litmus paper. Sometimes the detection of the acid on clothing, is the only source of chemical evidence in cases of poisoning. It has been thrown on the person for the purpose of producing bodily injury or injury to the clothes. In such cases it must be proved that the substance is of a corrosive nature, but it is not necessary to show that injury has been done to the person.

Nitric Acid, or Aqua Fortis.

Symptoms.—When nitric acid is taken in a concentrated state, the symptoms bear a close resemblance to those produced by sulphuric acid. They come on immediately, and the swallowing of the acid is accompanied by intense burning pain in the throat and gullet extending downwards to the stomach: there are gaseous eructations, resulting from the chemical action of the poison, swelling of the abdomen, violent vomiting of liquid or solid matters, mixed with altered blood of a dark brown colour, and shreds of yellowish-coloured mucus, having a strong acid reaction. The abdomen is generally exquisitely tender; but in one well-marked case of poisoning by this acid, the pain was chiefly confined to the throat: probably the poison had not reached the stomach. The mucous membrane of the mouth is commonly soft and white, after a time becoming yellow, or even brown; the teeth are also white, and the enamel is partially destroyed by the chemical action of the acid. There is great difficulty of speaking and swallowing, the mouth being filled with viscid mucus: the power of swallowing is, indeed, sometimes entirely lost. On opening the mouth, the tongue may be found swollen, and of a citron colour; the tonsils are also swollen and enlarged; the teeth are yellow and corroded. As the symptoms progress, the pulse becomes small, frequent, and irregular—the surface of the body extremely cold, and there are frequent rigors (shivering). The swallowing of liquids increases the severity of the pain and occasions vomiting. There is obstinate constipation. Death takes place in from eighteen to twenty-four hours, and is sometimes preceded by a kind of stupor, from which the patient is easily roused. The intellectual faculties commonly remain clear until the last.

The vapour of this acid is destructive to life. In March 1854, *Mr. Haywood*, a chemist of Sheffield, lost his life under the following circumstances:—He was pouring a mixture of nitric and sulphuric acids from a carboy containing about sixty pounds, when by some accident the vessel was broken. For a few minutes he inhaled the fumes of the mixed acids, but it does not appear that any of the liquid fell over him. Three hours after the accident he was sitting up and appeared to be in moderately good health. He was then seen by a medical man, and complained merely of some cuts about his hands. He coughed violently. In three hours more
NITRIC ACID. SYMPTOMS AND APPEARANCES.

was difficulty of breathing, with increase of the cough. There sense of tightness at the lower part of the throat, and the was hard. At times he said he could scarcely breathe. He leven hours after the accident. On inspection, there was tion of the windpipe and bronchial tubes, with effusion of in the latter. The heart was flaccid, and contained but little and the lining membrane of the heart and aorta was in-

The blood gave a slightly acid reaction with test-paper. indpipe was not examined. It is very probable the seat of ef was in this organ, and that the deceased died from inflam-

A similar effusion and swelling of the parts about the opening of indpipe. (‘Lancet,’ April 15, 1864, p. 430.) A similar it occurred to Mr. Stewart and one of the janitors of an ional institution in Edinburgh in March 1863. They both omm the effects of the acid vapour.

earances after death.—Supposing death to have taken place from the liquid acid, the following appearances may be met The skin of the mouth and lips will present various shades sur, from an orange-yellow to a brown. Yellow spots pro-

The membrane lining the mouth is sometimes white, at st of a citron colour; the teeth are white, but present some-

The throat and windpipe are much ed. The lining membrane of the gullet is softened, and of an or brown colour, easily detached, often in long shreds. The pipe is more congested than usual, and the lungs are also con-

The most strongly marked changes are, however, seen in the sh. When not perforated, this organ may be found distended as, its mucous membrane partially inflamed and covered with a of a yellow, brown, or green colour, or it may be even its coats may be so much softened as to break down under ghtest pressure. In the duodenum similar changes are found; some cases the small intestines have presented no other ance than that of a slight redness. It might be supposed that cach would be in general perforated by this corrosive liquid; eration has not been often observed. In a case which l fatal after the long period of six months, there was, at the nal end of the stomach, a distinct cicatrix with puckering ardening of the surrounding mucous membrane, causing a contraction of the intestinal orifice. The only other appear-

The smallest quantity of this acid which I find reported to have rred life, is about two drachms. It was in the case of a boy, thirteen: he died in thirty-six hours. Death commonly takes within twenty-four hours. Sobernheim relates a case of ing by nitric acid, which proved fatal in one hour and threes- (Op. cit. 402). This I believe to be the most rapidly fatal
instance on record, where the acid acted as a poison. The usual well-marked effects were found in the gullet, stomach, and small intestines. In infants, life may be destroyed by this poison in a few minutes, should it happen to affect the larynx. The longest case is, perhaps, that recorded by Tartra, where a woman died from exhaustion, produced by the secondary effects of the acid eight months after having swallowed it.

Chemical analysis.—In the simple state.—This acid may be met with either concentrated or diluted. The concentrated acid varies in colour from a deep orange red to a light straw yellow. It may be recognized, 1. By evolving acid fumes when exposed to the air or when heated. 2. By its staining organic matter yellow or brown, the colour being heightened and turned to a reddish tint by contact with caustic alkalies. 3. When mixed with a few copper cuttings, it is rapidly decomposed, a deep red acid vapour is given off, and a greenish coloured solution of nitrate of copper is formed. Tin or mercury may be substituted for copper in this experiment. 4. The addition of gold-leaf and a few drops of hydrochloric acid: if nitric acid is present, the gold will be dissolved on warming the mixture. Common aqua fortis (nitric acid) sometimes contains, as impurity, a sufficiency of hydrochloric acid to dissolve gold-leaf by heat. In the diluted state. This acid is not precipitated like the sulphuric, by any common reagent, since all its alkaline combinations are soluble in water. 1. The liquid has a highly acid reaction, and (if not too diluted) on boiling it with some copper turnings, red fumes of nitrous acid vapour are given off, the liquid acquiring a blue colour at the same time. 2. A streak made on white paper with the diluted acid does not carbonize it when heated; but a scarcely visible yellow stain is left. 3. The liquid is neither precipitated by nitrate of baryta nor by nitrate of silver. These two last experiments give merely negative results: they serve to show that the sulphuric and hydrochloric acids are absent.

In order to detect nitric acid when mixed with water or other liquids, the liquid should be carefully neutralized with potash, and then evaporated slowly to obtain crystals. If the liquid contains nitric acid, these crystals will possess the following characters: 1. They appear in the form of lengthened fluted prisms, which neither effloresce nor deliquesce on exposure. One drop of the solution, evaporated spontaneously on glass, will suffice to yield distinct and well-formed prismatic crystals. This character distinguishes the nitrate of potash from a large number of salts. 2. When moistened with strong sulphuric acid, the powdered crystals slowly evolve a colourless acid vapour. By this test, the nitrate is known from every other degradating salt. 3. A portion of the powdered crystals should be placed in a small tube and mixed with their bulk of fine copper filings. The mass is then to be moistened with water, and a few drops of strong sulphuric acid added. Either with or without the application of a gentle heat, a decomposition immediately ensues, by which red fumes of nitrous acid are evolved.
recognizable by their colour, odour, and acid reaction. In operating on a small quantity of nitrate free from chloride, the crystals may be placed in a flask and mixed with one or two drops of concentrated sulphuric acid and a few copper filings. Place in the neck of the flask a slip of blue litmus-paper wetted, and a slip of starch-paper moistened with a solution of iodide of potassium. After a longer or shorter interval the litmus will be reddened, and the starch-paper will assume a blue-black colour. If the nitrate should be mixed with much chloride, then the power of dissolving leaf-gold on boiling the dry salt with strong hydrochloric acid, furnishes the best means of detection. 4. We add to the crystals a small portion of leaf-gold and hydrochloric acid; then boil for a few minutes. The gold will either partly or entirely disappear if nitric acid or a nitrate is present. Its partial solution will be indicated by a dark purple or brown colour on the addition of chloride of tin to the liquid after boiling.

In liquids containing organic matter. Nitric acid may be administered in such liquids as tea, vinegar, or porter. In this case, besides the acid reaction, there will be a peculiar smell produced by the strong acid, when mixed with substances of an organic nature. The application of the usual tests may be here counteracted: thus, unless the quantity of nitric acid in the liquid is considerable, the orange-red fumes of nitrous acid are not evolved on boiling it with copper cuttings.

The action on leaf-gold will enable a chemist to detect nitric acid in coffee, tea, and similar organic liquids, even when the proportion of acid is small. Boil a fragment of leaf-gold in pure hydrochloric acid, and add while boiling a few drops of the suspected organic liquid to the mixture. If the acid is present, the gold will be dissolved. When the acid liquid is thick and turbid, a portion of it should be placed in a tube and submitted to the process of dialysis (see p. 79). Vomited matters, as well as the contents and coats of the stomach (cut up), should be boiled in water, and filtered. If not cleared by filtration, they may be submitted to dialysis, and the acid water obtained carefully, neutralized with potash and concentrated. If by filtration we succeed in procuring a clear acid liquid, the colour is of no importance. A few drops of the neutralized and concentrated liquid may be evaporated on a glass-slide, and the crystals thus obtained microscopically examined and compared with those of nitre. Paper dipped into the concentrated liquid and dried, burns with deflagration like touch-paper. The crystals obtained by evaporating the neutralized liquid are generally coloured with organic matter, but they fuse into a white mass when heated in a platinum capsule. The pure nitre thus obtained may be tested as above described. The organic matter in the crystals does not in any way interfere with the results of the copper and gold tests.

When either the nitric acid, or the nitrate into which it has been converted, is mixed with common salt, the copper test cannot be
employed. The gold test will in such a case furnish the best evidence. Hydrochloric acid with a small portion of leaf-gold may be added to the dried residue, and the mixture boiled. If nitric acid or a nitrate is present, even in minute proportion, some portion of the gold will be dissolved, a fact demonstrable by the addition of chloride of tin.

Nitric acid may be detected in stains on clothing, if recent, by simply boiling the stained cloth in water. An acid liquid will be obtained, unless the stains are of old date or the stuff has been washed. This liquid, when concentrated, may be dealt with in the manner already described. The stains from this acid on black and blue cloth are of a yellow or brownish-yellow colour. When long exposed they become dry, but the cloth is easily torn. A simple method of detecting the acid is to boil at once a piece of the stained cloth with a fragment of leaf-gold and hydrochloric acid. If nitric acid is present in the stain, a portion of the gold will be dissolved.

Hydrochloric Acid. Muriatic Acid.

This acid, which is also called Muriatic acid, and is popularly known under the name of Spirit of salt, is but seldom taken as a poison. In four years, 1863-7, it was the cause of eight deaths. In the few cases which have been hitherto observed, the symptoms and appearances have been similar to those caused by nitric acid. The following case of poisoning by this acid occurred in King's College Hospital, in May 1859. A woman, aged 63, swallowed half an ounce of concentrated hydrochloric acid. She was received into the hospital in three-quarters of an hour. The prominent symptoms were burning pain in the throat and stomach, feeble pulse, cold and clammy skin, retching and vomiting of a brown matter streaked with blood and containing shreds of membrane. There was great exhaustion. The throat became swollen, the patient lost the power of swallowing, and died in eighteen hours. She retained her senses until the last. The appearances in the body were as follows: the mucous membrane of the mouth and throat was white, softened, and destroyed in many places by the corrosive action of the acid. The membrane of the gullet was red and inflamed. The back part of the stomach near the pylorus was dark-coloured, stripped of its mucous membrane (which was generally softened), and marked with black lines. It was not perforated. ('Lancet,' July 16, 1859, p. 59.) In this case the smallest quantity of hydrochloric acid was taken which has as yet been known to prove fatal.

Chemical analysis.—In a concentrated state, hydrochloric acid evolves copious fumes. The pure acid is nearly colourless; the commercial acid is of a lemon-yellow colour, and frequently contains iron, arsenic, common salt, and other impurities. When boiled with a small quantity of peroxide of manganese, chlorine is evolved. It does not dissolve leaf-gold until a few drops of nitric acid have been added to it, and the mixture is heated. In the diluted state, these properties are lost. It may then be recognized by the dense
white precipitate which it gives when a solution of nitrate of silver is added to it. This precipitate is insoluble in nitric acid, but soluble in ammonia; it becomes purple and even black when exposed to light, and when heated it melts without decomposition, forming a yellowish-coloured substance on cooling. If the acid is contained in organic liquids in moderate quantity, it admits of separation by distillation to dryness. In this case any chlorides present are left in the retort. It may also be procured in a pure state for testing by dialysis. See page 79.

Hydrochloric acid, in small quantity, as well as alkaline chlorides, are natural constituents of the fluids of the stomach and bowels. The presence of local chemical changes in the throat and stomach, would show whether the acid had been taken as a poison. If the acid is found only in minute quantity, no inference of poisoning can be drawn, unless there are distinct marks of its chemical action upon the throat and stomach. It darkens the blood like sulphuric acid, although it has not the same degree of carbonizing action on organic matter. The stains produced by this acid on black cloth are generally of a slight reddish colour. As the acid is volatile, it may disappear from the stuff. If recent, the acid may be separated by boiling the stuff in water and applying the silver test, or by boiling a portion of the stained cloth with leaf-gold and nitric acid. An unstained portion of cloth should be similarly tested for the sake of comparison.

CHAPTER 8.

POISONING BY OXALIC ACID.—SYMPTOMS AND APPEARANCES.—CHEMICAL ANALYSIS.—DIALYSIS OF ORGANIC LIQUIDS.—ACID OXALATE OF POTASH OR SALT OF BORREL.—TARTARIC AND ACETIC ACIDS.

OXALIC ACID.

Symptoms.—If this poison is taken in a large dose, i.e. from half an ounce to an ounce of the crystals dissolved in water, a hot burning acid taste is experienced during the act of swallowing it. This is accompanied by a similar sensation extending through the gut into the stomach. There is sometimes a sense of constriction or suffocation: the countenance is livid and the surface of the skin soon becomes cold and clammy. Vomiting occurs either immediately or within a few minutes. Should the poison be diluted, there is merely a sensation of strong acidity, and vomiting may not occur until after a quarter of an hour or twenty minutes. In some cases there has been little or no vomiting: while in others, this symptom has been incessant until death. In one case, in which an ounce of the acid was swallowed, the vomiting with pain in the stomach continued until the fifth day, when the man died suddenly ('Lancet,' November 24, 1860, p. 509), but in another, in which the poison was much diluted, vomiting did not occur for seven hours. ('Chris- tison,' 221.) The vomited matters are highly acid, and have a greenish-brown or almost black colour; they consist chiefly of mucus
and altered blood. The patient complains of great pain and tenderness in the abdomen, with a burning sensation in the stomach. There are cold clammy perspirations and convulsions. There is in general an entire prostration of strength, so that if the person is in the erect position, he falls; there is likewise unconsciousness of surrounding objects, and a kind of stupor, from which, however, the patient may be without difficulty roused. Owing to the severity of the pain, the legs are sometimes drawn up towards the abdomen, or the patient rolls about on the floor or bed. The pulse is small, irregular, and scarcely perceptible; the skin cold and clammy; and there is a sensation of numbness in the limbs with spasmodic breathing. The inspirations are deep, and a long interval elapses between them. Should the patient survive the first effects of the poison, the following symptoms may appear: soreness of the mouth, constriction and burning pain in the throat with pain in swallowing, tenderness in the abdomen, and irritability of the stomach, so that there is frequent vomiting, accompanied by purging. The tongue is swollen, and there is great thirst. The following case is exceptional, from the fact that the symptoms throughout were chiefly referable to the brain. A man took what was supposed to be a black draught, but it contained oxalic acid instead of Epsom salts. Two hours afterwards he was found in a state of complete coma, but the symptoms set in in a quarter of an hour after he had taken the draught. The man died in five hours, without recovering his consciousness. The only marked appearance on inspection was intense congestion of the brain. (Lancet, 1872, vol. 2, p. 41.)

Appearances after death.—The mucous membrane of the tongue, mouth, throat, and gullet, is softened and commonly white, as if bleached, but it is sometimes coated with a portion of the brown mucous matter discharged from the stomach. This latter organ contains a dark brown mucous liquid, often acid, and having almost a gelatinous consistency. On removing the contents, the mucous membrane will be seen pale and softened, without always presenting marks of inflammation or abrasion, if death has taken place rapidly. The membrane is white, soft, and brittle, easily raised by the scalpel, and presents the appearance which we might suppose it would assume after having been for some time boiled in water. The small vessels are seen ramifying over the surface, filled with dark-coloured blood, apparently solidified within them. The lining membrane of the gullet presents the same characters. It is pale, and appears as if it had been boiled in water, or digested in alcohol; it has been found strongly raised in longitudinal folds, interrupted by patches where the membrane has become abraded. In a case which was fatal in eight hours, the tongue was covered with white specks; the gullet was not inflamed, but the stomach was extensively destroyed, and had a gangrenous appearance. Portions of the mucous membrane were detached, exposing the muscular coat. With respect to the intestines, the upper portion may be found inflamed: but, unless the case is protracted, the appearances in the bowels are not strongly marked.
FATAL DOSE. CHEMICAL ANALYSIS.

In a well-marked instance of poisoning by this acid, however, which is recorded by Dr. Hildebrand, the mucous or lining membrane of the stomach and duodenum was much reddened, although the patient, a girl of eighteen, died in three-quarters of an hour after taking one ounce of the acid, by mistake for Epsom salts. (Casper's 'Vierteljahresschrift,' 1853, 3 B. 2 H. page 266.) In a case of poisoning in which two ounces of the acid had been taken, and death was rapid, the coats of the stomach presented almost the blackened appearance produced by sulphuric acid, owing to the colour of the altered blood spread over them. In protracted cases, the gullet, stomach, and intestines have been found more or less congested or inflamed. In a case in which an ounce was swallowed, and death occurred on the fifth day, the stomach was slightly congested, and contained a bloody fluid, but the mucous membrane was entire. ('Lancet,' Nov. 24, 1856, p. 509.)

It is worthy of observation that the flairy contents of the stomach do not always indicate strong acidity until after they have been boiled in water. Oxalic acid does not appear to have a strongly corrosive action on the stomach, like that possessed by the mineral acids. It is therefore rare to hear of the coats of the organ being perforated by it. The acid, when in a concentrated state, renders the mucous coat soft and brittle, and perforation of the coats may occur either during life or after death as a result of its chemical action. Dr. Wood has recorded the case of a woman, set. 27, found dead, whose death had been obviously caused by oxalic acid, but the quantity taken, and the duration of the case, were unknown. The stomach presented, at its upper and fore part near the cardiac opening, an irregular aperture of a size to admit the point of the finger.

The smallest quantity of this poison which has been known to destroy life is one drachm (sixty grains). The boy, set. 16, took the poison in a solid form, and was found in about an hour insensible, pulseless, and his jaws spasmodically closed. He had vomited some bloody matter: his tongue and lips were unusually pale, but there was no excoriation. He died in eight hours. ('Lancet,' Dec. 1, 1855.) Two cases occurred at Guy's Hospital, in each of which half an ounce of oxalic acid had been swallowed. Active treatment was adopted, and both patients recovered. When the dose of oxalic acid is half an ounce and upwards, death commonly takes place within an hour; but there are numerous exceptions to this rapidity of action. Sir R. Christison mentions an instance in which an ounce of oxalic acid killed a girl in thirty minutes; and another in which the same quantity destroyed life in ten minutes; but in a third case death did not occur until the fifth day. The late Dr. Ogilvy, of Coventry, has reported a case of poisoning by oxalic acid, in which it is probable that death took place within three minutes after the poison had been swallowed. The quantity of the acid taken could not be determined.

Chemical analysis. In the simple state.—This acid may be met
with, either as a solid, or in solution in water. *Solid oxalic acid:* It crystallises in long slender prisms, which, when perfect, are foursided. (Fig. 2.) In this respect it differs from other common acids, mineral and vegetable. The crystals are unchangeable in air; they are soluble in water and alcohol, forming strongly acid solutions. When heated on platinum foil they melt, and are entirely dissipated in vapour without combustion and without being carbonized. Heated in a close tube, they melt, and the vapour is condensed as a white crystalline sublimate in a cold part of the tube. There should be no residue whatever if the acid is pure; but the commercial acid generally leaves a slight residue of fixed impurity. By this effect of heat, oxalic acid is easily distinguished from those crystalline salts for which it has been sometimes fatally mistaken, namely, the sulphates of magnesia and zinc. These leave white residues in the form of anhydrous salts. A teaspoonful of oxalic acid in small crystals weighs seventy-six grains, and half an ounce of the crystals is equivalent to three teaspoonfuls.

Tests.—1. *Nitrate of silver.*—When added to a solution of oxalic acid, it produces an abundant white precipitate of oxalate of silver. A solution containing so small a quantity of oxalic acid as not to redder litmus-paper, is affected by this test; but when the quantity of poison is small, it would be always advisable to concentrate the liquid by evaporation before applying it. The oxalate of silver is identified by the following properties: It is completely dissolved by cold nitric acid. If collected on a filter, thoroughly dried, and heated on thin platinum foil, it is entirely dissipated in a white vapour with a slight detonation. When the oxalate is in small quantity, this detonation may be observed in detached particles on burning the filter previously well dried. 2. *Sulphate of lime.* A solution of oxalic acid is precipitated white by lime water and all the salts of lime. Lime water is itself objectionable as a test, because it is precipitated white by several other acids. The salt of lime, which, as a test, is open to the least objection, is the sulphate. As this is not a very soluble salt, its solution must be added in rather large quantity to the suspected acid poisonous liquid previously concentrated. A white precipitate of oxalate of lime is slowly formed. This precipitate should possess the following properties:—1. It ought to be immediately dissolved by nitric or hydrochloric acid. 2. It ought not to be dissolved by the tartaric, acetic, or any vegetable acid.

In organic liquids.—The process is the same, whether it is applied
DETECTION IN ORGANIC LIQUIDS.

99

to liquids in which the poison is administered, or to the matters vomited, or, lastly, to the contents of the stomach. Should the liquid be very acid, we must filter it to separate any insoluble matters; should it not be very acid, the whole may be boiled, if necessary, with distilled water filtered, and concentrated by evaporation. To the filtered liquid, acidulated with acetic acid, acetate of lead should be added until there is no further precipitation; and the white precipitate formed, collected and washed. If any oxalic acid was present in the liquid, it would exist in this precipitate under the form of oxalate of lead. Diffuse the precipitate in water, and pass into the liquid, for about half an hour, a current of sulphuretted hydrogen gas, taking care that the gas comes in contact with every portion of the precipitate. Black sulphide of lead will be thrown down: and with it commonly the greater part of the organic matter mixed with the oxalate of lead. Filter, to separate the sulphide of lead; the filtered liquid may be clear and highly acid. Concentrate by evaporation; the sulphuretted hydrogen dissolved in the liquid is thereby expelled, and oxalic acid may be ultimately obtained crystallized by slow evaporation in a dial or watch-glass, or on a glass-slide for microscopical observation. If there was no oxalic acid in the precipitate, no crystals will be procured by evaporation. If crystals are obtained, they must be dissolved in water, and tested in the manner above directed. As oxalic acid is very soluble in alcohol, this liquid may be occasionally employed for separating it from the contents of the stomach and from many organic compounds. Crystals may be obtained from the alcoholic solution, and these may be purified and tested by the methods already described. Owing to the effect of early vomiting and treatment, it is not usual to find much oxalic acid in the contents of the stomach. From milk, gruel, coffee, blood, mucus, and other viscid liquids oxalic acid is readily separated by the process of dialysis, as described under sulphuric acid (see page 79). The liquid should be first boiled—the coats of the stomach (cut up) being included, if necessary. The distilled water placed on the outside of the tube will receive the acid. This may be concentrated by evaporation. Prismatic crystals may thus be procured, and the silver and lime tests may be applied.

The presence of oxalic acid in an organic liquid may be detected by another dialytic method. Place a portion of the liquid containing

Fig. 3.

Crystals of Oxalate of Lime obtained by dialysis of Coffee containing Oxalic Acid, magnified 350 diameters.
the poison in a beaker, and insert in this a tube secured with skin, containing a solution of sulphate of lime. By dialysis or osmosis the oxalic acid will penetrate the membrane, and will form inside the mouth of the latter, a deposit of crystals of oxalate of lime, known by their octahedral form. (Fig. 3.)

Sometimes the chemical evidence may depend on stains on articles of clothing. Oxalic acid discharges the colour of some dyes, and slowly reddens others; but unless the stuff has been washed, the acid remains in the fabric and may there be detected. It does not corrode or destroy the stuff like mineral acids. In Reg. v. Morvis (C. C. C. December 1866) it was proved that the prisoner had attempted to administer a liquid poison forcibly to her daughter, a girl aged six years. It was sour in taste, made her lips smart, and caused vomiting. There was dryness of the lips, and inflammation of the lining membrane of the mouth. No portion of the substance administered could be procured, but a crystalline deposit of oxalic acid was obtained from some stains on the dress of the child. The woman was convicted.

ACID OXALATE OF POTASH, OR SALT OF SORREL.—Symptoms and Effects.—The poisonous effects of this salt entirely depend on the oxalic acid which it contains. It is much used for the purpose of bleaching straw and removing ink-stains, and is sold for this purpose under the name of essential salt of lemons. Its poisonous properties are not generally known, or no doubt it would be frequently substituted for oxalic acid. Out of three cases of poisoning by this substance, two proved fatal, while in the other the patient recovered. In the case of recovery, a young lady, aged twenty; swallowed an ounce of the salt dissolved in warm water. She was not seen by any one for an hour and a half; she was then found on the floor, faint and exhausted, having previously vomited considerably. There was great depression, the skin cold and clammy, the pulse feeble, and there was a scalding sensation in the throat and stomach. There was also continued shivering. Proper medical treatment was adopted, and she recovered in two days, still suffering from debility and great irritation of the stomach. During the state of depression, it was remarked that the membranes of the eyes were much injected, and the pupils dilated. There was also great dimness of vision. (‘Med. Gaz.’ vol. 27, p. 480.)

This salt destroys life almost as rapidly as oxalic acid itself: and in the symptoms which it produces, it closely resembles that poison. In one case, half an ounce killed an adult in so short a time as eight minutes; but probably the fatal effects were in this instance accelerated by the debilitated state of the person who took it. In another case, reported by M. Chevallier, death took place in ten minutes. (‘Ann. d’Hyg.’ 1850, vol. 1, p. 162.) In some instances this poisonous substance has been supplied by mistake for cream of tartar, and has thus caused death.

Chemical analysis.—It is not very soluble in cold water, but its solution may be readily mistaken for that of oxalic acid. The tests
POISONING BY THE ALKALIES.

for oxalic acid may be applied for the detection of it in this salt. When a portion is heated the oxalic acid is expelled, and the potash remains as a white carbonate.

Tartaric and Acetic acids have in some rare cases produced noxious effects on the system.

CHAPTER 9.

POISONING BY ALKALIES AND ALKALINE SALTS.—POTASH, SODA AND AMMONIA.—NITRATE AND SULPHATE OF POTASH.—CHLORIDE OF BARIUM.

POTASH AND SODA.

Symptoms.—The symptoms produced by potash and soda, when taken in large doses, are similar, so that one description will serve for both. The most common form in which these poisons are met with, is in the state of pearlash (carbonate of potash) and soap-lees (carbonate of soda). The person experiences, during the act of swallowing, an acrid caustic taste, owing to the alkaline liquid, if sufficiently concentrated, excoriating the mucous membrane. There is a persistent sensation of burning heat in the throat, extending downwards to the stomach. Vomiting is not always observed; but when it does occur, the vomited matters are sometimes mixed with blood of a dark brown colour, and with detached portions or flakes of mucous membrane: this effect depending on the degree of causticity in the liquid swallowed. The surface is cold and clammy: there is purging, with severe pain in the abdomen, resembling colic. The pulse is quick and feeble. In the course of a short time, the lips, tongue, and throat become swollen, soft, and red. The most rapidly fatal case of alkaline poisoning which I have found reported is that of a boy, who died in three hours after swallowing three ounces of a strong solution of carbonate of potash.

Appearances after Death.—In recent cases there are marks of the local action of the poison on the mucous membrane of the mouth, throat, and gullet. This membrane has been found softened, detached, and inflamed in patches of a deep chocolate colour, sometimes almost black. A similar appearance has been met with in the mucous membrane of the larynx and windpipe. The stomach has had its mucous surface destroyed in patches, and there has been partial inflammation. In one instance, as a result of the action of soda, I found it puckered and blackened. The quantity of these alkaline poisons required to destroy life is unknown. The fatal effects depend rather on the degree of concentration of the liquid, than on the absolute quantity of alkali present.

Chemical analysis.—When potash or soda or the carbonate of either alkali is contained in a poisonous proportion in any organic liquid, it will be observed that the liquid has not only a strong alkaline reaction, but it is soapy to the feel, frothy when shaken, and has a peculiar odour. The alkali may be obtained in the state of
carbonate or otherwise by simply evaporating the suspected liquid and incinerating the residue in a silver or porcelain vessel. The presence of potash or soda may be easily determined by the appropriate tests for these two alkalies. Potash gives a violet, and soda an intense yellow colour to the smokeless flame of gas or spirit.

The vapour of strong ammonia is poisonous. It may destroy life by producing violent inflammation of the larynx, or of the lungs and air-passages. It is often employed injudiciously to rouse persons from a fit. A case is on record of an epileptic having died under all the symptoms of croup, two days after the application of strong ammonia in vapour to the nostrils: it was used to rouse him from a fit.

Symptoms and Appearances.—The strong solution of ammonia produces, when swallowed, symptoms similar to those described in speaking of potash, but as it is much more irritating, it produces a choking sensation followed by intense heat and burning pain in the throat, gullet, and stomach.

Serious injury to the organs of respiration is one of the results of the action of this poison. A gentleman liable to attacks of fainting, died in three days, after swallowing a quantity of a liquid administered to him by his son. This liquid, which was at the time believed to be sal volatile, was, in fact, a strong solution of ammonia. The deceased complained immediately of a sensation of choking and strangling in the act of vomiting. Symptoms of difficulty of breathing set in, with other signs of irritation in the throat and stomach. The mucous membrane of the mouth and throat was corroded and dissolved; and it was evident that the liquid had caused great local irritation. The difficulty of breathing was such as to threaten suffocation, and at one time it was thought that an operation must be resorted to. The state of the patient, however, precluded its performance, and he died on the third day. On inspection, the viscera presented strong marks of corrosion. The covering of the tongue was softened, and had peeled off; the lining membrane of the air-passages was softened and covered with layers of false membrane, the result of inflammation; and the larger bronchial tubes were completely obstructed by casts or cylinders of this membrane. The lining membrane of the gullet was softened, and at the lower part, near its junction with the stomach, the tube was completely dissolved and destroyed. There was an aperture in the stomach in its anterior wall, about one inch and a half in diameter: the edges were soft, ragged, and blackened, presenting an appearance of solution. The contents of the stomach had escaped. On the inside, the vessels were injected with dark-coloured blood, and there were numerous small effusions of blood in various parts of the mucous membrane. The coats were thinned and softened at the seat of the aperture. The blackened and congested appearance of the lining membrane somewhat resembled that which is seen in poisoning with sulphuric or oxalic acid. The mucous matter on the coats of the stomach was feebly acid. No poison of any kind was found in the
SYMPTOMS AND APPEARANCES.

layer of mucus or in the coats. There was not in any part the slightest trace of ammonia, the poison which had caused the mischief. The deceased had lived three days: remedies had been used, and every trace of ammonia had disappeared. The immediate cause of death was an obstruction of the air tubes, as a result of inflammation, caused by the local irritant action of the liquid; it was quite obvious that a quantity had entered the windpipe. The perforation of the stomach had probably taken place shortly before death, or there would have been marks of peritonitis. The injury to the stomach and gullet would have been sufficient to cause death, even supposing that the liquid had not penetrated into the lungs.

Solution of ammonia applied to the skin acts as a corrosive, and may inflame or cause the destruction of the parts which it touches. At the Stafford Summer Assizes, 1873, (Reg. v. Gawen,) a man was convicted of throwing an ammoniacal liquid over the prosecutrix with intent to injure her. It was a liniment containing a strong solution of ammonia. The liquid was thrown in her face, and some portion reached the eyes; but she recovered from the effects. A weak solution acts as an irritant to the skin, while a strong solution causes vesication and a destruction of the part.

Carbonate of Ammonia.—The concentrated solution of this salt (sal volatile) is probably more active as a poison than is commonly supposed. A man, in a fit of passion, swallowed about five fluiddrachms of a solution of sal volatile. In ten minutes he was seized with stupor and insensibility; but upon the application of stimulant remedies, he recovered. He suffered for some time afterwards from severe irritation about the throat and gullet.

A female, aged 19, while in a state of unconsciousness, was made to swallow a quantity of hartshorn. She felt a severe pain in the stomach immediately, and in about an hour afterwards she vomited some blood. This vomiting of blood continued for several days. These symptoms were followed by great irritability of the stomach, and the constant rejection of food. There was obstinate constipation of the bowels, with emaciation and loss of strength. She died in about three months from the time at which she had swallowed the alkaline poison. On inspection, the gullet was found healthy; the orifice, at its junction with the stomach, was slightly contracted. The intestinal opening (pylorus) was contracted to the size of a crowquill, and the coats were thickened. On the posterior wall of the stomach there was a dense cicatrix of the size of half a crown, and from this point fibrous bands ramified in various directions. The duodenum and other parts of the intestinal canal were healthy. ('Med. Times and Gazette,' Nov. 26, 1853, p. 554.)

Chemical analysis.—Ammonia is distinguished from potash and soda by its pungent odour and entire volatility. The Carbonate of Ammonia may be known from other salts by its alkaline reaction, its odour, and its volatility as a solid, and from pure ammonia by its effervescing on the addition of an acid.
NITRATE OF POTA SH. NITRE. SALT PETRE.

Symptoms and Appearances.—This well-known salt has on several occasions destroyed life, when taken in large doses; but there appears to be some uncertainty in its action both as to the symptoms and the fatal effects on the body. In December 1863 a man swallowed an ounce of nitre, mixed with water, by mistake for Epsom salts, about nine o’clock in the morning. It produced vomiting with severe pain, but no purging. There was coldness of the surface and lividity of the face. Death took place in three hours. On inspection the mucous membrane of the stomach was found highly inflamed, especially towards the middle of the greater curvature, where, for several inches, it resembled scarlet cloth. The pylorus and duodenum were of a deep crimson colour. The peritoneal surface was reddened, especially over the stomach, the vessels having a vermilion red colour, as if they had been injected. The heart and lungs were healthy, the blood was fluid, and more florid than natural. The other organs presented no unusual appearance. No analysis was made of the contents of the stomach, but that the nitre was the cause of death no doubt could be entertained, and a verdict was returned accordingly at the coroner’s inquest.

Analysis.—For the chemical properties and method of detecting this salt, see page 82.

SULPHATE OF POTA SH. SAL POLYCHREST.

Symptoms and Appearances.—The question whether this should be regarded as an irritant poisonous salt or not, was much debated among members of the profession, in reference to a case which was tried at the Central Criminal Court in October 1843 (The Queen v. Haynes). The accused had given to the deceased, the night before her death, two ounces of sulphate of potash, dissolved in water; and it was alleged that a fortnight previously to this, she had taken in divided doses as much as a quarter of a pound of the salt. The woman thought that she was pregnant, but this was disproved by an examination of the body; and it was charged that the prisoner had given her the salt with the intention of causing a miscarriage. After the last dose, she was seized with sickness, and died within a very short time. The stomach was found empty, but highly inflamed; and there was blood effused on the brain. One medical witness referred death to the action of the sulphate as an irritant poison; another attributed it to apoplexy as an indirect result of the violent vomiting caused by it. The prisoner was acquitted of the charge of murder, but subsequently found guilty of administering the substance with intent to procure abortion. Both of the witnesses admitted that, in small doses, the salt was innocent; but that in the dose of two ounces, it might produce dangerous effects. Several other fatal cases are recorded. (See ‘Ann. d’Hygiène,’ Avril 1842.)

There is no doubt that the most simple purgative salts may, under
POISONING WITH THE SALTS OF BARIUM.

certain circumstances, and when given in large doses, destroy life. A case is elsewhere related, in which sulphate of magnesia caused death, and gave rise to a criminal charge in this country. (On Poisons,' 2nd Ed. p. 4.) It is said that sulphate of potash has in some cases caused vomiting and other serious symptoms, from its containing as impurity sulphate of zinc. This, if present, would be easily discovered by the appropriate tests.

Sulphate of potash may be easily identified. It is in hard dry crystals, soluble in water, forming a neutral solution, in which potash and sulphuric acid may be discovered by the appropriate tests.

SALTS OF BARIUM.

Chloride of Barium.—Symptoms.—A woman, aged 23, took by mistake for Epsom salts less than a teaspoonful (100 grains) of the chloride. This was at 12.30, 1st October 1858. In half-an-hour there was a feeling of deadly sickness, with sharp burning pains in the stomach and bowels. Vomiting and purging set in violently, the purging being attended with straining. An hour and a half after she had taken the poison the following symptoms were observed by Mr. Walsh. Face pale and anxious, eyes deeply sunk, surface cold, heart's action feeble, pulse scarcely perceptible, tongue natural and warm, loss of muscular power, sensation and intelligence not affected, pupils natural. Fluids taken were instantly rejected with aropy mucus. There was pain in the stomach, ringing in the ears, twitching of the face, and twisting of the legs and arms. At 9 p.m. the symptoms had abated, but at 2 a.m. (i.e. in about fourteen hours) the purging had returned, and the symptoms were much worse. There was a loss of voluntary muscular power. The breathing was slow and laboured, and indicated effusion in the bronchial tubes, but the woman was sensible. Soon after 3 a.m. she was convulsed, and these convulsions continued in paroxysms for two hours, when she died, seventeen hours after taking the poison. During the fits she had several watery evacuations, and consciousness was lost. There was no post-mortem examination. ('Lancet,' 1859, vol. 1, p. 211.)

A recent instance of death from the chloride of barium is reported in the 'Pharmaceutical Journal' (Aug. 10, 1872, p. 117); but no account is given of the dose taken, or of the symptoms and appearances. Mr. Kennedy states that in using this compound as a medicine, he has found that few persons are able to bear the eighth of a grain; that it is analogous to corrosive sublimate, and that an overdose will produce similar effects. He has used it for many years, and he finds the proper dose is from the twelfth to the sixteenth part of a grain; but he cites no instance of its acting as a poison in a dose of one or two grains. ('Lancet,' July 5, 1873, p. 28.)

M. Chevallier met with a case in which acetate of baryta had been supplied in a medicine in place of the sulphovinate of soda. It caused the death of the patient, and produced serious symptoms in the druggist. He had swallowed a portion of the medicine, in order
to show that there had been no mistake in its preparation. (‘Ann. d’Hys.’ 1873, 1, p. 395.)

The Carbonate of baryta is said to have destroyed life in two cases, in each of which only one drachm was taken; but the following case, which occurred to Dr. Wilson, shows that this compound is not so poisonous as the chloride. A young woman swallowed half a tea-cupful of the powdered carbonate, mixed with water, at a time when she had been fasting twenty-four hours. There was no particular taste. In two hours, she experienced dimness of sight, double vision, ringing in the ears, pain in the head, and throbbing in the temples, with a sensation of distension and weight at the pit of the stomach. There was also palpitation of the heart. After a time she complained of pain in the legs and knees, and cramps in the calves. She vomited twice, a fluid like chalk and water. The skin was hot and dry, the pulse frequent, full, and hard. These symptoms gradually abated, and she recovered, although the pain in the head and stomach continued for a long time. (‘Med. Gaz.’ 14, p. 448.) The carbonate is used as a poison for rats and mice.

Analysis.—Chloride of barium crystallizes in plates: it is soluble in water. 1. The solution yields an insoluble white precipitate with sulphuric acid or an alkaline sulphate. This precipitate is nearly insoluble in nitric acid. 2. The powdered salt, burnt on platinum wire in a smokeless flame, imparts to it a greenish yellow colour. 3. Chlorine may be detected in it by a solution of nitrate of silver.

Carbonate of baryta is a white insoluble powder. It is entirely dissolved with effervescence (carbonic acid) by diluted hydrochloric acid. On evaporation, it yields crystalline plates of the chloride of barium, which may be tested by the processes above mentioned.

CHAPTER 10.

PHOSPHORUS.—SYMPTOMS AND APPEARANCES.—CHRONIC POISONING.—
CHEMICAL ANALYSIS.—RED PHOSPHORUS.

Phosphorus is not often used in this country in attempts at murder. Its smell and taste as well as the fumes which it gives off, and its luminosity in the dark, commonly reveal its presence. At the Norwich Autumn Assizes, 1871 (Reg. v. Fisher), a girl of 18 was convicted of an attempt to poison a family. She put a vermin-compound containing phosphorus into a teapot with the tea. When hot water was poured on it, the smell produced at once led to suspicion. Phosphorus was found in the tea, taken from a pot carelessly left about the house. The girl was convicted, and sentenced to penal servitude for life. The late Professor Casper of Berlin describes a case in which the luminous appearance of the poisoned food, led to a suspicion of poisoning with phosphorus, and this was subsequently proved. A woman put a preparation of phosphorus into some soup, and gave it to her husband. He ate it in a dark room in the presence of some friends, and they noticed that-
the liquid as he stirred it, was luminous ('Vierteljahresschrift,' July 1864). In this way a person may be warned and a life saved (see 'Ann. d'Hyg.' 1870, 2, 203).

Symptoms.—Phosphorus acts as an irritant poison, but its operation is attended with some uncertainty, according to the state in which it is taken. The symptoms are frequently slow in appearing; it is only after some hours, and sometimes even one or two days, that signs of irritation with convulsions and spasms appear; but when these once come on, the case proceeds rapidly to a fatal termination. In the first instance the patient experiences a disagreeable taste resembling that of garlic, which is peculiar to this poison. An alliaceous or garlic odour may be perceived in the breath. There is an acrid burning sensation in the throat, with intense thirst, nausea, severe pain and heat with tenderness and a prickling sensation in the stomach, followed by distension of the abdomen and frequent vomiting. The vomited matters are black or of a dark green or coffee-ground colour, and have the odour of garlic: white vapours may be seen to proceed from them; and in the dark, they may appear luminous. Purging has been noticed among the symptoms, and the motions have also been observed to be luminous in the dark. The pulse is small, frequent, and scarcely perceptible. There is great prostration of strength, and coldness of the skin with other symptoms of collapse. The patient may die quietly in a comatose state, or be convulsed before death.

Chronic poisoning. Phosphorus-vapour.—Chronic poisoning by phosphorus is accompanied by nauseous eructations, frequent vomiting, a sense of heat in the stomach, purging, straining, pains in the joints, wasting, hectic fever, and disease of the stomach, under which the patient slowly sinks. Some interest is attached to the chronic form of poisoning with phosphorus from the researches of Dr. Strohl and others, on the effects of the vapour upon persons engaged in the manufacture of phosphorus or lucifer matches. It has been remarked that such persons have suffered from necrosis of the jaw, carious teeth, and abscesses. There has been also great irritation of the respiratory organs, and bronchitis has frequently shown itself among them. (See 'On Poisons,' 2nd edit. p. 345.)

Appearances.—Among the appearances produced by phosphorus are marks of irritation and inflammation in the stomach and intestines. The stomach has been found much contracted, and its mucous membrane inflamed, occasionally softened and presenting purple or violet-coloured spots. M. Worbe found the stomach perforated in three places in a dog which had been poisoned by a solution of phosphorus in oil. In one fatal case the body was found in a state of great muscular rigidity. The membranes of the brain were congested, and there was serous effusion between them. The substance of the brain was also congested. The heart was flaccid and nearly empty. The mucous membrane of the stomach, gullet, and small intestines was very red, and there were patches in which the membrane was destroyed. When the stomach was opened a
PHOSPHORUS. POST-MORTEM

white vapour escaped, accompanied by a strong smell of phosphorus. This organ contained a table-spoonful of a viscid greenish matter, from which particles of phosphorus with some Prussian blue (used as a colouring for the phosphorus paste) subsided on standing. (‘Lancet,’ June 13, 1857, p. 600.) The mucous membrane has been found raised in small bladders or vesications, but this appearance was probably owing to putrefaction, as the body was not examined until twenty-three days after death. Schuchardt describes the blood as dark and fluid, and it does not become red on exposure to the air. Ecchymoses are sometimes found on the skin and on the surfaces of various organs. (‘Brit. and For. Med. Rev.’ 1857, vol. 19, p. 506. ‘Journal de Chimie Médicale,’ 1857, p. 84.) Among the appearances met with in the acute form of poisoning, is a fatty degeneration of the voluntary muscles as well as of the liver, heart, and kidneys. (See a paper on this subject by Dr. Moore, ‘Dublin Medical Press,’ Nov. 15, 1856.)

In one case which I examined in 1867, that of a girl 13, who died on the sixth day after taking phosphorus-paste beaten up with egg, there were the usual symptoms, with severe paroxysms of vomiting and pain. The matters first vomited were observed to be luminous in the dark. There were numerous ecchymosed patches in the cellular tissue of the skin of the abdomen over the rectus muscle; these were also seen on the chest and on the diaphragm. The stomach contained a dark-coloured thick fluid like altered blood; the coats were not inflamed; the surface of the inner coat was covered with a brownish-coloured mucus which had no odour of phosphorus. At the greater curvature the surface was dotted over with numerous small dark particles, consisting of coagula of altered blood adhering to the membrane, but easily removed from it. They had the appearance of effused coagula of blood in petechial spots. The contents of the stomach owed its colour to these little masses of blood being diffused through them. The duodenum contained a similar liquid. The intestines presented no abnormal appearance. The liver was in an advanced state of fatty degeneration. This condition of the liver has occurred so frequently in cases of phosphorus-poisoning, that it may now be regarded as one of the characteristic appearances. (‘Guy’s Hospital Reports,’ 1868, p. 242.) M. Tardieu has met with fatty degeneration in poisoning with phosphorus, not only in the liver, but in the heart and kidneys (‘Étude Méd.-Lég. sur l’Empoisonnement,’ 1867, p. 441). In his work the reader will find a complete history of this form of poisoning.

In an interesting case recorded by Dr. Habershon (‘Med. Chir. Trans.’ 1867, vol. 50), in which a woman died on the fifth day, the symptoms and appearances were similar to those above described. The phosphorus was taken in the form of paste, and it is supposed in a dose of from three to four grains. There was much ecchymosis in patches in and about the cellular tissue of the abdomen and chest. There was fatty degeneration of the liver and kidneys. The
stomach contained a large quantity of fluid like soot and water, and was covered with a tenacious bloody mucus. There was some congestion in the mucous membrane, and there was much redness with ecchymosis in the small intestines.

The viscera and the flesh of animals recently poisoned by phosphorus have the peculiar odour of this substance, and if the case is recent they are luminous in the dark. (Galtier, 'Toxicologie,' vol. 1, p. 184.) Mr. Clowes informed me, that in examining some fowls which had been poisoned with phosphorus, he was struck with the strong odour of this substance on opening the gizzards, and with the appearance of a fine white fume, which was luminous when observed in a dark room. In the case of a woman who died while taking phosphorus medicinally, it was remarked that the whole of the organs were luminous; thus indicating the universal diffusion of this poison by absorption. (Casper's 'Wochenschrift,' 21 and 28 Feb. 1846, 115, 135.)

Fatal dose.—That phosphorus is a powerful poison, is proved by two cases quoted by Sir R. Christison. In one, death was caused by a grain and a half in twelve days; in the other, by two grains in about eight days. The smallest fatal dose which I have met with, is in a case quoted by Galtier. A woman, age 52, took in divided doses, in four days, about six centigrammes, or less than one grain, of phosphorus dissolved. The largest dose taken at once, i.e. on the fourth day, is stated to have been three centigrammes (0.462 grain), or less than half a grain. Symptoms of pain and irritation appeared, and the patient died in three days. The gullet, stomach, and small intestines were found much inflamed. ('Toxicologie,' vol. 1, p. 87.) When the phosphorus is dissolved in any liquid, or when it is finely divided, as in phosphorus-paste or in lucifer-matches, its action is then more powerful, as it is in a state well fitted for absorption.

In general several days elapse before a case proves fatal. Orfila met with one which terminated fatally in four hours, and Dr. Habershon quotes a case which is said to have proved fatal in half an hour. ('Med. Chir. Trans,' 1867, vol. 50.) This is the most rapid which has been recorded.

Chemical analysis.—Phosphorus is a solid of waxy consistence, having a peculiar odour and taste resembling garlic. It is the odour and taste which prevent it from being criminally employed as a poison, and render it easy of detection in articles of food. It evolves a white vapour in daylight, and a faint bluish luminosity in the dark. It melts and takes fire at a temperature of 113°, burning with a bright yellow flame, and producing thick white acid vapours by combustion. It is not soluble in water, but it is dissolved by alcohol, ether, chloroform, and the oils. Its most perfect solvent is the sulphide of carbon.

The smell which phosphorus imparts to solids and liquids is remarkably characteristic. When it has been taken in a solid form the particles may be separated as a sediment, by washing the contents of the stomach in water. These may be melted under water.
into one mass, either by plunging the tube containing them into hot water, or by pouring hot water upon them in a glass. If a portion of the organic liquid is evaporated to dryness in the dark, the particles of phosphorus will be easily recognized by their luminosity, as well as by their combustion, when the surface on which the material is spread is heated. Owing to its great solubility in sulphide of carbon, phosphorus may be separated from many organic matters by digestion with this liquid. It is thus procured from flour and phosphorus-paste, or from the residue of the contents of the stomach after washing and decantation. On the spontaneous evaporation of the sulphide, decanted from the organic liquid or solid, the phosphorus may be procured in small globules or beads. These are ignited when touched with a hot wire, and burn with the bright flame of phosphorus.

If the phosphorus is in a state of solution, or is in too small quantity to be dissolved out of the material by sulphide of carbon, its presence may be indicated by distilling the liquid containing it in the dark—the boiling point being raised by the addition of sulphuric acid. The vapour appears luminous as it is condensed in a glass condensing-tube. So delicate is this process of distillation, which was first suggested by Mitscherlich, that in one experiment with the head of a single lucifer-match the luminosity appeared for half an hour in the condensing-tube. The most absolute darkness is required for the success of this experiment. When taken in the form of matches, portions of sulphur, vermilion, or Prussian blue may be found in the sediment.

The remarkable substance known under the name of allotropic phosphorus, is not possessed of poisonous properties. This fact, long since announced by Liebig (‘Letters on Chemistry,’ 165), has been confirmed by experiment. It has been given to animals in doses of thirty grains without causing symptoms of poisoning. In October 1860, a woman, et. 26, swallowed the composition scraped from a number of lucifer matches made with allotropic phosphorus. She suffered no inconvenience. She procured other matches of common phosphorus, took a decoction of them in coffee, and she died from the effects.

Analysis.—Allotropic phosphorus is easily recognized by its red colour and infusibility. When a mixture containing it, is heated to about 500°, it burns like common phosphorus, and yields similar products. It is insoluble in all liquids, and by its insolubility in sulphide of carbon, it is distinguished and separated from common phosphorus. It has no odour or taste, and is not luminous in the dark.
METALLIC IRRITANTS.

CHAPTER 11.

ARSENIC.—ARSENIous ACID.—SYMPTOMS.—CHRONIC POISONING.—APPEARANCES AFTER DEATH.—FATAL DOSE.—CHEMICAL ANALYSIS.—ARSENITES.—ARSENIC ACID.—OPiMENT AND OTHER COMPOUNDS.

White Arsenic. Arsenious Acid. Symptoms.—The symptoms produced by this poison vary according to the form and dose in which it has been administered. The time at which they usually come on, is generally in from half an hour to an hour after the poison has been swallowed. They may appear earlier or much later. In a case in which one drachm of white arsenic had been taken on an empty stomach, no symptoms appeared for two hours; in another that occurred to Dr. Lachêse, in which a large dose was taken, there were no symptoms for seven hours. (‘Ann. d’Hyg.’ 1837, vol. 1, p. 344. See also ‘Med. Chir. Rev.’ Jan. 1854, p. 294.) And in a third their appearance was protracted for ten hours, the maximum period yet known. In all cases in which arsenic enters the system from without, as by its application to the skin, or to ulcerated or diseased surfaces, the symptoms are rarely manifested until after the lapse of some hours or even days.

The person first experiences a feeling of sinking or faintness, depression, nausea, followed by sickness, with an intense burning pain in the region of the stomach, increased by pressure. The pain in the abdomen becomes more and more severe; and there is violent vomiting of a brown turbid matter, mixed with mucus, and sometimes streaked with blood. These symptoms are followed by purging, which is more or less violent, and this is accompanied by severe cramps in the calves of the legs. The matters discharged from the stomach and bowels have had in some instances a yellowish colour, as it was supposed, from a partial conversion of the poison to sulphuret, but more probably from an admixture of bile. The vomited matters are in some cases coloured with blood, and the mixture of blood with bile has often given to them a green or brown colour. In other cases, they may consist of a large quantity of mucus ejected in a flaky state and having a milky-white appearance, as if from admixture with the poison. The colour of the vomited matters may be blue or black when coloured arsenic has been taken, or the admixture of bile may render them of a deep green colour. The vomiting is in general violent and incessant, and is excited by any liquid or solid taken into the stomach. There is tenesmus (straining), and the discharges by the bowels are frequently tinged with blood. There is a sense of constriction, with a feeling of burning heat in the throat, commonly accompanied by the most intense thirst. The pulse is small, very frequent, and irregular; sometimes wholly
imperceptible. The skin is cold and clammy in the stage of collapse; at other times it is very hot. The respiration is painful from the tender state of the stomach. There is great restlessness, but before death, stupor sometimes supervenes, with paralysis, tetanic convulsions, or spasms in the muscles of the extremities. In one instance trismus (lock-jaw) appeared in three-quarters of an hour. (‘Orfila,’ vol. 1, p. 449.) Although pain is in general among the early and well-marked symptoms, arsenic appears in some cases to destroy sensibility. In a case in which the stomach was found intensely inflamed after death, the patient complained of no pain during the time which she survived.

Chronic poisoning.—Should the person recover from the first effects, and the case be protracted, or should the dose have been small and administered at intervals, there will be inflamation of the conjunctivæ, with suffusion of the eyes, and intolerance of light, conditions which are, however, often present among the early symptoms above described. (‘Med. Times,’ Aug. 30, 1861, p. 229.) There is also irritation of the skin, accompanied by a vesicular eruption, which has been called eczema arsenicale. Sometimes this has assumed the form of nettle-rash or of the eruption attending scarlet fever. Local paralysis, preceded by numbness or tingling in the fingers and toes, and other symptoms of nervous disorder, are also common consequences. Exfoliation of the cuticle and skin of the tongue, with the falling off of the hair, has likewise been witnessed. (Case of the Turners, 1815, Marshall, 119.) Salivation has been observed to follow, especially when small doses of the poison have been given for a length of time. (‘Med. Gaz.’ vol. 16, p. 790.) Strangury and jaundice have been noticed among the secondary symptoms. (‘Marshall on Arsenic,’ 44, 111.)

Arsenic is not an accumulative poison; it is temporarily deposited in the organs after absorption, but is rapidly eliminated by the urine; and in from two to three weeks, if the person survives, the whole of that which has been absorbed may be removed from the body. Dr. C. Maclagan states that he has found it passing out of the body by the urine as early as three-quarters of an hour after it had been taken (p. 53 ante).

Appearances after Death.—The principal changes produced by arsenic are generally confined to the stomach and bowels. They are commonly well marked in proportion to the largeness of the dose, and the length of time which the person has survived after taking the poison. Our attention must be first directed to the stomach. Arsenic seems to have a specific effect on this organ: for, by whatever channel the poison may have entered into the system, whether through a wounded, diseased, or ulcerated surface, or by the act of swallowing, the stomach has been found inflamed. The mucous membrane of the stomach is sometimes partly detached and is covered with a layer of mucus, mixed with blood or bile, and with a thick white pasty-looking substance containing arsenic. It is commonly found red and inflamed in dotted or striated patches,
extending between the two apertures: the colour, which is of a
dull or brownish red, becomes brighter on exposure to the air: at
other times it is of a deep crimson hue, interspersed with black-looking
lines or patches of altered blood. The redness is usually most
strongly marked at the greater end; in one case it may be found
spread over the whole mucous surface, giving to it the appearance
of red velvet; in another it will be chiefly seen on the prominences
or folds of the membrane. In one instance the coats were thickened
and of a gelatinous consistency, without any marked inflammatory
redness. The stomach has been found highly inflamed in a case
which proved fatal in two hours. Thus it would appear that intense
inflammation of the mucous membrane may be observed within a
very short period. This organ usually contains a mucous liquid
of a dark colour tinged with blood. The coats are sometimes
thickened in patches, being raised up into a sort of tumour, with
arsenic imbedded in them: at other times they have been found
thinned. The mucous membrane is rarely found ulcerated and still
more rarely gangrenous. Ulceration of the membrane, as the re-
sult of the action of arsenic, has been found as early as ten hours
after the poison had been taken. Perforation of the coats is not a
common result of arsenical poisoning: there are but few instances
on record. Various appearances are said to have been met with in
the lungs, heart, brain, and urinary organs; but they are not so
characteristic of arsenical poisoning, as to admit of medico-legal
use in enabling a medical man to distinguish poisoning from
disease. It is to the stomach and intestines that he must look as
the basis of reliable evidence in regard to appearances after death.
Dr. Wilks met with an ecchymosed condition of the lining mem-
brane of the left ventricle of the heart in a case in which a man
died in twelve hours from acute poisoning by arsenic. In a few
instances the mouth, throat, and gullet have been found inflamed,
but in general there are no changes in these parts to attract par-
ticular attention. The mucous membrane of the small intestines
may be inflamed throughout, but commonly the inflammatory red-
ness is confined to the upper part, i.e. the duodenum, especially to
that portion of it which joins the stomach. Of the large intestines,
the rectum appears to be the most prone to inflammation. The
liver, spleen, and kidneys present no appearances which can be con-
ected with the action of arsenic, although these, like the other
soft organs, may become receptacles of the absorbed poison. It is
worthy of observation in relation to the known antiseptic properties
of arsenic, that the parts especially affected by this poison (the
stomach and intestines) occasionally retain the well-marked cha-
acters of irritant poisoning for a long time after death. Absorbed
arsenic does not, however, appear to prevent the decomposition of
the soft organs in which it is deposited.

Arsenic may destroy life as the result of external application to
any diseased or ulcerated surface, or to a wound. (See ‘Guy’s
Hospital Reports,’ Oct. 1864, p. 220.) The smallest fatal dose of
arsenic hitherto recorded is two grains. ('Provincial Med. Journal,' June 28, 1848, p. 347; also 'Medical Gazette,' vol. 39, p. 116.) Under circumstances favourable to the operation of this poison, the fatal dose in an adult may be assigned at from two to three grains. Large doses of arsenic commonly destroy life in from eighteen hours to three days. The average time at which death takes place is twenty-four hours; but the poison may destroy life within a much shorter period. In a case which occurred in April 1849, death took place in two and a half hours. ('Guy's Hospital Reports,' Oct. 1850, 183. See also 'Ann. d'Hyg.' 1837, vol. 1, p. 339.) Mr. Foster of Huntingdon, met with the case of a child under three years of age, who died within two hours from the effects of arsenic. One case is said to have proved fatal in twenty

minutes. On the other hand life is occasionally protracted for many days. In October 1847, a man who had swallowed 220 grains of arsenic was admitted into Guy's Hospital, and died on the seventh day. In the case of Dr. Alexander, death took place on the sixteenth day; and although a large quantity of arsenic had been taken, no traces were found in the body. ('Med. Times and Gazette,' April 18, 1857, p. 389.) In an instance in which arsenic was applied externally to the head, the person did not die until the twentieth day.

Chemical analysis. Arsenic as a solid.—In the simple state, white arsenic may be identified by the following properties:—1. A small quantity of the powder, placed on platinum foil, is entirely volatilized at a moderate heat (370°) in a white vapour. If a small portion of the white powder is very slowly heated in a glass tube of narrow bore, it will be sublimed without melting, and form a ring of minute octahedral crys-
tals, remarkable for their lustre and brilliancy. Under a microscope of good magnifying power (250 diameters), the appearance of these crystals is highly characteristic (Fig. 4.) 2. On boiling a small quantity of the powder in distilled water, it is not readily dissolved, but it partly floats in a sort of film, while a part becomes aggregated in small lumps at the bottom of the vessel. It requires long boiling, in order that it should become dissolved and equally diffused through water.

3. When a small portion of the white powder, i.e. from one-fourth to one-twentieth part of a grain, is heated with two parts of soda-flux (obtained by incinerating acetate or tartrate of soda in a close vessel), in a glass tube about three inches long and from one-eighth to a quarter of an inch in diameter, it is decomposed: a ring of metallic arsenic of an iron-grey colour is sublimed and deposited in a cool part of the tube. In place of soda-flux a mixture of one part of cyanide of potassium with three parts of dry (anhydrous) carbonate of soda may be employed. During the reduction there is a perceptible odour, resembling that of garlic, which is possessed by metallic arsenic only, while passing from a state of vapour to arsenious acid. In this experiment of reduction, there are frequently two rings deposited in the tube—the upper and larger ring has a brown colour, and appears to be a mixture of finely divided metallic arsenic and arsenious acid; the lower ring is small and consists of the pure metal. The appearance presented by these sublimates is indicated in the annexed illustration. (Fig. 5.) By heating gently the tube containing the sublimate (reduced to powder) in another tube of larger diameter, the metallic arsenic, during volatilization, forms octahedral crystals of arsenious acid, which, after examination by the microscope, may be dissolved in a few drops of water, and tested by one or more of the liquid reagents.

The metallic sublimates, or the crystals produced from them, may be further subjected to the following process:—Break the glass on which the sublimate is deposited, into fragments, and digest these in a few drops of the strongest nitric acid, containing nitrous acid, previously proved to be free from arsenic. The sublimate is thereby converted into arsenic acid. The acid solution should be evaporated to dryness; the white uncrystalline residue obtained should be dissolved in a few drops of distilled water, and a strong solution of nitrate, or of ammonio-nitrate, of silver added in small quantity to the residue. A brick-red colouration indicates arsenic acid, and thus proves incontestably that the sublimate was of an arsenical nature. Bromine water also oxidizes the metallic deposit and converts it into arsenic acid which is left on evaporation to dryness.

The upper or brownish-looking sublimate may be readily converted into one of the pure metal, by gently heating it in the flame of a spirit lamp. Arsenious acid is then volatilized, and an iron-grey deposit of metallic arsenic appears. If the heat is continued, the whole of the metallic sublimate is volatilized and deposited in a
cool part of the tube, in transparent and colourless octahedra of arsenious acid. This is the special character of an arsenical sublimate; it may be thus distinguished from sublimates of all metals or metalloids. The lower metallic sublimate procured by reduction, sometimes presents itself, not in an annular form, but in detached particles of an irregular spherical shape. These are of an iron-grey colour, quite unlike sublimed mercury, and when examined by the microscope, it may be seen that they consist of crystalline masses nucleated, and that they are not strictly spherical. This sublimate is frequently produced in the last stage, when the residue in the tube is strongly heated. The process of reduction, with the corroborative results above mentioned, is, when thus applied, conclusive of the arsenical nature of the substance under examination.

Bettendorff has suggested a process for the reduction of arsenic in the wet way. A solution of chloride of tin is mixed with its volume of fuming hydrochloric acid and brought to the boiling point. If the hydrochloric acid is pure, it should remain colourless, but if it contains a trace of arsenic, the liquid will acquire a light brown colour. On adding a minute quantity of solid arsenious acid to such a mixture, it is dissolved and instantly decomposed, metallic arsenic being deposited in the form of a brown or brownish-black precipitate. A salt of antimony is not thus affected.

Arsenic in solution in water. Liquid Tests.—The solution of arsenious acid is clear, colourless, possesses scarcely any perceptible taste, and has but a feebly acid reaction. In this state, we should first evaporate slowly a few drops on a glass slide, when a crystalline deposit will be obtained. On examining this with a microscope, it will be found to consist of numerous minute octahedral crystals, presenting triangular surfaces by reflected light. (See Fig. 6.)

Fig. 6.

Crystals of Arsenious Acid from a solution, magnified 124 diameters.

1. Silver Test.—On adding to the solution of white arsenic ammonio-nitrate of silver, a pale yellow precipitate of arsenite of silver falls down; changing, under exposure to daylight, to an olive green colour. The test is made by adding to a strong solution of nitrate of silver, a weak solution of ammonia, and continuing to add the latter, until the brown oxide of silver, at first thrown down, is almost re-dissolved. The yellow precipitate is soluble in nitric, tartaric, citric, and acetic acids, as well as in ammonia. It is not dissolved by potash or soda.

2. Copper Test.—On adding to another portion of the solution ammonio-sulphate of copper, a light green precipitate (arsenite of copper) is formed, the tint of which varies
according to the proportion of arsenic present, and the quantity of the test added: hence, if the arsenic is in small proportion, no green precipitate at first appears; the liquid simply acquires a blue colour from the test. In less than an hour, if arsenic is present, a bright green deposit is formed, which may be easily separated from the blue liquid by decantation. This test is made by adding ammonia to a weak solution of sulphate of copper, until the bluish-white precipitate at first produced, is nearly re-dissolved: it should not be used in large quantity if concentrated, as the deep blue colour tends to obscure or conceal the green precipitate formed. The dried precipitate of arsenite of copper, when slowly and moderately heated in a well-dried reduction-tube, will yield a ring of octahedral crystals of arsenious acid—oxide of copper being left as a residue.

3. Sulphuretted Hydrogen Test.—The gas may be procured by adding to sulphide of iron in a proper apparatus, a mixture of one part of strong sulphuric acid and three parts of water. The arsenical liquid should be slightly acidulated with pure diluted hydrochloric acid, before the gas is passed into it: at least, care should be taken that it is not alkaline. A yellow precipitate (orpiment) is immediately produced if arsenic is present, and it may be collected, after the liquid has been sufficiently boiled to drive off any surplus gas. It is known to be sulphide of arsenic by the following properties:—1. It is insoluble in water, alcohol, and ether, as well as in diluted hydrochloric acid, and vegetable acids: but it is decomposed by strong nitric and nitro-hydrochloric acids. 2. It is immediately dissolved by potash, soda, or ammonia; forming, if no organic matter is present, a colourless solution. 3. When dried and heated with three parts of soda-flux, or an equal part of dry cyanide of potassium, it yields a sublimate of metallic arsenic.

Marsh's Process. Hydrogen Test.—The action of this test depends on the decomposition of arsenious acid and its soluble compounds, by nascent hydrogen evolved from the action of diluted sulphuric or hydrochloric acid on pure zinc. The materials should always be first proved to be free from arsenic. The apparatus is of the most simple kind, and is so well known as to need no description or illustration. The arsenic may be introduced into the short leg of the tube in the state of powder; but it is far better to dissolve it in water by boiling, either with or without the addition of a few drops of hydrochloric acid. The metallic arsenic combines with the hydrogen, forming arsenuretted hydrogen gas, which possesses the following properties:—1. Filtering paper wetted with a solution of nitrate of silver is immediately blackened by the gas—the silver being reduced to the metallic state. Lead-paper is not changed in colour unless sulphuretted hydrogen is also present. 2. It burns with a pale bluish-white flame, and thick white smoke (arsenious acid). 3. A slip of glass or of white porcelain held in the flame near the point (for not too long a time) acquires a dark stain from the deposit of metallic arsenic upon it. This deposit presents a metallic lustre in the centre (a), a white film of arsenious acid on the outside (c), and
between the two a dark ring of a pulverulent substance (a), which, when viewed by transmitted light, is hair-brown in colour towards the margin, but perfectly opaque in the centre. In order to determine the arsenical nature of the deposits, the following plan may be adopted:—

Several of them should be received and accumulated in small porcelain capsules, held in the flame of the burning gas. To one, add a solution of chloride of lime: the arsenical deposit is immediately dissolved. To a second, add a solution of sulphide of ammonium: the metallic deposit is detached, but not perfectly dissolved: yet on evaporation it yields a pale yellow film of sulphide of arsenic. To a third, add a few drops of the strongest nitric containing some nitrous acid. The deposit is dissolved: evaporate the acid solution gently to dryness; carefully neutralize the residue, and add one or two drops of a strong solution of nitrate of silver. A brick-red stain or a dark red precipitate of arsenate of silver will be produced.

Reinsch's Process.—In the application of this process, the liquid suspected to contain arsenic, or the solid dissolved in distilled water, is boiled with from one-sixth to one-eighth part of pure hydrochloric acid (proved to be free from arsenic), and a small slip of pure copper is then introduced. A slip of polished copper foil (electric copper) about a quarter of an inch square, attached to the end of a thin platinum wire, may be employed for the experiment. The copper must be first proved to be free from arsenic, as this is a very-common contamination of all commercial copper in the form of foil, gauge, or wire. If arsenic is present in the liquid, even in small quantity, the polished copper acquires either immediately or within a few minutes a dark iron-grey coating from the deposit of this metal. This is apt to scale off, if the arsenic is in large quantity or if the liquid is very acid or long boiled. We remove the slip of copper, wash it in water, dry it, and gently heat it in a small reduction-tube, when arsenious acid will be sublimed in minute octahedral crystals: if these should not be apparent from one piece of copper, several may be successively introduced. When the quantity of arsenic is small, the polished copper merely acquires a faint bluish tint. The deposit is in all cases materially affected by the quantity of water present, or, in other words, the degree of dilution, and sometimes it will appear only after the liquid has been much concentrated by evaporation. The presence of arsenic as an impurity in copper may be detected by the following method suggested by Mr. Abel. Add to pure hydrochloric acid, diluted with six parts of water, one or two drops of a weak solution of persulphate or perchloride of iron. Boil the acid liquid and introduce the copper, well cleaned and
polished, into the boiling liquid. Arsenicated copper soon acquires a dark tarnish, while the non-arsenicated (electric) copper retains its red colour under these circumstances.

Arsenic in liquids containing organic matter.—Arsenic may exist in an insoluble form—i.e. as a crystalline powder—in the contents of the stomach or any liquid article of food. If coarsely powdered it may be separated as a heavy sediment, by careful washing with distilled water, and then dried and tested by the reduction process (p. 105). Any liquid for analysis should be strained through muslin or filtered through paper in order to separate all insoluble matters; these should be well-pressed and drained. Should the liquid be coloured, this is of little moment, provided it is clear. If viscid, it should be diluted with water, and boiled with a small quantity of hydrochloric acid; on standing, a deposit may take place, and this should be separated by a filter. As a trial-test, we may now boil in a portion of the liquid, aciduated with pure hydrochloric acid, a slip of pure copper highly polished, and examine any deposit on the metal by the method above described. If the copper comes out unchanged there is no detectable quantity of arsenic present.

When arsenic is present in an organic liquid in large quantity, it may be precipitated as sulphide by a current of washed *sulphuretted hydrogen*. The liquid should be boiled, filtered, and acidulated with hydrochloric acid before passing the gas into it. When precipitation has ceased, the liquid should be again filtered, the precipitate collected, dried, and weighed. By operating on a measured portion of the solution, the amount of white arsenic present may be determined by the weight of the sulphide obtained—five parts by weight of sulphide being equal to four parts of white arsenic. The properties of the yellow precipitate should be verified according to the rules mentioned at page 107.

Distillation-process.—When the poison is in so small a quantity that it does not admit of precipitation by sulphuretted hydrogen, and no solid particles of arsenic are found in the stomach, in its contents, or in any article of food, another method may be resorted to for detecting its presence. This method equally applies to the detection of arsenic deposited as a result of absorption in the soft organs of the body, as in the liver, kidney, or heart, and to arsenic in all its forms, except the pure insoluble sulphide or orpiment. The substance, whether food, blood, mucus, the liver, or other organ, should be first thoroughly dried, either by exposure to a current of air or by a water-bath. The dried solid should then be broken into small portions and placed in a flask or retort of sufficient capacity, with a sufficient quantity of the strongest hydrochloric acid (free from arsenic) to drench it completely. After some hours' digestion in the cold, the retort or flask (a) Fig. 8, containing the mixture—which should be of such a size that the materials should not fill it to more than one-third or one-half of its capacity—should be fitted with a long condensing tube (c), and then gradually heated by a sand-bath until the acid liquid begins to pass over. A metallic head,
formed of a cone of tin plate or sheet-copper, should be placed over the retort or flask so as to concentrate the heat and prevent condensation in the upper part of the vessel. A small flask receiver (d) with a loosely-fitting cork may be employed to collect the product. This should contain a small quantity of distilled water, so as to fix and condense any acid vapours that may pass over. The receiver, as well as the condensing-tube, should be kept cool by wetting its surface with cold water diffused on a layer of blotting paper placed over it. A perfect condensation of the distilled liquid is ensured by this arrangement. The distillation may be carried to dryness, or nearly so, on a sand-bath; and it may be sometimes advisable, in order to ensure the separation of the whole of the arsenic as chloride, to add to the residue in the retort when cold, another portion of pure and concentrated hydrochloric acid, and again distil to dryness. I have, however, found that portions of dried liver and stomach gave up every trace of arsenic by one distillation, when a sufficient quantity of hydrochloric acid had been used, and the process was slowly conducted by a regulated sand-bath heat. By this process arsenic is at once separated from every metal excepting antimony, and these metals may be easily distinguished by tests applied to the distillate.

The liquid product may be coloured, turbid, and highly offensive if distilled from decomposed animal matter. Exposure to the air for a few hours sometimes removes the offensiveness, and there is a precipitation of sulphur, or of some sulphide of arsenic. The distillate may be separated from any deposit by filtration, and if still turbid, it may be again distilled at a lower heat to separate it from any organic matter that may have come over. If there is a yellow deposit it should be examined for sulphide of arsenic.

If arsenic is present in the substance submitted to distillation, the distillate will contain arsenic in the form of soluble chloride; this does not escape from a diluted solution at common temperatures.
CONVERSION INTO CHLORIDE OF ARSENIC.

The quantity of dry organic substance used in the experiment must depend on the quantity of arsenic present, as revealed by a preliminary trial with Reinsch's process. If large, two or three drachms of the dried substance, or even less, will yield sufficient chloride of arsenic for further proceedings. For the absorbed and deposited poison, half an ounce of the dried organ, corresponding to two ounces of the soft organ, will frequently suffice; but a negative conclusion of the absence of arsenic should not be drawn from a smaller quantity than from two to four ounces of the dried substance, whether liver, kidney, or heart. These tissues, it must be remembered, contain about 76 per cent. of water. If oily matter should be distilled over, this may be separated by passing the distillate through a paper filter wetted with water.

The distilled liquid, containing chloride of arsenic, should if clear be submitted to a further stage of analysis. For this purpose one third of it should be distilled with three or four parts of water and boiled in a clean flask. When boiling, a piece of bright copper-foil (free from arsenic), of about the size of the sixteenth of a square inch, should be introduced. If there is chloride of arsenic in the liquid, even up to the 1-4000th of a grain, its presence will be indicated by a change of colour, and by the deposit of a dark metallic film on the copper. If the quantity of arsenic present is believed to be very small, the surface of copper introduced should be proportionately small. Another portion of the distilled liquid added to the acid chloride of tin and boiled (Bettendorff's test, p. 106) will give a brown colour or a brown precipitate, according to the quantity of arsenic present. If this is large, a dark mirror-like layer of metallic arsenic is deposited on the inside of the tube. The remaining two-thirds of the distilled liquid, sufficiently diluted, should now be introduced into a Marsh's tube, or into an evolution flask provided with a funnel-tube, the capacity of which must be regulated by the quantity of acid liquid to be examined. The kind of apparatus employed in this stage is represented in the engraving, Fig. 9, p. 112, a the flask, with funnel-tube b, and connecting piece c; the funnel-tube should be long enough just to dip below the surface of the acid liquid. The short connecting piece is bent at a right angle, and, like b, is carried through a closely fitting cork in the neck of the flask. This tube should be only long enough to go through the cork, and its open end should be bevelled off to a fine point, so that any vapour which is condensed on it may drop back as a liquid into the flask. d is the drying tube containing fragments of chloride of calcium, secured by cotton at both ends. At the flask end of this tube should be placed some well-dried bibulous paper, saturated with acetate of lead. This has the advantage of stopping any gaseous sulphur compound, which may escape from the zinc or acid liquid. e e, a hard and not easily fusible glass tube, free from lead, contracted in two situations, x x', to about the diameter of the tenth of an inch or less, the tube itself having a diameter of from a quarter to three-eighths of an inch. f f
are supports made of stout wire, to prevent the tube from falling when heated to redness. g is a test glass to hold one or two drachms of a strong solution of nitrate of silver. h is a Bunsen's air-gas jet, which gives a stronger heat than a spirit lamp, although the latter may be used.

The arrangement being thus made, the zinc and hydrochloric acid are first tested as to their freedom from arsenic. Portions of pure zinc are placed in the flask a, the parts of the apparatus are then connected, and pure hydrochloric acid, diluted with three or four parts of water, is poured into the flask by the funnel b, which operates as a safety valve. Bubbles of air and gas speedily appear in the liquid in g, if the corks fit well and the whole of the arrangements are air-tight. Pure zinc is sometimes but imperfectly acted on by the acid. In this case some clean platinum wire or foil may be wound round the bars of the zinc, and the evolution of hydrogen will be thus accelerated. It is, however, better that the hydrogen should come off rather slowly. If the materials are pure, the solution of nitrate of silver should undergo no change of colour. The glass e should be placed on a sheet of white paper, whereby the slightest tinge of brown or black is made perceptible. When all the air is expelled from the tube, the smokeless flame h may be applied to it at about one inch in front of a contraction of the tube, as indicated in the engraving, and the glass heated to redness. No metallic deposit should take place at k. If the materials are quite pure, the transparency of the glass tube at k will be unchanged. From a quarter to half an hour will be sufficient for this experiment.

Dr. Draper has suggested that a bundle of platinum wire should be introduced into the glass-tube before heating it. The arsenic is then deposited on the platinum, and the difference in weight
before and after the experiment will show the amount of arsenic collected. (Amer. Jour. Med. Sci. July 1873, p. 280.)

The silver solution is allowed to become saturated with the gas. Any escape of the gas from the glass, or by leakage from any of the junctions of the apparatus, is at once indicated by holding near to the spot, filtering paper wetted with nitrate of silver. This is instantly blackened. The glass with the silver solution is removed, the end of the tube well washed, or another tube substituted for it, and this is allowed to dip into about one dram of the strongest nitric acid containing much nitrous acid in a test-glass similar to a, or in a small porcelain capsule. After a time, the acid loses its colour, and the metallic arsenic of the gas is converted into arsenic acid, which may be obtained by evaporation.

The further testing of the products is a very simple process. 1. The silver solution contains arsenic in the state of arsenious acid dissolved, with some excess of nitrate of silver. By one or two filtrations it is obtained colourless and clear. A weak solution of ammonia is then added to it, and yellow arsenite of silver is at once precipitated (see p. 106). 2. The nitric acid liquid is evaporated to dryness in a small porcelain capsule. One or two drops of water are added to the residue, with a drop of weak ammonia if it should be very acid. A strong solution of nitrate of silver is then added to it; arsenate of silver, of its well-known brick-red colour, is immediately produced. 3. The portions of tube \(\times \) with the metallic deposits in them may be separated by a file, and then hermetically sealed, or, if necessary, one or more of them may be tested by the methods described in a preceding page.

It might be supposed that arsenic would escape as chloride in this method of operating, but when hydrochloric acid is diluted with six or eight parts of water, little or no volatile chloride is distilled over. In reference to the liver and other organs, a larger proportion of acid may be used, because three-fourths of the weight of the animal substance really consist of water.

With these results the evidence of the presence of arsenic may be considered to be conclusive. The poison is obtained by this process, not only in its pure metallic state, but in the distinct forms of its two well-known oxides—arsenious and arsenic acids. Any demonstration beyond this is superfluous. It will be observed that Reinsch's process is here employed as an adjunct to Marah's process in an improved form, in which the burning of the gas is unnecessary.

Reinsch's process alone may be employed for detecting arsenic, deposited as a result of absorption, in the liver, kidneys, or other soft parts. About four ounces of the organ, or more if necessary, cut into small pieces, may be boiled in a flask in a mixture of one part of pure hydrochloric acid and four of water, until the structure of the organ is broken up. The flask may be of the shape represented in the annexed engraving (Fig. 11), and either a naked spirit-flame or a sand-bath may be employed. A small glass funnel
Arsenic. The Quantity Found.

Should be placed in the neck of the flask. This receives and condenses the acid vapour which falls back into the flask. By this arrangement the boiling may be continued for a long time, without material loss by evaporation. The flask should not be more than half full, and heated gently until all froth is expelled. A slip of fine platinum wire, having a small piece of pure copper-foil, should be immersed in the liquid when boiling. This enables the operator to remove the copper and examine it at intervals, after immersing it in distilled water. If it is much coated with a metallic deposit, larger portions of copper-foil may be successively introduced until the liquid is exhausted. The deposit on the copper may then be tested by the method described at page 108.

It is remarkable for what a length of time the copper retains the arsenic deposited upon it. Some copper-gauze on which arsenic had been deposited was examined after twenty-five years, and, although much changed in appearance by exposure, it yielded a perfect sublimate of octahedral crystals.

It need hardly be observed that the quantity of arsenic found in the stomach or other organs can convey no accurate idea of the quantity actually taken by the deceased, since more or less of the poison may have been removed by violent vomiting and purging as well as by absorption and elimination. A large quantity found in the stomach or bowels indicates a large dose; but the finding of a small quantity does not prove that the dose was small. Notwithstanding these very obvious causes for the removal of a poison from the body, there is a strong prejudice among lawyers that the chemical evidence is defective unless the quantity found is sufficient to cause death. It would be just as reasonable, in a case in which a man has been killed by a discharge of small shot, to insist upon a failure of proof of the cause of death, because only a single pellet has been found in the body. The value of chemical evidence does not depend on the discovery of any particular quantity of poison in the stomach—it is merely necessary that the evidence of its presence should be clear, distinct, conclusive, and satisfactory. At the same time, a reasonable objection may be taken to a dogmatic reliance upon the alleged discovery in a dead body, of minute fractional portions of a grain; and, considering the great liability to fallacy from the accidental presence of arsenic in the articles used, the chemical evidence in the French case of Madame Lafarge (1840), in which the whole quantity discovered in the dead body was stated to be the hundred and thirtieth part of a grain, was of a most unsatisfactory kind, and should have been rejected by the Court. No man with any respect for his character, or for the common sense of a jury, would base chemical evidence on the thousandth, or less than the thousandth, part of a grain of poison in a case of life and death;
although, for the purpose of procuring the acquittal of a criminal, he may safely boast of his alleged power to detect this, or even a smaller quantity.

The condition of the arsenic found in a dead stomach should be specially noticed. A witness should be prepared to say whether it is in fine powder or in coarse fragments; whether it is mixed with root or indigo, or whether it is in the ordinary state of white arsenic. These points may be material as evidence in reference to proof of possession, of purchase, or administration.

Arsenic is not a normal constituent of the body. Under no circumstances is it found in the tissues after death, except in cases in which it has been taken or administered.

Arsenite of Potash. Liquor Arsenicalis. (Fowler's Solution.)—Symptoms and Appearances.—There is, so far as I know, only one case recorded in which this solution has destroyed life. A woman took half an ounce (= two grains of arsenic) in divided doses, during a period of five days, and died from the effects. There was no vomiting or purging, but after death the stomach and intestines were found inflamed. ('Provincial Journal,' June 28, 1848, p. 347.) A mixture of arsenic, soft soap and tar-water, is largely used in agricultural districts for killing the fly in sheep. This has caused death, under the usual symptoms of arsenical poisoning, in at least two instances. There is no doubt that a mixture of this kind is injurious to sheep unless very carefully used.

Analysis.—The solution has the odour of tincture of lavender, is of a reddish colour, and has an alkaline reaction. One fluid ounce of it contains four grains of arsenious acid. It gives at once a green precipitate (arsenite of copper) with the sulphate of copper, and a yellow precipitate with nitrate of silver. Acidulated with hydrochloric acid, and treated with a current of sulphuretted hydrogen gas, it yields a yellow sulphide; and when boiled with this acid and pure copper, a deposit is obtained which readily furnishes by heat octahedral crystals of arsenious acid.

Fly-Water is a name applied to solutions of various arsenical compounds in water. Mixtures of this kind are formed by dissolving one part of the arsenite of soda or potash and two parts of sugar in twenty parts of water. Paper soaked in this solution, and dried, is used for killing flies under the name of Papier Moure; and perhaps this is the safest form in which arsenic can be used for such a purpose.

Arsenite of Copper. Scheele's Green. Emerald Green.—This is the only metallic arsenite which is met with in commerce and the arts, and it constitutes, wholly or in part, a great variety of green pigments employed for paper-hangings, known as Emerald green (aceto-arsenite of copper), mineral green, Brunswick, Schweinfurt, or Vienna green. It is also found in the form of oil-paint, of cakes in boxes of water-colours, spread over confectionery, in wafers, in adhesive envelopes, in wrappers for chocolate, raisin-lees, &c., and lastly, and most abundantly, in various kinds of
green decorative papers used for covering the walls of sitting and bed-rooms.

Although this compound is insoluble in water, it is sufficiently soluble in the acid mucous fluids of the stomach to be taken up by the absorbents, and carried as a poison into the blood. M. Roussin has traced the means by which this insoluble poison finds its way through the skin, and the circumstances under which it may be absorbed by the unbroken skin. In two cases which proved fatal in 1865, the workmen suffered chiefly from vomiting and colicky pains. The skin was tinged of a green colour and arsenic was detected in the soft organs. He found that all poisons were liable to be absorbed by the unbroken skin, when as a result of evaporation a solid film was left on the surface. Alcohol and other solvents of fat when used as solvents for the poisonous solid, would favour its absorption into the body. It requires no theory of idiosyncrasy to account for poisoning under such circumstances. (‘Annales d’Hygiène,’ 1867, pp. 179, 182.)

In a case which was the subject of a criminal trial, this substance was proved to have caused the death of a gentleman by reason of its having been employed to give a rich green colour to some blanc-mange served at a public dinner:—the person who employed it considering that emerald or mineral green was nothing more than an extract of spinach! It led to death under the usual symptoms, and the parties were convicted of manslaughter and sentenced to imprisonment. (Rey. v. Franklin and Randall, Northampton Summer Assizes, 1848.)

The symptoms of poisoning which have been observed in persons who have inhabited rooms of which the walls were covered with this arsenical compound, are as follows:—Dryness and irritation of the throat with cough, irritation of the mucous membrane of the eyes and nostrils, languor, headache, loss of appetite, nausea, colicky pains, numbness, cramp, irritability of the bowels, attended with mucous discharges, great prostration of strength, a feverish condition, and wasting of the body. These symptoms may not all present themselves in any one case; they are derived from the examination of numerous cases which have been referred to me. No suspicion of the cause had been entertained until all ordinary treatment failed to impart relief, and an analysis of the paper had been made. The connection of the symptoms with this cause appears to have been in some instances clearly established by the fact that after the removal of the paper, especially from bedrooms, the symptoms have disappeared. It is, however, proper to observe that, as in reference to the manufacture of white lead, comparatively few of those who are exposed, suffer from symptoms of poisoning. Various deaths, chiefly among children, from the use of this paper are now recorded; and it is probable that to the noxious practice of covering the walls of our sitting and bed-rooms with large quantities of arsenic in loose powder, many insidious cases of illness and chronic disease may be referred. Man
and women employed in the manufacture of these poisonous pigments suffer severely (see 'Ann. d'Hyg.' 1847, 2, p. 56; 1859, 2, p. 107, and 1867, 2, p. 179). Dr. Kittel states that girls employed in making artificial green leaves, in which this substance is used in fine powder, suffer from inflammation of the conjunctivae with thickening and swelling of the eyelids ('Lancet,' 1873, 1, p. 174).

Analysis.—For the chemical characters of Scheele's Green, see page 107. The wall-paper pigment called Emerald Green is a mixture of arsenite and acetate of copper. The green colour is very intense, even by candle-light. The presence of arsenic in this compound may be easily detected by all the tests for solid arsenic (page 104); but the following is a simple method which admits of speedy application. A slip of the suspected paper should be soaked in a moderately-strong solution of ammonia. The green colour is removed, and the blue ammoniuret of copper is formed and dissolved in a few minutes. This result establishes only the presence of a compound of copper soluble in ammonia. If the ammonia does not become blue, there is no arsenite present; if it does become blue, a large crystal of nitrate of silver must be placed in a white saucer and a small portion of the blue liquid poured over it. The presence of arsenic is revealed by the production of yellow arsenite of silver over the surface of the crystal.

Arsenic Acid. Alkaline Arsenates.—Arsenic acid is an artificial product almost entirely confined to the chemical laboratory. Orfila states that it is a more powerful poison than arsenious acid, but he does not adduce any instance in support of this opinion. I have not been able to find any case of poisoning by it in the human subject. The arsenates of potash and soda must be regarded as active poisons, although there are but few instances on record in which life has been destroyed by them.

Analysis.—Arsenic acid is a white uncrystalline deliquescent solid. 1. It is very soluble in water, forming a highly acid solution. 2. It is precipitated of a brick-red colour by nitrate or the ammonio-nitrate of silver.

Sulphides, or Sulphurets of Arsenic.—Orpiment or Yellow Arsenic owes its poisonous properties to the presence of a variable proportion of arsenious acid, sometimes amounting to as much as 30 per cent. of its weight. Orpiment is much employed in the arts, in painting, dyeing, paper-staining, and even in the colouring of toys and sweetmeats for children, but is not often used as a poison. In the exhumation of the bodies of persons who have died from arsenic, it is common to find the yellow sulphide in the stomach. White may be converted into yellow arsenic in the dead body, but yellow cannot be spontaneously changed into white arsenic.

Orpiment produces symptoms and appearances similar to those caused by arsenious acid; but the dose required to destroy life varies according to the proportion of arsenious acid with which it happens to be mixed. This is not a common form of poisoning; the yellow colour of the poison would lead to suspicion; but by
reason of this colour, orpiment may be given or taken, by mistake for mustard or turmeric.

Analysis.—The powdered sulphide yields a solution of arsenious acid on boiling it in water acidulated with hydrochloric acid. It readily gives the well-known sublimates of metallic arsenic, either with soda-flux or cyanide of potassium (see page 107).

Chloride of Arsenic.—This is a solution of arsenic in diluted hydrochloric acid. It was formerly used in pharmacy, but is now excluded. It contains one grain and a half of arsenious acid in one fluid ounce, which is equal to the small proportion of three-sixteenths of a grain to a fluid drachm. Mr. Phillips states that it is a highly poisonous preparation, and from a case which I saw in Guy's Hospital in May 1857, this statement is confirmed. A woman took, in three doses, thirty minims over a period of twenty-four hours. The quantity of arsenic thus taken was not more than the tenth part of a grain, and yet the symptoms which followed were of a severe kind, resembling those of chronic poisoning. These were constriction of the throat, pain and irritation of the stomach and bowels, tingling and numbness of the hands and feet, loss of muscular power, and a feeling of extreme depression. The medicine (a poison) was withdrawn, and the patient slowly recovered. It seems that she had not taken arsenic previously, and there was no evidence of the existence of a peculiar susceptibility to the effects of arsenic. The quantity taken was very small to produce such alarming symptoms. The usual medicinal dose of this solution was from three to ten minims.

Analysis.—This compound is obtained in the separation of arsenic from organic solids by distillation (see page 109). It may be tested by the process of Marsh or Reinsch, as there described. When boiled with fuming chloride of tin, it is decomposed, and metallic arsenic of a brown-black colour is deposited.

Arsenuretted Hydrogen.—This is a gaseous poison of arsenic, producing when respired in small quantity, very serious effects upon the system. It has caused death in four instances among chemists who have incautiously breathed the deadly vapour while performing scientific experiments. Dr. Trost, of Aachen, has lately reported three other fatal cases with a full account of the symptoms and appearances. These cases occurred accidentally among workmen engaged in separating silver from lead by means of zinc and hydrochloric acid. The latter was found to contain much arsenic which escaped with the hydrogen ("Vierteljahrs," 1873, 1, p. 269. See "On Poisons." "Chemical News," Dec. 26, 1863, p. 307.)
CHAPTER 12.

POISONING BY MERCURY.—CORROSIVE SUBLIMATE.—SYMPTOMS.—CHRONIC POISONING.—APPEARANCES AFTER DEATH.—CHEMICAL ANALYSIS.—PROCESS FOR MERCURY IN ORGANIC LIQUIDS.—CALOMEL.—WHITE AND RED PRECIPITATES.—OTHER COMPOUNDS OF MERCURY.

Metallic Mercury is not commonly regarded as a poison. It is usually stated that a large quantity of it may be swallowed without affecting health, or without causing more uneasiness than that which may arise from its great weight. It rapidly passes through the bowels. A case which lately occurred to Sir D. Gibb shows that this is not strictly true. For the purpose of causing abortion a girl swallowed four and a half ounces by weight of mercury. It had no effect on the uterus, but in a few days the girl suffered from a trembling and shaking of the body (mercurial tremors) and loss of muscular power. These symptoms continued for two months, but there was no salivation and no blue mark on the gums. ('Lancet,' 1873, 2, p. 329.)

If mercury is breathed or swallowed in a state of vapour, or if applied to the skin or mucous membrane in a state of extreme mechanical division, in which state it appears to be easily susceptible of oxidation, it is liable to be absorbed, and to produce a poisonous action on the body. The effects are principally manifested by salivation, by trembling and involuntary motions of the limbs, loss of appetite, and emaciation. These symptoms are occasionally seen in workmen engaged in trades in which they are exposed to the inhalation of mercurial vapours.

Corrosive Sublimate.—This substance has received a variety of chemical names. It has been at various times called Oxymuriate, Chloride, Bichloride, Mercuric Chloride, and Perchloride of Mercury. To prevent any confusion from scientific chemical nomenclature, the old and popular name of Corrosive Sublimate, expressing the principal properties of the substance, is here retained. It is commonly seen under the form of heavy crystalline masses, or of a white crystalline powder. Its taste is powerfully austere and metallic, so that no poisonous quantity of it could be easily swallowed, without the person becoming immediately aware of it. It is very soluble in water, hot or cold, and speedily sinks in it, in which properties it differs strikingly from arsenic.

Symptoms.—The symptoms produced by corrosive sublimate generally come on immediately or within a few minutes after the poison has been swallowed. In the first place there is perceived a strong metallic taste in the mouth, often described as a coppery taste; and there is, during the act of swallowing, a sense of constriction almost amounting to suffocation, with burning heat in the throat, extending downwards to the stomach. In a few minutes violent pain is felt in the abdomen, especially in the region of the
stomach, which is increased by pressure. There is nausea, with frequent vomiting of long stringy masses of white mucus, mixed with blood, attended with severe pain in the abdomen, and profuse purging. The countenance is sometimes swollen and flushed, in other cases it has been pale and anxious. The pulse is small, frequent, and irregular, and is scarcely perceptible when the symptoms become aggravated. The tongue is white and shrivelled,—the skin cold and clammy, the breathing difficult; and death is commonly preceded by fainting, convulsions, or general insensibility. The external parts of the mouth, when examined, are swollen, and sometimes present a white appearance, as if the cavity had been washed with a solution of nitrate of silver: the lips are often swollen. Suppression of urine has also been frequently noticed among the symptoms: it existed in a well-marked case of poisoning by this substance at Guy's Hospital:—the patient lived four days, but did not pass any urine during the whole of this time. ("Guy's Hospital Reports," April, 1844, p. 24.) This symptom was observed in a case reported by Dr. Wegeler (Casper's "Wochenschrift," Jan. 10, 1846, p. 30), in which a youth, set 17, swallowed three drachms of the poison, and died on the sixth day. During the last three days, no urine was secreted. The case was otherwise remarkable from the fact, that no pain was experienced on pressure of the abdomen, and that the pulse underwent no change until shortly before death. In another case, reported by the late Dr. Herapath, in which a scruple of corrosive sublimate in solution was swallowed, suppression of urine and salivation came on on the third, and the patient died on the ninth day. ("Lancet," Dec. 13 and 27, 1845, pp. 650, 698.) The external application of corrosive sublimate to tumours or ulcers may destroy life with all the usual symptoms of acute mercurial poisoning. At the Winchester Lent Assizes, 1859 (Reg. v. Crook), a quack was convicted of manslaughter by applying corrosive sublimate in powder to a cancerous tumour in the face of deceased. The man died under the usual symptoms. After death the bowels were found extensively inflamed and ulcerated. Mr. May, of Reading, detected corrosive sublimate in the diseased part. In September 1871, a girl, set 9, died from the effects of this poison, locally applied to the scalp for the treatment of ringworm. The liquid applied was alcohol containing eighty grains of corrosive sublimate to the ounce. She suffered from mercurial poisoning in a severe form, and died on the fifth day after the application. This case is instructive to medical men. (See "Pharm. Jour." Sept. 9, 1871, p. 216; "Lancet," 1871, 2, 473; and "Med. Times and Gazette," 1871, 2, 363.) No theory of idiosyncrasy is required to account for death under such circumstances. In the first edition of my work On Poisons (1848), p. 394, fatal cases are related of poisoning by corrosive sublimate through the unbroken skin. Two brothers thus lost their lives, the one dying on the fifth and the other on the eleventh day. Those who deny the power of the unbroken skin to absorb corrosive sublimate and cause all the usual effects of acute
mercurial poisoning, should make themselves and not their patients the subjects of experiment.

This poison differs from arsenic: 1, in having a well-marked taste; 2, in producing violent symptoms in a few minutes; and, 3, in the fact that the evacuations are more frequently mixed with blood. The symptoms produced by corrosive sublimate, in the first instance, resemble those of cholera; if the person should survive several days, they are more like those of dysentery,—violent straining, and shreddy mucous discharges mixed with blood, being frequently observed.

Slow or chronic poisoning.—The symptoms are much modified when the poison is taken in small doses at intervals for some days or weeks. There are colicky pains with nausea, vomiting, general uneasiness, and depression. The salivary glands become inflamed and painful; the tongue and gums are red and swollen, sometimes ulcerated, and there is fetor of the breath. A deep blue line, like that observed in poisoning by lead, is sometimes found around the edges of the gums. The patient experiences difficulty of swallowing and breathing. The constitutional effects are indicated by irritability or looseness of the bowels, difficulty of breathing, spitting of blood, cough, general trembling or convulsive movements of the limbs and palsy, with fever and emaciation, under which the patient sinks. One of the most marked effects of slow or chronic poisoning by mercurial preparations is, _salivation_, or ptialism, indicated by an increased flow of saliva. This is by no means a necessary symptom in cases of acute poisoning by corrosive sublimate, but it not unfrequently shows itself about the second or third day. In many instances the patient dies too rapidly for this effect to follow; but even when he survives some days, salivation is not always observed. In placing reliance upon this symptom, it must be remembered that salivation may arise from a variety of causes irrespective of the use of mercury. In the salivation caused by mercurial compounds, the saliva always contains mercury, which may be detected by Reinsch’s process. The elimination of this metal takes place by all the fluid secretions, but chiefly by the urine and intestinal liquids. (‘Lancet,’ 1873, i, p. 476.)

Substances sold under the name of _Worm Lozenges_ have been known to cause death by producing fatal salivation.

Appearances after Death.—These, as in the case of arsenic, are chiefly confined to the stomach and bowels. Corrosive sublimate, however, affects the mouth, throat, and gullet; the mucous membrane is softened, of a white or bluish-grey colour, and sometimes inflamed; that lining the gullet is similarly affected, and partly corroded and softened. The mucous membrane of the stomach is more or less inflamed, sometimes in patches; and there are masses of black extravasated blood found beneath it. Occasionally it has a slate-grey colour, and the mucous coat beneath may be found reddened. A case occurred in Guy’s Hospital, in which the mucous membrane was simply inflamed: it much resem-
bled the condition presented in cases of arsenical poisoning. The coats of the stomach are sometimes corroded, and so much softened that they cannot be removed from the body without laceration. Similar appearances have been met with in the small and large intestines, especially in the cecum. In a case reported by Dr. Herapath, in which a scruple was taken, and death occurred on the ninth day, the mucous membrane of the stomach was softened, but there were no well-marked appearances of the irritant action of the poison on this organ. The cecum had been the seat of the most violent inflammation, the whole surface being of a deep black-red colour, and there were patches of sloughing in the coats. ('Lancet,' Dec. 27, 1845, p. 700; 'Edinburgh Monthly Journal,' Dec. 1861, p. 532.) Perforation of the stomach is rare as an effect of this poison: there is, I believe, only one case on record. Appearances like those just described, have been seen in the alimentary canal, not only where the case has terminated fatally in a few hours, but where it has been protracted for six, eight, and even eleven days.

The smallest dose which is reported to have destroyed life is three grains. This was in the case of a child, and the quantity was accurately determined from the fact of its having been made up by mistake for three grains of calomel, which a physician intended to order. It is probable that, under favourable circumstances, from three to five grains, or even less, would destroy an adult.

In an acute case a person commonly dies in from one to five days, but death may take place much sooner or later than this. In the shortest fatal case on record the man died in less than half an hour, but the quantity of poison taken was not ascertained. ('On Poisons, Corrosive Sublimate.')

Chemical Analysis.—Corrosive sublimate is usually seen in heavy crystalline masses, or in the form of a white powder. In the solid state—
1. When the powder is heated on platinum foil or mica, it melts, and is volatilized in a white vapour without leaving any residue. 2. When heated in a close tube, unlike arsenic, it melts before subliming, and forms a sublimate, consisting of stellated prismatic crystals. (See Fig. 12.) 3. The powder is changed in colour by the following reagents: iodide of potassium produces a bright scarlet, potash a yellow, and sulphide of ammonium a black compound; ammonia does not alter its colour. 4. The mercury and chlorine may be discovered by one process. Mix the powder with four parts of dried carbonate of soda (obtained by incinerating the bicarbonate),
ANALYSIS AS A SOLID AND IN SOLUTION.

until the residue in the reduction-tube fuses and becomes white. A sublimate of metallic mercury in distinct and well-defined globules will be obtained. Detach by a file the end of the tube containing the fused residue, which is chloride of sodium with some undecomposed carbonate. Digest it in water with nitric acid, and apply heat until it is entirely dissolved: then add to the solution nitrate of silver. A white precipitate of chloride of silver, insoluble in nitric acid, will be at once produced. The solid is thus proved to contain both mercury and chlorine, and the only compound of these elements which is soluble in water is corrosive sublimate.

In solution in water. A few drops of the solution of corrosive sublimate evaporated on a glass-slide yield slender opaque silky prisms. When a weak solution of iodide of potassium is dropped on them, they acquire a bright scarlet colour. This scarlet colouration, which may be obtained from the minutest crystal and only one drop of solution, proves that the body dissolved in water is corrosive sublimate: it is thus distinguished from every other mineral poison, and all other substances whatever.

1. Chloride of tin added to a solution of corrosive sublimate produces a black precipitate, which, after it has been boiled, is resolved into globules of metallic mercury. 2. Sulphuretted hydrogen and sulphide of ammonium produce, after a time, a black sulphide, not soluble in alkalies or diluted acids. 3. If the liquid is acidulated with hydrochloric acid, and bright copper-foil, wire, or gauze, is plunged into it, the copper will acquire a silvery-white deposit, even in the cold, but more rapidly by heat. When the copper with the metallic deposit is heated in a tube, globules of mercury are sublimed. (See Fig. 14.)

In Organic liquids.—The liquids should be separated by filtration from any insoluble portions. The latter should be pressed, dried, and set aside for a separate analysis. The liquid portion should be slightly acidulated with hydrochloric acid, warmed, and a slip of copper foil or gauze introduced; if this is not immediately coated with mercury, it should be allowed to remain for some hours. When a deposit has taken place on the copper, it should be removed, washed in water, and afterwards in ether and dried. When the quantity of corrosive sublimate dissolved in an organic liquid is moderately large, it may be removed by means of ether. Place the filtered liquid supposed to contain the dissolved poison, in a stoppered tube: add to it twice its volume of pure ether, and agitate the liquid at intervals for a few minutes. Allow the liquid to sub-
side, pour off the ether into a dial-glass, and submit it to spontaneous evaporation. As the ether passes off, the corrosive sublimate will be deposited in white silky-looking prisms. These may be purified, if necessary, by solution in water or alcohol, and the solution again crystallized. Corrosive sublimate may thus be separated from arsenic and other mineral poisons in solution. If mercury and arsenic are associated in a poisonous mixture, or in the tissues, the arsenic may be entirely removed by distillation (page 109). Masses of corrosive sublimate may be sometimes locked up in thick viscid mucus; and in such cases, the coarse powder being heavy, it may be separated by simply agitating the viscid liquid in water, and then decanting the upper portion suddenly. This poison is decomposed and precipitated by many organic principles, such as albumen, fibrin, mucous membrane,—also by gluten, tannic acid, and other vegetable substances. Thus, then, we cannot always expect to find it in the stomach, in a state of solution. Other methods of analysis are chiefly directed to the separation of the mercury only. The suspected liquid is boiled, filtered, and acidulated with hydrochloric acid. 1. To one portion add chloride of tin in excess, again boil the liquid and filter to separate the mercury, the whole of which is precipitated as a black powder, or in grey globules. On boiling this deposit in strong hydrochloric acid, the small globules coalesce to form liquid mercury. 2. Into another portion of the liquid, introduce copper gauze, foil, or wire, and gently warm it. The copper is covered with a layer of silvery-white metal, either immediately or in a few hours. A large quantity of copper may be thus coated. The coated copper should be digested in warm alcohol or ether, dried and heated in a reduction-tube, when a sublimate in silvery-white globules will be obtained, well marked by their opacity, lustre, and sphericity when examined by the microscope. (See Fig. 14.) The sublimate of metallic mercury differs from that of arsenic in the fact that, when heated, it sublimes simply as metal without change. It is not oxidized (like metallic arsenic) by heating it in a reduction-tube, but is simply transferred with its metallic lustre and globular form from one part of the tube to another. In the event of a doubt existing respecting the nature of the sublimate, the following experiment will remove it. Cut off by a file the portion of glass on which the globules are deposited: introduce this into a wide short tube, with a few drops of hydrochloric and half the quantity of
nitric acid. Heat the acid liquid, and evaporate it to dryness on a sand-bath. White prismatic crystals of corrosive sublimate will remain, if the sublimate is of a mercurial nature, and too great a heat has not been applied. On touching the white residue cautiously with a drop of solution of iodide of potassium, the crystals will acquire a scarlet-red colour.

In place of copper, a slip of gold foil may be wound round a slip of zinc foil, and introduced into the liquid. The gold is soon covered with a silvery-white layer of mercury, which may be separated from it by heat in a reduction-tube, or by the action of nitric acid, and the nitrate thus formed may be subsequently tested by the chloride of tin.

The tissues.—Insoluble substances suspected to contain mercury, as well as the soft organs, e.g., liver and kidney, may be cut up and boiled in one part of hydrochloric acid and four of water until dissolved. The mercury may then be separated by copper or gold with zinc. This analysis will show the presence of mercury, but not of corrosive sublimate, in the body. Whether the mercurial compound has acted as a poison or not, must be determined from symptoms and appearances; whether it has been given or taken as a medicine or not, is a conclusion which must also be determined from other circumstances. The proof that the mercury was really in the form of corrosive sublimate, could only be derived from the discovery of some undissolved portions of the solid poison in the stomach or its contents, or from a separation of the poison itself by means of ether. If thus obtained after filtration of an organic liquid, it would show its presence in the form of a soluble salt: and it may be remarked that all the soluble salts are poisonous, and are rarely used internally as medicines. If undissolved, the absorbed mercury may have been derived from some mercurial medicine innocently taken by the deceased. Nothing is more common than to discover traces of mercury in the stomach, bowels, liver, kidneys, or other organs of a dead body. No importance can be attached to this discovery in the absence of evidence that the deceased has actually suffered from symptoms of mercurial poisoning. As to the mercury found in the tissues, it may have been derived from a soluble or insoluble compound, or from exposure to the vapours of the metal or of its salts, in various trades.

CALOMEL. Subchloride of Mercury.—This substance, although commonly regarded as a mild medicine in small doses, may destroy life, by causing excessive salivation with ulceration and gangrene; and in large doses it acts as an irritant poison.

Analysis.—It is known from corrosive sublimate by its insolubility in water, alcohol, and ether. It is known from white precipitate by its insolubility in acids, and by its being blackened by alkalis. A mercurial sublimate may be obtained from it by heating it with dry or anhydrous carbonate of soda.

WHITE PRECIPITATE. Ammoniated Mercury.—The symptoms
which this compound produces are violent vomiting, cramps, great thirst, purging and pain in the stomach and bowels, with convulsions. Tenderness of the gums and salivation have been observed among the symptoms. After death there is more or less inflammation of the stomach and bowels. Experiments on dogs and rabbits have shown that this is a formidable poison. The greater number of recoveries have been probably owing to the substance being early ejected by vomiting. Rabbits, which do not vomit, were killed by a dose of four and five grains in a few hours. After death, mercury was found deposited in various organs, but more in the kidneys than in the other viscera. For additional facts connected with the action of this poison see 'Guy’s Hosp. Reports,' October 1860, p. 483.

A trial for attempting to poison by this substance took place at the Maidstone Summer Assizes, 1869 (Reg. v. Seaham). The compound is white, but as a result of boiling, it gave a yellow colour to the gruel in which it was administered. In Reg. v. Hargreaves (Manchester Lent Assizes, 1866), a girl was convicted of an attempt to poison her father by this substance. The poison was put into milk and medicine. It produced a burning sensation in the throat and stomach, and thus led to suspicion. About ten grains of white precipitate were detected in some buttermilk.

This substance is very easily procured by children. In February 1873, a boy of 12 was convicted, at the Central Criminal Court, of administering this poison feloniously in medicine. The prosecutor experienced a hot sensation, unlike the bitter taste he had before perceived. A white powder was found in the medicine which proved to be white precipitate.

Analysis.—White precipitate is a chalky-looking compound containing about eighty per cent. of mercury. It is insoluble in water and alcohol. As it is sold in the shops it frequently contains, as an impurity, corrosive sublimate to the amount of one or two per cent., separable by ether or alcohol. It is not used internally, but it is much employed by the poorer classes in the treatment of ringworm. It is soluble in acids, is not blackened by alkalies, and it yields a mercurial sublimate when heated with carbonate of soda. Chloride of tin produces with it a black deposit of mercury. If boiled in a solution of potash, it evolves ammonia, and yellow oxide of mercury is precipitated. It may be detected in organic fluids and solids by boiling them in one part of hydrochloric acid and four parts of water. The mercury may then be separated by means of copper.

Red Precipitate. Red Oxide of Mercury.—This substance is poisonous, but instances of poisoning by it are very rare. One case occurred at Guy’s Hospital in 1833. The patient recovered in four days.

Analysis.—By its great weight and insolubility in water, it may be separated from all liquids. Its red colour identifies it. When heated in a close tube, it is resolved into oxygen and mercury, which is deposited in globules.
POISONING WITH LEAD.

Other compounds of mercury, such as the nitrates, sulphates, the cyanide, sulpha-cyanide, and sulphide have given rise to accidents, and in a few instances have destroyed life, but they rarely require the notice of the practitioner.

When heated in the dry state with anhydrous carbonate of soda, all the compounds of mercury yield sublimates of the metal in globules. All liquid and solid compounds give a dark precipitate of mercury when boiled with the acid chloride of tin.

CHAPTER 13.

ON POISONING WITH LEAD.—SUGAR OF LEAD.—SYMPTOMS.—APPEARANCES AFTER DEATH.—CHEMICAL ANALYSIS.—LEAD IN ORGANIC MIXTURES.—CARBONATE OR WHITE LEAD.—CHRONIC POISONING.—POISONING WITH COPPER.—BLUE VITRIOL.—SYMPTOMS.—APPEARANCES.—CHEMICAL ANALYSIS.—COPPER IN ORGANIC LIQUIDS.

SUGAR OF LEAD.

Acetate of Lead.—Symptoms.—Acetate or sugar of lead is by no means an active poison. In medical practice it has often been given in considerable doses without any serious effects resulting. When it has been taken in a dose of from one to two ounces, the following symptoms have been observed: a burning, pricking sensation in the throat, with dryness and thirst, vomiting, and uneasiness at the pit of the stomach, followed by severe colic. The abdomen is tense, and the skin covering it is sometimes drawn in. The pain is relieved by pressure, and has intermissions. There is generally constipation of the bowels. If any feces are passed, they are commonly of a dark colour, indicative of the conversion of a portion of the lead into sulphide. The skin is cold, and there is great prostration of strength. When the case is protracted, the patient has been observed to suffer from cramp in the calves of the legs, pain in the inside of the thighs, numbness, and sometimes paralysis of the limbs. The affection of the nervous system is otherwise indicated by giddiness, torpor, and even coma. A well-marked blue line has been noticed round the margin of the gums, where they join the teeth. For a remarkable series of cases of poisoning by acetate of lead which has been reported by Mr. Bancks, of Stourbridge, see 'Lancet,' May 5, 1849, p. 478.

Appearances.—In one acute case the mucous membrane of the stomach was found removed in several places, especially near the intestinal opening; and most of the intestines were in a state of high inflammation. In animals, according to Dr. Mitscherlich, when the dose is large, the mucous coat of the stomach is attacked and corroded; this change appears to be purely chemical, and takes place in those parts of the body with which the salt of lead comes in contact. If given in a small dose, it is decomposed by
the gastric secretions, and exerts no corrosive action on the mucous membrane. When the acetate of lead was given in a state of albuminate dissolved in acetic acid, death took place with great rapidity; but on inspection, the stomach was not found corroded. This corrosive action belongs to the neutral salt, and is not manifested when the dose is small, or when the poison is combined with an acid.

Nothing is actually known concerning the fatal dose of this substance; but it may be taken in comparatively large quantity without producing serious effects. Thirty or forty grains have been given daily in divided doses without injury.

Chemical Analysis. Acetate of Lead as a solid.—1. If a portion of the powder is heated in a small reduction-tube, it melts, then becomes solid: again melts, acquiring a dark colour, and gives off vapours of acetic acid, easily recognized by its odour and reaction on litmus paper. A black mass is left in the tube, consisting of carbon and reduced metallic lead. No sublimate is formed. If heated on mica, yellow oxide of lead with reduced metal remains. 2. It is very soluble in water, even when cold; spring water is turned milky by it, from the presence of carbonic acid and sulphates. 3. A small portion of the powder dropped into a solution of iodide of potassium acquires a bright yellow colour. 4. When dropped into solution of potash it remains white. 5. Into sulphuretted hydrogen water or sulphide of ammonium, it is turned black, in which respect it resembles the white salts of some other metals. 6. When the powder is boiled in a tube with diluted sulphuric acid, acetic acid, known by its odour and volatility, escapes. All these properties taken together, prove that the salt is the acetate of lead.

Acetate of Lead in solution.—1. A small quantity, slowly evaporated on a glass slide, will give slender white prismatic crystals, which are turned yellow by iodide of potassium, and black by sulphide of ammonium. 2. Dilute sulphuric acid produces an abundant white precipitate, insoluble in nitric acid, but soluble in hydrochloric acid and in a large excess of potash. 3. It is precipitated of a bright yellow colour by the iodide of potassium; the yellow iodide of lead is soluble in potash, forming a colourless solution. It is also dissolved by concentrated hydrochloric acid. 4. Sulphide of ammonium, or sulphuretted hydrogen gas, produces a deep black precipitate, even when less
than the 100,000th part of the salt is dissolved. 5. Place a few drops of the solution on clean platinum-foil, acidulate it with acetic acid, then apply through the solution, to the surface of the platinum, a thin polished slip of zinc;—crystals of metallic lead are instantly deposited on the zinc; by this method, a small quantity of the metal may be detected and collected.

Lead in organic liquids.—The acetate of lead is precipitated by many organic principles, especially by albumen and tannic acid. Thus, we may have to analyze either an organic liquid containing lead, or a solid precipitate consisting of mucus or mucous membrane, or albumen intimately united to oxide of lead. The liquid should be filtered and examined by a trial test, i.e. either by adding to a portion, sulphuric acid, when sulphate of lead is precipitated, or by exposing bibulous paper, dipped into the suspected liquid, to a free current of sulphuretted hydrogen gas. If the paper is not stained brown, there is no perceptible quantity of lead dissolved;—if it is stained brown, we dilute the liquid to destroy its viscosity, should this be necessary, and pass into it a current of washed sulphuretted hydrogen gas until all chemical action has ceased. The black sulphide of lead should be collected on a filter, washed and dried; then boiled for a quarter of an hour in a mixture of one part of nitric acid, diluted with four parts of water. This has the effect of transforming it, at least in part, into nitrate of lead soluble in water. This liquid, when filtered, may be evaporated to dryness, the crystalline residue dissolved in water, and the tests for lead then applied to the solution. If the quantity is too small for the application of all the tests, we may first add sulphuric acid; should a white precipitate be formed, soluble in potash (free from oxide of lead); and this alkaline solution be again turned black by sulphide of ammonium, this is sufficient evidence of the presence of lead. Should there be no lead dissolved, we must decompose the solid and insoluble matters by boiling them in nitric acid slightly diluted, filter, and test the filtered liquid, previously neutralized; or we may evaporate at once to dryness, destroy the organic matter by heat, and redissolve the residue in nitric acid for testing.

In the tissues.—The organic matter, such as a part of the liver or other organ, should be dried and incinerated in a porcelain vessel. The ash should be heated with a small quantity of strong nitric acid, and then evaporated to dryness. The dry residue should be digested in a small quantity of distilled water (free from lead), filtered, and, after it has been slightly acidulated with nitric acid, a current of washed sulphuretted hydrogen gas should be passed into it. The production of a brown colour or a brown precipitate in a slightly acid liquid indicates the presence of lead. Lead may thus be detected in the dry residue of urine and of spring or river water. All liquid and solid organic substances containing lead, yield the metal or its oxide by incineration in a porcelain capsule.

Gouard's Extract is a solution of subacetate of lead, the oxide of
the metal being in excess; and Goulard Water is a mixture of one drachm and a half of this solution with a pint of water. The effects of these compounds when swallowed or applied locally are similar to those produced by the acetate.

White Lead. Carbonate of Lead.—This is an insoluble, chalky-looking compound, which, like other salts of lead, may give rise to the usual symptoms of lead-poisoning. In one instance it appears to have proved fatal. Most of the cases of poisoning by this substance have been of a chronic character, carbonate of lead being one of the products of the action of water upon lead.

Chronic Poisoning.—*Colica pictorum,* or Painter's Colic, may be considered as the chronic form of poisoning by carbonate of lead. The symptoms are usually well-marked. There is at first pain with a sense of sinking commonly in or about the region of the navel (the seat of the colon). Next to pain there is obstinate constipation, retraction of the skin of the abdomen, loss of appetite, thirst, fetid odour of the breath, and general emaciation, with paralysis of a peculiar kind affecting the extensor muscles, and causing a dropping of the wrist, or showing itself in a general paralysis of the limbs. The skin acquires a sallow colour, generally well marked in the face; and the patient experiences a sweetish, styptic, or astringent taste in the mouth. A symptom of a peculiar nature was first pointed out by the late Dr. Burton ("Med. Gaz." vol. 25, p. 687), namely, a blueness of the edges of the gums, where these join the bodies of the teeth: the teeth are of a brownish colour. The blue line on the gums may be regarded as a distinguishing sign of lead-colic. Chronic poisoning with lead often kills the patient, since a great amount of mischief is done before the cause is discovered. The only appearances found after death have been a contraction of the cavity of the large and small intestines, and a considerable thickening of their coats. These changes have been especially noticed in the colon—the seat of colic. The various circumstances under which this form of poisoning is liable to occur are elsewhere fully described. (See "On Poisons;" also "Principles of Med. Jur." 1865).

One of the most frequent causes of chronic lead poisoning is the use of water kept in leaden cisterns or pipes, or the careless employment of white or red lead as a cement for pipes. For an instructive series of cases showing the effects of water thus poisoned, I must refer the reader to a paper by Dr. de Musy, published in the "Dublin Quarterly Journal" for May 1849; also "Medical Gazette," vol. 44, p. 260. These cases occurred at Claremont, among the members of the ex-Royal Family of France. The effects were traced to the use of pure water which had acquired an impregnation of lead, by contact with that metal, in the proportion of one grain to the imperial gallon. Thirteen out of thirty-eight persons were affected, and to such a degree that the nails of the toes and fingers acquired a bluish discolouration. The children of the family did not suffer. This is perhaps the smallest quantity of lead
POISONING WITH COPPER.

in water accurately recorded to have produced the effects of poison-
ing. No symptoms appeared until after the water had been in use
for a period of from five to seven months, and more than half of
those who used the water, escaped any ill effects.

Cases of poisoning are sometimes observed as the result of the
introduction of oxide of lead into the system through wine, beer,
cider, milk, and other liquids. Earthenware glazed with litharge
imparts oxide of lead to fat in dripping, also to acid liquids. Snuff
is sometimes adulterated with red lead to improve its colour, and
some cases of lead-poisoning have occurred from the use of such
snuff. A spurious tin-foil, consisting chiefly of lead faced with tin,
is much used as a covering or wrapper for articles of food. When
exposed to damp, this metallic alloy undergoes chemical changes
whereby carbonate of lead is produced. Children's farinaceous
food has thus become impregnated with carbonate of lead.

POISONING WITH COPPER.

All the salts of copper are poisonous. The two most commonly
known in commerce are the Sulphate or Blue Vitriol; and the
Subacetate of Verdigris.

Blue Vitriol. Sulphate of Copper. Symptoms.—Sulphate of
copper has been frequently given for the purpose of procuring
abortion. In doses of half an ounce and upwards, it acts as a
powerful irritant on adults, and a much smaller quantity would
suffice to destroy infants or children. The salt speedily causes
vomiting of the most violent kind; this sometimes expels the
poison from the stomach, and the person recovers. There is head-
ache, with pain in the abdomen and purging; the pain is of a colicky
character; and in aggravated cases there are spasms of the extre-
mities and convulsions. Dr. Perceval met with an instance in
which violent convulsions were produced in a young woman by two
drachms of the sulphate of copper. Paralysis, insensibility, and
even tetanus, have preceded death, when the poison was ad-
ministered to animals. Among the symptoms occasionally met with
in the human body, may be mentioned jaundice. This has been
observed to attend poisoning by the sulphate, as well as by Scheele's
green. The vomited matters are remarkable for being generally of
a blue or green colour; broken crystals of blue vitriol were dis-
covered in them, in a case in which the poison was taken in the
state of coarse powder. If the green colour of the vomited liquid
is owing to altered bile, it will not acquire a blue tint on adding to
a portion of it a strong solution of ammonia; but if caused by a
salt of copper, this change of colour will serve to indicate the fact.
The medicinal dose of sulphate of copper as an emetic, is from five
to fifteen grains, and as a tonic, from one to three or four grains.
Verdigris, or subacetate of copper, produces similar symptoms.

Chronic poisoning by copper is occasionally seen among workers
in this metal and its salts. The poison enters the system partly by
the lungs in the form of dust, and partly by the skin in handling
the metal or its salts. The marked symptoms are a coppery taste
in the mouth, giddiness, pain in the bowels, vomiting, occasional
diarrhoea, and wasting of the body. Dr. Clapton has pointed out
another symptom; namely, a green line on the margin of the gums.
He met with this in a sailor and in some working coppersmiths.
(‘Med. Times and Gazette,’ June 1868, p. 658.) Two of these
cases I saw in 1868. The green line was well marked. The men
brought with them a hammer used in their work. It had a greenish
brought, and this was shown by tests to be owing to copper. The
perspiration from the hands in working had converted the copper
into subchloride, and thus led to its absorption by the skin. Several
cases of chronic poisoning by copper among coppersmiths, have
been treated by Dr. Cameron of Liverpool, but this symptom is
not noticed. (‘Med. Times and Gazette,’ 1870, 1, 581.)

Appearances.—In the few fatal cases which have been hitherto
examined, the mucous membrane of the stomach and intestines
has been found more or less thickened and inflamed, and in some
cases eroded and softened. The gullet has presented an inflam-
matory appearance. In one case of poisoning by verdigris the
stomach was inflamed and thickened, especially towards the intes-
tinal opening, the orifice of which, from the general thickening,
was almost obliterated. The small intestines were throughout
inflamed, and perforation had taken place, so that part of the green
liquid was effused into the abdomen. The large intestines were
distended in some parts, and contracted in others, and the rectum
was ulcerated on its inner surface. (Orfila, ‘Toxicologie,’ vol. 1,
p. 623.) The lining membrane of the alimentary canal has been
found throughout of a deep green colour, owing to small particles
of the copper salt (verdigris) adhering to it.

Chemical analysis.—The salts of copper, whether in the solid
state or in solution, are generally known by their blue or green
colour. Tests.—1. Solution of ammonia: this gives, in a solution
of a salt of copper, a bluish-white precipitate, which is soluble in
an excess of the test, forming a deep violet-blue liquid. 2. Ferro-
cyanide of potassium gives in a very diluted solution a rich claret-
red precipitate. If the quantity of copper is small, the liquid
acquires merely a light-red colour; if large, the precipitate is of a
deep red-brown colour, and of a gelatinous consistency. The fer-
rocyanide of potassium will act on the violet-blue solution produced
by ammonia, provided it is diluted, and a few drops of diluted
sulphuric acid are added in order to neutralize the ammonia. One
portion of the liquid may thus be tried with the two tests. 3. Sul-
phuretted hydrogen gas, or sulphide of ammonium, gives a deep
chocolate-brown precipitate, even in an acid solution; or, if the
copper is in small proportion, merely a light-brown colour. 4. A
slip of polished iron (a common needle) suspended by a thread in
the liquid slightly acidulated with sulphuric acid is speedily coated
with a red layer of copper, even when the salt is in very small proportion.
The iron thus coated may be washed, immersed in ammonia, and
exposed to air. The liquid becomes slowly blue. Half a grain of sulphate of copper dissolved in sixteen ounces of water may be thus easily detected. 5. The Galvanic test.—If a few drops of the copper-solution are placed on platinum-foil, slightly acidulated with a diluted acid, and the platinum is then touched through the solution with a slip of zinc-foil, metallic copper, of its well-known red colour, is immediately deposited on the platinum. When the quantity of copper is small, there is merely a brown stain; but a blue liquid is formed by pouring on it ammonia, and exposing it to air. A coil of fine platinum and zinc wires may be substituted for the foil.

Copper in organic liquids.—The oxide of copper is liable to be precipitated by certain organic principles, e.g. albumen, fibrin, and mucous membrane; but some of these organic compounds are easily dissolved by acids, or even by an excess of the solution of cuprous salt. A portion at least of the salt of copper is, therefore, commonly held dissolved. In such cases the liquid is usually of a greenish colour, and has a strong coppery or metallic taste, even when the copper-salt is in far less than a poisonous proportion. Having filtered the organic liquid, let a portion of it be placed in a clean platinum capsule. A few drops of diluted sulphuric acid should be added, and a slip of zinc-foil introduced. Wherever the platinum is touched by the zinc, metallic copper is deposited; and, after having in this way coated the platinum capsule, the surplus liquid may be poured off and the capsule well washed out. The deposited copper, which is of a deep red colour, is then dissolved in nitric acid, and the tests are applied after the excess of acid has been driven off by heat, and the residue dissolved in water. In place of nitric acid and heat, a strong solution of ammonia may be poured on the deposit in the cold. Under exposure to air the metal is oxidized and dissolved in a few minutes, forming a blue solution. This ammoniacaal solution may be neutralized with diluted sulphuric acid, and the ferrocyanide of potassium then applied. The red colour of the deposit on platinum is characteristic of copper, but the mode of testing here advised renders the results conclusive.

In the tissues.—Dry and incinerate the organic matter. Digest the residuary ash in pure hydrochloric acid by heat, and then evaporate nearly to dryness. The residue may be dissolved in a small quantity of water, and a polished needle immersed for some hours. The metallic deposit, if any, on the needle, may be recognized as copper, either by its colour or by the action of ammonia. Traces of copper have been found in many kinds of food as well as in the tissues of the body, irrespective of the introduction of a copper-salt as a poison.
CHAPTER 14.
TARTAR EMETIC.—SYMPTOMS.—(APEAPANCEES.—CHRONIC POISONING.—
CHEMICAL ANALYSIS.—CHLORIDE OR BUTTER OF ANTIMONY.—POISONING
WITH SALTS OF ZINC AND IRON.

TARTAR EMETIC.

Stibiated Tartar. Tartarated Antimony.—Symptoms and Effects.
—When tartar emetic is taken in a poisonous dose, a strong metallic
taste is perceived in the mouth during the act of swallowing. There is
great heat and constriction of the throat, with difficulty of swallowing,
violent burning pain in the region of the stomach, followed by in-
cessant vomiting, profuse purging, faintness, and extreme depres-
sion. The pulse is small and rapid, sometimes imperceptible; the
skin cold, and covered with a clammy perspiration; and the
respiration is painful. Should the case prove fatal, death may be
preceded by giddiness, insensibility, great prostration of strength,
and sometimes violent spasms of the muscles of the limbs, which
may assume either a clonic or a tetanic character. Such are the
symptoms in an acute case of poisoning by this substance. The
quantity actually required to destroy life is unknown. One drachm
taken at a dose proved fatal in ten hours in spite of early and
frequent vomiting. (‘Med. Gaz.’ vol. 45. p. 801.)

Appearances.—The following cases shew the nature of the
appearances likely to be found after death:—Two children, a boy
aged five years, and a girl aged three years, each swallowed a
powder containing ten grains of tartar emetic mixed with a little
sugar. It was stated that, in twenty minutes after taking the
powders, they were seized with violent vomiting and purging, and
great prostration of strength, followed by convulsions and tetanic
spasms; there was also great thirst. The boy died in eight hours,
and the girl in twelve or thirteen hours, after swallowing the dose.
The bodies were inspected between four and five days after death.
In that of the boy there was effusion of serum in the right pleura;
the lower lobe of the right lung posteriorly was redder than natural,
and the peritoneum was injected from recent inflammation. The
mucous membrane of the duodenum was inflamed, and covered
with a whitish-yellow viscid secretion; this was observed through-
cout the intestines, but the colour was of a deeper yellow in
the large intestines: there was no ulceration. The peritoneal coat
of the stomach was inflamed. The mucous membrane of this organ
was also much inflamed, especially about the larger curvature and
at the cardiac orifice: there was no ulceration, but in one case
there was a patch of lymph. The stomach contained about two
ounces and a half of a dark bloody fluid, having a slightly acid
reaction. The tests used did not indicate the presence of antimony.

With regard to other appearances, the tongue was covered with a
white fur, and appeared soddened; the throat was not inflamed;
the windpipe and gullet had a natural appearance. On opening
the head the dura mater was found congested; the longitudinal
sinus contained a coagulum of lymph, and but little blood. The
vessels of the surface of the brain were much injected with dark
blood, the whole surface having a deep purple colour. Every por-
tion of the brain, when cut, presented many bloody points. The
cerebellum and medulla oblongata were also congested; there was
no effusion in the ventricles or at the base of the brain. In the
body of the girl the morbid appearances were similar; there were,
in addition, on the arms, legs, and neck, patches resembling the
eruption of scarlatina. The arachnoid membrane was more opaque
than usual; and on the mucous membrane of the stomach, where
the inflammation was greatest, were two or three white spots, each
about the size of a split pea, which appeared to be the commence-
ment of ulceration. ('Lancet,' April 26, 1846, 460.)

In cases of chronic poisoning by this substance the principal
symptoms are as follows: Great nausea; vomiting of mucous and
bilious liquids; great depression and prostration of strength; watery
purging, followed often by constipation of the bowels; small, con-
tracted, and frequent pulse; loss of voice and muscular strength;
coldness of the skin, with clammy perspiration; and death from
complete exhaustion. In these cases antimony may be detected in
the urine by Reinsch's process. There are several cases reported
which show that tartar emetic has been thus criminally employed.

It has been hitherto supposed that the cases in which this poison
has proved fatal have been few; but I have elsewhere reported
thirty-seven, of which sixteen were fatal. The smallest fatal dose
was in a child, three quarters of a grain, and in an adult, two grains;
but in this instance there were circumstances which favoured the
fatal operation of the poison. ('Guy's Hospital Reports,' October
1857.)

Chemical analysis. Tartar Emetic as a solid.—In the state of
powder it is white and crystalline.—1. It is easily dissolved by
water—it is taken up by fourteen parts of cold, and two of boiling
water; the solution has a faint acid reaction, and an acid metallic
taste. It is not very soluble in alcohol. 2. The powder dropped
into sulphide of ammonium is turned of a deep reddish-brown colour,
and is thereby known from other poisonous metallic salts. 3. When
heated in a reduction-tube, it is charred, but does not melt before
charring, like the acetate of lead. The metal is partially reduced
by the carbon of the vegetable acid, and the decomposed mass has
a greyish-blue metallic lustre. No metallic sublimate is produced
in this experiment by the heat of a spirit-lamp. 4. When boiled
in water containing one-sixth of pure hydrochloric acid and metallic
copper is immersed in the liquid, a grey deposit of antimony takes
place on this metal. The colour of the deposit is violet-red if the
quantity is very small, but the deposit is black and pulverulent if
very large. 5. The solution acidulated with one-tenth part of
hydrochloric acid gives in the cold a black deposit on a surface of
pure tin. A slip of pure tin-foil may be used in this experiment. This serves to distinguish antimony from arsenic, which, under these circumstances, produces no deposit on pure tin. On the other hand tartar emetic and other antimonial compounds give no deposit like arsenic when boiled with chloride of tin and fuming hydrochloric acid, unless arsenic is present as an impurity (p. 106 ante.)

Tartar Emetic in solution.—1. On slowly evaporating a small quantity on a slip of glass, it will crystallize in tetrahedra, and in derivatives of the octahedron, fig. 16. If obtained from a very diluted solution, this crystallization is confused, and resembles that of arsenic.

2. _Ferrocyanide of potassium_ does not precipitate the solution, whereby tartarized antimony is known from most other metallic poisons. 3. _Sulphuretted hydrogen gas_ produces in the solution a reddish orange-coloured precipitate, differing in colour from every other metallic sulphide. The precipitate is not readily soluble in ammonia or in tartaric acid, but it is dissolved in the dry state by strong hydrochloric acid.

In liquids containing organic matter.—Tartar emetic is precipitated by tannic acid in all its forms, but not readily by albumen or mucous membrane; therefore it may be found sometimes dissolved in the liquids of the stomach, and sometimes precipitated. These insoluble compounds of antimony are very soluble in tartaric acid; and thus, if there should be no antimony dissolved, it may easily be brought into a state of solution by means of this acid. The liquid, acidulated with tartaric acid, should be boiled and filtered. If it should be highly coloured or turbid, it may be concentrated and submitted to the process of dialysis. The antimonial compound may thus be obtained in a clear solution. (See page 79.) A current of sulphuretted gas may now be passed into the whole or a portion of it until there is no further precipitation. The sulphide is collected, washed, and dried. If it is the sulphide of antimony, it will have an orange-red or brown colour, it will be insoluble in a solution of ammonia, and when dried will be dissolved by a small quantity of boiling hydrochloric acid (forming chloride of antimony) with the evolution of sulphuretted hydrogen gas. The boiling should be continued for several minutes until the liquid is colourless. On adding this solution, if not too acid, to water, a white precipitate of oxychloride of antimony (powder of Algaroth or Algarotti, _Mercurius Vitæ_) falls down. This is characteristic of antimony. The white precipitate is soluble in tartaric acid. If the sulphuretted
hydrogen is passed into a coloured organic liquid the orange-red colour of the sulphide can be only well seen in the froth.

The following method of detecting the metal when dissolved in any organic liquid, is based upon the principle by which copper and other metals may be detected under similar circumstances:

1. Acidulate a portion of the suspected liquid with hydrochloric acid, and place it in a shallow platinum capsule. Touch the platinum, through the acid liquid, with a slip of pure zinc-foil. Hydrogen is evolved, and wherever the metals come in contact, metallic antimony, in the state of a black powder, is deposited upon the surface of the platinum. The liquid should be poured off, and the capsule thoroughly washed with distilled water. This may be effected without disturbing the black deposit. This deposit should be heated with strong nitric acid—evaporated to dryness—the white residue dissolved in strong hydrochloric acid, and this solution, not too much diluted, may be precipitated by a current of sulphuretted hydrogen. A reddish-coloured sulphide indicates antimony. If a portion of this hydrochloric acid solution is added to water, it may give a precipitate of white oxychloride of antimony, soluble in tartaric acid, and this solution may be precipitated of an orange-red colour by sulphuretted hydrogen. By this process antimony in small quantity may be detected in, and separated from, any liquid containing organic matter. If there is no deposit under these circumstances, a slip of zinc or tin-foil, with a layer of thin platinum-foil wound round it, should be suspended in the acid liquid sufficiently diluted for some hours. If antimony is present it will be deposited on both metals in the form of a black powder.

In the tissues.—The antimony may be in so small a quantity, as it is deposited in the organs, that neither the sulphuretted hydrogen nor the galvanic process will yield any satisfactory results. The liver or other organ should be cut into small pieces, and boiled in a mixture of one part of hydrochloric acid and five parts of water. After some time, the liquid may be tested by introducing into it a slip of polished copper-foil free from antimony. If antimony is present in small quantity, the copper will acquire a reddish or violet-coloured deposit on its surface: if in large quantity, the deposit will be grey with a metallic lustre, or sometimes in the state of a loose black powder. These deposits, when heated in a reduction-tube, do not yield octahedral crystals like those obtained from arsenic. A slip of pure tin-foil may be suspended in the cold in another portion of the acid liquid, so diluted that the hydrochloric acid forms only one-tenth part by measure. Either immediately, or in the course of a few hours, if antimony is present, the tin is covered with a black deposit of metallic antimony. Antimony in the metallic state is so easily procured from a small quantity of material, by one or other of the above-mentioned processes, that no account should this be omitted. The procuring of the metal
may be made subsidiary to the procuring of the sulphide, as the metal can be easily oxidized and converted into sulphide in a pure form, and obtained entirely free from organic matter. A reliance on a small quantity of a coloured precipitate from sulphuretted hydrogen alone, without the production of the metal in some form, would be most unsatisfactory as chemical evidence. No chemist would rely upon the production of a yellow sulphide, as certain evidence of the presence of arsenic, unless he obtained the metal arsenic from that compound.

The separation of antimony from the tissues does not necessarily indicate that it has been criminally administered or has caused death; but its presence there should be reasonably accounted for, as antimony may have been unlawfully administered. In several cases of suspected death from poison, deposits on copper, evidently of an antimonial nature, have been obtained from the liver or tissues. On inquiry it has been found that antimonial medicines had been taken shortly before death.

Chloride or Butter of Antimony.—This is a strongly corrosive poison by reason of the acid with which the antimony is combined. It has caused death in several instances. The symptoms and appearances resemble those produced by concentrated hydrochloric acid. It gives a white precipitate when added to water. This is soluble in tartaric acid, and the solution is precipitated of an orange-red colour by sulphuretted hydrogen gas.

Poisoning with Zinc.

Sulphate of Zinc. White Vitriol.—Symptoms and Appearances.
—The symptoms produced by an over-dose of sulphate of zinc are pain in the abdomen and violent vomiting, coming on almost immediately, followed by purging. After death the stomach has been found inflamed. The sulphate appears to act as a pure irritant: it has no corrosive properties. This salt may cause death indirectly as the result of exhaustion from violent vomiting, when an ordinary dose has been given to a person already debilitated by disease. It does not appear to be a very energetic poison. In one case a lady recovered after taking sixty-seven grains (‘Lancet,’ May 17, 1856). In another, which occurred in May 1872, communicated to me by Dr. Mackintosh, of Downing, a man set. 20 recovered in a few days after taking an ounce of sulphate of zinc by mistake for Epsom salts. There was early vomiting and purging of a most violent kind, with great prostration of strength. The greater part of this large dose was no doubt thus carried out of the body.

Chloride of Zinc.—Symptoms and Appearances.—This, which is commonly sold under the name of ‘Sir W. Burnett’s Fluid,’ is a corrosive poison, and is much used as a deodorizer. The patient experiences a sense of heat and burning in the mouth and throat, in the act of swallowing the liquid, which has been frequently fatally mistaken for fluid magnesia. There is a burning and griping pain in the stomach, nausea followed by violent retching and
vomiting—the vomited matters being streaked with blood and mixed with much flaky mucus, with shreds of mucous membrane. This has produced an appearance of frothiness about the mouth. Violent purging has been observed among the symptoms. A stage of collapse supervenes, and the skin becomes cold and livid.

After death from this poison the lining membrane of the mouth and throat has been found white and opaque—that of the stomach has sometimes been hard and leathery, at others corrugated, opaque, and of a dark leaden colour. The lungs and kidneys are congested. The chloride is both a corrosive and irritant poison, exerting also a peculiar action on the nervous system. If a person survives the acute stage, he may die in the chronic stage from stricture of the gullet or pylorus, or from emaciation and exhaustion as a result of the local action of the poison on this organ.

Analysis.—In these two compounds the zinc is detected by their aqueous solutions giving white precipitates with a current of sulphuretted hydrogen gas, while the sulphuric acid or chlorine may be recognized by their respective tests. Metallic zinc may be obtained by plunging into a weak solution of the salt a slip of magnesium.

Preparations of Iron.

Sulphate of Iron, Copperas, Green Vitriol.—This compound has been several times administered with malicious intention. One death from it took place in 1837–8. It cannot, however, be an active preparation; for a girl who swallowed an ounce of it recovered, although she suffered for some hours from violent pain, vomiting, and purging. ('Christison on Poisons,' p. 506.) Green vitriol or copperas is sometimes given as an abortive. At the Nottingham Autumn Assizes, 1859, a woman of the name of Riley was indicted for administering copperas to two children. She put the substance into gruel. It gave to the gruel a greenish colour and a peculiar taste, which led to the discovery. It caused sickness, but no other serious symptoms. As there was no evidence of an intent to murder, and it was then not unlawful to administer poison with any other intent, the prisoner was acquitted. This salt has been much used for criminal purposes in France. (See 'Medical Gazette,' vol. 47, p. 307; also 'Ann. d'Hyg.,' 1850, vol. 1, pp. 180, 416; and 1851, vol. 1, p. 155; vol. 2, p. 337.)

Muriate of Iron, Tincture of Perchloride of Iron.—This is an acid solution of perchloride of iron in rectified spirit: it is of a red-brown colour, and is much employed as a medicine. It is sometimes made with wood-spirit or methylated spirit, which gives to it a peculiar odour. Sir R. Christison relates an instance in which a man by mistake swallowed an ounce and a half of this liquid. The symptoms were somewhat like those produced by hydrochloric acid. He at first rallied, but died in about five weeks. The stomach was found partially inflamed, and thickened towards the intestinal end.
Comparatively small doses of this solution may seriously affect pregnant women; and among the criminal uses to which it has been put, may be mentioned that of procuring abortion. At the Lincoln Lent Assizes, 1863 (Reg. v. Rumble), a druggist was convicted of having supplied this noxious compound to a woman with the intent to procure her miscarriage. The health of the woman was greatly injured by the administration of this liquid.

These are the principal metallic irritants; but the compounds of tin, silver, gold, bismuth, and chromium have also an irritant action. Cases of poisoning by these substances are, however, very rare. (See 'Principles of Medical Jurisprudence,' 2nd edition, 1873.)

VEGETABLE AND ANIMAL IRRITANTS.

CHAPTER 15.

VEGETABLE IRRITANTS. ALOES.—SAVIN.—CROTON-OIL.—COLUMBICUM.—HELLEBOR.—VERATRUM.—CARBOLIC ACID. ANIMAL IRRITANTS: CANTHARIDIES. —NOXIOUS ANIMAL FOOD.

General Remarks.—The poisonous substances of an irritant nature which belong to the vegetable kingdom are very numerous as a class; but it will here be necessary to notice only those which have either caused death, or have given rise to accidental poisoning.

Aloes. Colocynth. Gamboze. Jalap. Scammony.—These different substances, which are used in small doses as medicines, are liable, when taken frequently or in large quantities, to excite severe vomiting, purging, and other symptoms of irritation.

Hieropicra (Holy bitter) is a popular aloetic compound, and one death is recorded to have been produced by it in 1837–8. There is reason to believe that it is occasionally used for the purposes of procuring criminal abortion. A man was tried and convicted of this offence at the Aylesbury Lent Assizes, 1867 (Reg. v. White), and the noxious properties of this compound then became a subject of inquiry. The dose, and the condition of the woman to whom it is administered, will of course affect the answer to this question. At the trial above mentioned, it was properly considered to be a noxious substance within the meaning of the statute. The fact that, under the name of Pulvis Aloes cum Canell, it was formerly admitted into the British Pharmacopoeia, cannot justify the mischievous uses to which
it may be put. *Hierapiera* is a snuff-coloured powder, of an intensely bitter taste. It consists of four parts, by weight, of aloes, and one part, by weight, of powdered Canella bark. The proper medicinal dose was formerly fixed at from five to fifteen grains. Its injurious effects on pregnant women are chiefly due to the aloes. This drug specially affects the rectum, and by contiguity, under violent irritation or purging, may affect the uterus. From the taste and colour which it imparts to liquids, it is not probable that it could be taken by a woman unknowingly.

Savin (Juniperus Sabina).—This is a well-known plant, the leaves of which contain an irritant poison in the form of an acrid volatile oil of a remarkable odour. They exert an irritant action both in the state of infusion and powder. They yield by distillation a light yellow oil, on which the irritant properties of the plant depend. The powder is sometimes used in medicine, in a dose of from five to twenty grains. Savin is not often taken as a poison for the specific purpose of destroying life; but this is occasionally an indirect result of its use as a popular means of procuring abortion. In this manner it appears to have proved fatal in one case in 1837-8. From the little that is known of its effects, it acts by producing violent pain in the abdomen, vomiting, and strangury. After death, the gullet, stomach, and intestines, with the kidneys, have been found either much inflamed or congested. It has no action as an abortive, except, like other irritants, by causing a violent shock to the system under which the uterus may expel its contents. Such a result can never be obtained without placing in jeopardy the life of a woman; and when abortion follows, she generally falls a victim.

Croton-Oil.—This is an oil extracted from the seeds of the *Croton tiglium*. It is a powerful, drastic purgative, producing, in a large dose, severe purging, collapse, and death. A case occurred in Paris, in 1839, in which a man swallowed by mistake two drachms and a half of croton oil. In three-quarters of an hour the surface was cold and clammy, the pulse imperceptible, breathing difficult, and the extremities and face were as blue as in the collapsed stage of cholera. In an hour and a half purging set in; the stools were passed involuntarily, and the abdomen was very sensitive to the touch. The patient complained of a burning pain in the course of the gullet. He died in four hours after swallowing the poison. There was no marked change in the mucous membrane of the stomach. (For another fatal case, see 'Pharm. Journal,' Feb. 1863, p. 379.)

Meadow-Saffron (Colchicum).—Meadow-saffron (*Colchicum Au-
POISONING WITH COLCHICUM.

contains a poisonous alkaloid—colchicina—the effects of which on animals are similar to those of veratrum, the alkaloid existing in white hellebore. The most noxious parts of the plant are the bulbs (or roots) and seeds, but the leaves and flowers have also an irritant action.

Symptoms and Appearances.—The symptoms in cases of poisoning by colchicum are generally well-marked. There is burning pain in the throat and stomach, intense thirst, violent vomiting and purging leading rapidly to exhaustion, coldness and clamminess of the skin, excessive depression, and great weakness. The pulse is small, weak, and fluttering, and death appears to take place from complete exhaustion without convulsions or loss of consciousness. Among four cases (infra) presenting these symptoms, one person died on the second, one on the fifth, one on the eighth, and one on the fourteenth day. In another case of poisoning by wine of colchicum, the symptoms did not come on for an hour and a half: there was then copious vomiting of a yellow fluid, severe pain with great tenderness in the abdomen, tenesmus, and thirst. The patient died in forty-eight hours, without being convulsed or manifesting any sign of cerebral disturbance. The chief morbid appearance was a patch of redness in the mucous membrane of the stomach, near the cardiac orifice; the intestines were slightly inflamed. The head was not examined. (‘Medical Gazette,’ vol. 10, p. 161; see also Casper, ‘Ger. Med.,’ p. 450.)

In a case of poisoning by the medicinal administration of colchicum, communicated to me by Mr. Mann, of Bartholomew Close, three and a half drachms of the wine of colchicum were taken in divided doses, and caused death on the fourth day. There was no inflammation of the mucous membrane, but simply extravasation of blood into the mucous follicles. The mucous membrane has been found softened in two cases of poisoning by the tincture. In two other cases, in which an ounce and a half of the tincture was taken, and death ensued in forty-eight hours, no morbid appearances were found. (Casper, ‘Ger. Med.,’ 1857, p. 451; and see his ‘Vierteljahresschrift,’ 1860, vol. 1, p. 1.)

Colchicum has acquired an evil notoriety as a poison chiefly owing to the evidence given at a trial which took place at the Central Criminal Court, in September 1862 (Reg. v. Catherine Wilson). This woman, after having been tried and acquitted for an attempt to poison, with oil of vitriol, the wife of a man with whom she cohabited, was in the following September convicted of the murder of a Mrs. Soames, who had died suddenly while nursed by the prisoner six years previously. The body was exhumed, but no poison was found in the remains; yet the medical and other circumstances, as well as the conduct and correspondence of the prisoner, proved to the satisfaction of the Court that deceased had been destroyed by vegetable poison, most probably colchicum, with the noxious properties of which she was proved to have been well acquainted. From the facts which transpired in reference to this trial, it appeared that the deceased was one of four persons who had at different
dates fallen victims to the acts of this woman. 1. Peter Mawer, a master mariner of Boston, died in October 1854: the body was exhumed in 1862, but no poison was detected. 2. Mrs. Jackson, of Boston, who died in December 1859: the body was exhumed in January 1860, and no poison detected. 3. Mrs. Atkinson, of Kirkby Lonsdale, who died in October 1860: the body was exhumed in May 1862, and no poison detected. 4. The case of Mrs. Soames, above mentioned. All these persons died suddenly while in a state of health, under similar symptoms, and without any apparent natural cause to account for death. The symptoms as a whole were not reconcilable with any known disease; and they only appeared after the prisoner was proved to have administered, under some pretence or other, food or medicine, the bottle which she employed for this purpose being kept locked up or in her own possession. The motive for the murder in each case was the acquisition of money or property of which the prisoner came into possession—in Peter Mawer's case by a will made shortly before his death, and in Mrs. Atkinson's case by an act of robbery after her death. Two other attempts at murder which failed, led to the inference that colchicum was the substance which this woman employed, either in wine or brandy. In these four persons, the symptoms were as nearly as possible of the same character—burning pain in the throat and stomach, intense thirst, violent vomiting and purging, coldness and clamminess of the skin, excessive depression, and great weakness. The pulse was small and weak, and death appeared to take place from complete exhaustion, without convulsions or loss of consciousness. In most of the cases the poison was probably given in divided doses: in the last case, the symptoms appeared regularly every evening after the deceased had taken the tea prepared by the prisoner.

Colchicum.—The noxious properties of colchicum are owing to the presence of this alkaloid, which is remarkable for acquiring a reddish-violet colour on the addition of strong nitric acid. It may be separated from liquids containing it by a process similar to that described for strychnia. (See STRYCHNIA.)

Hellebore Symptoms and Appearances.—According to Wibmer, the roots of the black hellebore possess the greatest activity; but the leaves are also highly poisonous when used in the form of infusion. By long boiling the poisonous properties of the plant are diminished, probably owing to the loss of the volatile principle, which is an acrid oil. The roots and leaves have a local irritant action, producing violent vomiting and purging in small doses, with severe pain in the abdomen, followed by cold sweats, convulsions, insensibility, and death. The powdered root, in a dose of a few grains, acts like a drastic purgative. In a case reported by Morgagni, half a drachm of the aqueous extract killed a man, set. 50, in eight hours. The symptoms were severe pain in the abdomen and violent vomiting. After death the whole of the alimentary canal was found inflamed, but
especially the large intestines. (Wibmer, op. cit. Helleborus.) A case is quoted by the same writer, in which a table-spoonful of the finely-powdered root (taken by mistake for rhubarb) caused severe symptoms of irritant poisoning, which did not disappear for four hours. The man recovered on the fourth day. The experiments performed by Orfila on animals, show that this poison acts like a local irritant when applied to a wound. (Op. cit. vol. 2, p. 369.) Hellebore is a favourite remedy for worms among quacks and rural doctors. It is not, therefore, surprising that it should be occasionally administered in an overdose, and cause death. In December 1862, Dr. Edwards met with a case in which a gentleman had swallowed experimentally one drachm of tincture of green hellebore (veratrum viride), equal to twelve grains of the powder. He was found soon afterwards in a collapsed state; features sunk, skin cold, and covered with a profuse clammy sweat; pulse scarcely perceptible. He complained of intense pain in the region of the stomach. There was no purging. These symptoms were relieved by treatment, and the next morning the patient had recovered. (‘Med. Times and Gazette,’ 1863, 1, 5.)

Veratria.—White hellebore owes its noxious properties to the alkaloid veratria, which is itself a powerful poison. The late Mr. Callaway communicated to me the following case:—A physician prescribed medicinally, for a lady, one grain of veratria divided into fifty pills, and three were directed to be taken for a dose. Not long after the dose had been swallowed, the patient was found insensible, the surface cold, the pulse failing, and there was every symptom of approaching dissolution. She remained some hours in a doubtful condition, but ultimately recovered. Supposing the medicine to have been well mixed, and the pills equally divided, not more than one-sixteenth of a grain of veratria was here taken! The common veratria of the shops is sometimes given medicinally, in doses of one-sixth of a grain. Poisoning by veratria is a rare occurrence. I have not met with an instance in which this alkaloid has been administered with criminal intention. With the exception of the case above-mentioned, there is no experience of its operation as a poison on man. Judging from its effects on animals, it would cause vomiting and convulsions, with insensibility.

Analysis.—In the state in which it is usually seen, it is a brownish-white powder, scarcely soluble in boiling water, but dissolved by alcohol, ether, and benzole. Acids readily dissolve it, forming salts which on evaporation do not yield crystals. The powder has a hot, acrid taste, and if any portion enters the nostrils, it causes most violent sneezing, lasting for some time. Strong nitric acid gives to the powder a light red colour, becoming ochreous after a time. Hydrochloric acid, strong, and diluted with the aid of heat, produces a dingy red tint. The best test for its presence is the dilute sulphuric acid, which by a gentle heat strikes a rich pink colour, which is destroyed by a solution of chlorine, but not by
CARBOLIC ACID. OIL OF TAR. 145

chloride of tin. Strong sulphuric acid turns the powder yellow, but on heating the mixture, the colour deepens, and finally becomes of a deep red: when the liquid is diluted, it passes to a dingy yellow. Veratria undergoes no change when mixed with iodic acid, but it gives immediately with sulphonolodybic acid, a deep greenish yellow colour passing to a brown red.

Veratria differs from colchicina in its insolubility in water, as well as in the action of strong nitric and dilute sulphuric acids. It may be brought into solution in organic liquids by acetic acid and heat. The liquid is treated with potash and then shaken with two parts of benzole. The alkaloid if present, is obtained by decanting and evaporating the benzolic solution. The tests may then be applied to it. It has not yet been detected in the tissues.

A case occurred in September 1866, in which death was attributed to the action of veratria criminally administered. The deceased, a woman, was advanced in pregnancy, and from the medical evidence she died from puerperal convulsions and Bright's disease of the kidney, with effusion of blood on the brain. It was said that veratria was detected in her body and in the urine, but there were no symptoms of poisoning by veratria, and there was no evidence of administration by any one. The chemical analysis was not published, or it might have appeared that too great a reliance had been placed upon the tests employed. (Med. Times and Gazette, Oct. 28, 1866, p. 472.) It was a case of death from natural causes mistaken for poisoning.

Carbolic Acid. Oil of Tar.—This is a crystalline product of the fractional distillation of the oil of tar. In an impure state it has been long known as creasote. The crystals of carbolic acid melt at 96°, and the oily-looking liquid boils and is entirely volatilized at 370°. It is sold commercially in a liquid form. Many instances of poisoning by this substance are now on record, the greater number have arisen from accident. It has such a powerful odour and taste that it could not be easily administered with homicidal intent. In a concentrated form it has a strong local action, and is a corrosive irritant, but it affects the brain like a narcotic poison. It acts on the unbroken skin, whitens it, hardens it, and destroys its sensibility for some time. It acts in a similar way on the mucous membrane, whitening, hardening, and corrugating it. In three instances it is reported to have destroyed life as the result of external application. (Brit. Med. Journal, Oct. 8, 1870.) In one case the person died in two hours. The acid had been rubbed into the skin to cure the itch. (Pharm. Jour., March 22, 1873.) A girl under five years of age died from the absorption of this poison. An incision had been made in the arm in a surgical operation. The wound was covered with lint, soaked in carbolic acid, but without actual contact. In one hour the child was found insensible, and the face livid. She passed into a state of
CARBOLIC ACID. ANIMAL IRRITANTS.

complete coma, and died half an hour later. (‘Amer. Jour. Med. Sci.,’ July 1873, p. 280; also ‘Lancet,’ June 7, 1873.)

Symptoms and Appearances.—When the poison is swallowed in solution in a moderately concentrated state, the patient experiences a hot burning sensation extending from the mouth to the stomach. The symptoms come on in the act of swallowing; the lining membrane of the mouth is whitened and hardened. There is severe pain in the stomach, with vomiting of a frothy mucus. The skin is cold and clammy, the lips, eyelids, and ears are livid; the pulse 120 and intermittent; breathing difficult, with frothing at the mouth. There is insensibility, which comes on speedily, and passes into coma with stertorous breathing; there is a strong odour of carbolic acid in the breath and in the room; the pupils are contracted and insensible to light. The motions and urine, when passed, have been dark-coloured. Among the appearances after death the following have been observed: the interior of the mouth and jaws whitened, sometimes corroded; the oesophagus also white, hard, and corrugated. The coats of the stomach have presented a horny consistency, without any signs of inflammation. The lungs have been found gorged with blood, and the bronchia filled with a brown-red thick mucus. In one case it caused death in less than an hour. (‘Lancet,’ 1873, p. 302.)

Analysis.—The strong and peculiar odour perceptible in the breath, in the vomited matters, and in the room, generally suffice to indicate the nature of the poison. Carbolic acid is partially dissolved by water, and is very soluble in alcohol, ether, or solution of potash. It has no acid reaction: it gives a greasy stain to paper, and burns with a smoky flame. There is no test for its presence so delicate as the odour; but a solution of a persalt of iron, if not too acid, gives with it a dark purple colour like ink. It may be separated from the contents of the stomach by washing them with ether, decanting the ethereal liquid, and allowing the ether to evaporate. Oily-looking globules of carbolic acid are thus obtained. Bromine water gives a dense white precipitate, with a small quantity of carbolic acid, when dissolved in water.

ANIMAL IRRITANTS.

Cantharides. (Spanish Flies).—Symptoms.—When cantharides are taken in powder, in the dose of one or two drachms, they give rise to the following symptoms: a burning sensation in the throat, great difficulty of swallowing, violent pain in the abdomen, with nausea and vomiting of a bloody mucus: there is also great thirst, with dryness of the fauces. As the case proceeds, a heavy dull pain is commonly experienced in the loins, and there is an incessant desire to void urine, but only a small quantity of blood or bloody urine is passed at each effort. The abdominal pain becomes of a violent griping kind. Purging supervenes, but this is not always observed; the matters discharged from the bowels are
mixed with blood and mucus; and there is often tenesmus (straining). In these, as well as in the vomited liquids, shining green or copper-coloured particles may be commonly seen on examination, whereby the nature of the poison taken, if it has been taken in powder, will be at once indicated. After a time, there is prispasm, and the genital organs are swollen and inflamed both in the male and female. When the case proves fatal, death is usually preceded by faintness, giddiness and convulsions. The tincture of cantharides produces similar symptoms:—they are, however, more speedily induced, and the burning sensation in the stomach and constriction of the throat are more strongly marked: this symptom is often so severe as to render it impossible for the person to swallow; and the act of swallowing gives rise to excruciating pain in the throat and abdomen.

Appearances.—In one well-marked case, the whole of the alimentary canal, from the mouth downwards, was in a state of inflammation. The mouth and tongue seemed to be deprived of their mucous membrane. The ureters, kidneys, and internal organs of generation were also inflamed. In another instance, in which an ounce of the tincture was swallowed, and death did not occur for fourteen days, the mucous membrane of the stomach was not inflamed; but it was pulpy, and easily detached. The kidneys were, however, inflamed. The brain has been found congested, and ulceration of the bladder is said to have been met with. There are few fatal cases reported in which the appearances have been accurately noted; indeed, the greater number of those who have taken this poison have recovered.

The quantity required to produce serious symptoms, or to destroy life, has been a frequent subject of medico-legal inquiry. The medicinal dose of the tincture is from ten minims gradually increased to one fluid-drachm,—of the powder from one to two grains. (Pereira, 'Mat. Med.' part 2, vol. 2, p. 754.) Doses above these, whether of the powder or the tincture, are likely to be injurious, and to give rise to symptoms of poisoning. The smallest quantity of the powder which has been known to destroy life, was in the case of a young woman, quoted by Orfila,—the quantity taken was estimated at twenty-four grains in two doses. She died in four days; but as abortion preceded death, this may have been concerned in accelerating that event. An ounce of the tincture has been known to destroy life. It was taken by a boy, 27, and he died in fourteen days. This, I believe, is the smallest dose of the tincture which has proved fatal.

Chemical Analysis.—For the detection of the powder, M. Poumet recommends that the sediment obtained from the suspected liquids, should be mixed with alcohol spread on sheets of glass, and allowed to evaporate spontaneously to dryness. The shining scales will then be seen, on examining the glass by reflected light, either on one or both surfaces. (‘Ann. d'Hyg.’ Oct. 1842.) As the powder is insoluble in water, some portion of it may generally be obtained.
by washing and decantation. The sediment may then be examined on a glass-slide with the microscope. If no portion of the powdered flies can be obtained, the suspected liquids or solids should be brought to dryness and the dry residue digested in successive quantities of ether until exhausted. This will dissolve the cantharidine, which forms only the 1-250th part of the elytra of the insect. The ethereal solutions are evaporated to an extract, and some of this extract, spread on oil-silk, may be applied to a thin portion of the skin of the arm or to the lips. The production of a blister, with serum, under these circumstances, is considered to indicate the presence of cantharidine.

By this method Barruel discovered cantharides in chocolate (‘Ann. d’Hyg.’ 1835, p. 456). Chloroform is even a more powerful solvent of cantharidine than ether, and may be used in preference. (Fig. 18.) As the extract contains frequently a green oil and fat, which prevent cantharidine from crystallizing, it has been recommended to employ sulphide of carbon, in order to separate these impurities, the cantharidine not being soluble in the sulphide, while the fat is removed.

NOXIOUS ANIMAL FOOD.

Certain kinds of animal food are found to produce, occasionally, symptoms resembling those of irritant poisoning. In some instances this poisonous effect appears to be due to idiosyncrasy; for only one person out of several partaking of the food, may be affected. These cases are of importance to the medical jurist, since they may give rise to unfounded charges of criminal poisoning. In the absence of any demonstrable poison, we must test the question of idiosyncrasy by observing whether more than one person is affected, and whether the same kind of food, given to animals, produces symptoms of poisoning. If, with this latter condition, several persons are affected simultaneously with similar symptoms, we cannot refer the effects to idiosyncrasy; they are most probably due to the presence of an animal poison. Among the articles of food which have caused symptoms of irritant poisoning, may be mentioned certain shell-fish, (mussels), bacon, sausages, diseased pork, and animal flesh in a diseased or putrescent state.

The flesh of the most healthy animal is rendered unfit for food when it is putrescent. It is not merely unwholesome, but highly irritant, causing rapidly vomiting, purging, pain, and other symptoms of a severe kind. Fortunately these symptoms lead at
once to the expulsion of the noxious food from the body, and the person then recovers: the young, the old, and the infirm may, however, be so prostrated by excessive vomiting and purging, that they may sink from exhaustion. Animal matter in a state of partial decay, or in the transition stage of putrefaction, must also be regarded as of a poisonous nature. Much of the cheap butcher’s meat sold to the poor is in a state of decay, and is quite unfit for human food. In January 1851, the family of a surgeon near London were all affected with symptoms resembling irritant poisoning, after having partaken of a hare which had been stewed in a clean earthen vessel. The surgeon informed me that on the second day, his wife was seized with vomiting and purging, giddiness, heat in the throat, and general numbness, with inflamed eyes. Other members of the family vomited, and in the course of a few days the symptoms disappeared. I examined the vomited matter, and found it to consist of portions of the hare partially digested, but in a state of putrefaction, so that there was abundant evidence of sulphuretted hydrogen in the liquid. There was no mineral poison of any kind, although the symptoms, it will be observed, were rather like those occasioned by arsenic. It had been remarked by the family, that a silver spoon, which had been used in serving out this unwholesome food, was turned of a brown colour, no doubt from the chemical action of sulphuretted hydrogen; and this may be taken as a good domestic test of the putrefied condition of such food. Nature generally applies an appropriate remedy, in the fact that the food itself produces copious vomiting and purging. Cases of this kind must be distinguished from those in which poisoned game is sold to the public. The game may be quite free from putrefaction, but noxious from the poisoned grain which may have caused death. It is a very common practice to steep grain in a solution of arsenic, previous to sowing, and pheasants, partridges, and other birds may be accidentally destroyed by eating the grain. In some instances grouse and other game are maliciously destroyed by the laying of corn, saturated with arsenic or other poisons, in the localities where the birds abound. There is no law to prevent the sale of poisoned game by poulterers, and there is no precaution which can be taken by the purchasers, except by observing whether the birds have or have not been shot. (See on this subject, ‘On Poisons;’ also a letter by Dr. Fuller, ‘Med. Gaz.’ vol. 42, p. 1036); and for the effects produced by pork containing the trichina spiralis and other parasites, the reader is referred to ‘Principles of Medical Jurisprudence,’ 2nd edition.
NEUROTIC POISONS.
(NARCOTIC OR CEREBRAL POISONS.)

CHAPTER 16.

OPIUM.—SYMPTOMS.—APPEARANCES.—ITS ACTION ON INFANTS.—POISONING WITH OPIATE COMPOUNDS.—MORPHIA AND ITS SALTS.—MECONIC ACID.—PROCESS FOR DETECTING OPIUM IN ORGANIC MIXTURES.—DIALYSIS.

OPIUM.

Symptoms.—The symptoms which manifest themselves when a large dose of opium or its tincture has been taken, are in general of a uniform character. They are,—giddiness, drowsiness, a strong tendency to sleep, stupor, succeeded by perfect insensibility, the person lying motionless, with the eyes closed as if in a sound sleep. In this state he may be easily roused by a loud noise, and made to answer a question: but he speedily relapses into stupor.

In a later stage, when coma has supervened with stertorous breathing, it will be difficult, if not impossible to rouse him. The pulse is at first small, quick, and irregular, the respiration hurried, and the skin warm and bathed in perspiration, sometimes livid: but when the person becomes comatose, the breathing is slow and stertorous; the pulse slow and full. The skin is occasionally cold and pallid. The pupils, in the early stage, are contracted; in the later stage, and when progressing to a fatal termination, they may be found dilated. In a case referred to me in 1846, one pupil was contracted and the other dilated. In infants and children they are generally much contracted. They are commonly insensible to light. The expression of the countenance is placid, pale, and ghastly: the eyes are heavy, and the lips are livid. Sometimes there is vomiting, or even purging; and, if vomiting takes place freely before stupor sets in, there is great hope of recovery. This symptom is chiefly observed when a large dose of opium has been taken; and it may then be, perhaps, ascribed to the mechanical effect of the poison on the stomach. The peculiar odour of opium is occasionally perceptible in the breath. Nausea, and vomiting, with headache, loss of appetite, and lassitude, often follow on recovery. In cases likely to prove fatal, the muscles of the limbs feel flabby and relaxed, the lower jaw drops, the pulse is feeble and imperceptible, the sphincters are in a state of relaxation, the pupils are unaffected by light, the temperature of the body is low, there is a
loud mucous rattle in breathing, and convulsions are sometimes observed before death, but more commonly in children than in adults. One of the marked effects of this poison is to suspend all the secretions except that of the skin. Even during the lethargic state, the skin, although cold, is often copiously bathed in perspiration. It is a question yet to be determined, whether this may not be a medium by which the poison is principally eliminated. The contracted state of the pupils has been hitherto considered to furnish a valuable distinctive sign of poisoning with opium or the salts of morphia. In relying upon it, it is necessary to bear in mind the fact pointed out by Dr. Wilks, that, in apoplexy which is seated in the Pons Varolii, the pupils are also contracted. He describes two cases of this form of apoplexy which were mistaken for poisoning by opium in consequence of this condition of the pupils. ('Med. Times and Gaz.' 1863, 1, p. 214.) The symptoms above described, usually commence in from half an hour to an hour after the poison has been swallowed. Sometimes they come on in a few minutes, especially in children; and at other times their appearance is protracted for a long period.

It has been frequently observed that a person has recovered from the first symptoms, and has then had a fatal relapse. There is some medico-legal interest connected with this state, which has been called secondary asphyxia from opium, although there appears to be no good reason for giving to it this name.

Appearances.—In a case which proved fatal in fifteen hours, the vessels of the head were found unusually congested throughout. On the surface of the fore part of the left hemisphere, there was an ecchymosis, apparently produced by the effusion of a few drops of blood. There were numerous bloody points on the cut surface of the brain:—there was no serum collected in the ventricles. The stomach was quite healthy. Fluidity of the blood is mentioned as a common appearance in cases of poisoning by opium. There is also engorgement of the lungs: most frequently observed, according to Sir R. Christison, in those cases which have been preceded by convulsions. (Op. cit. p. 732.) Among the external appearances there is often great lividity of the skin. Extravasation of blood on the brain is rarely seen; serous effusions in the ventricles, or between the membranes, are sometimes met with. The stomach is so seldom found otherwise than in a healthy state, that the inflammatory redness said to have been occasionally seen, may have been due to accidental causes. From this account of the appearances in the dead body, it will be seen that there is nothing but a fulness of the vessels of the brain which can be looked upon as specially indicative of poisoning with opium, and even this is not always present.

The medicinal dose of opium, in extract or powder for a healthy adult, varies from half a grain to two grains. Five grains would be a very full dose. The medicinal dose of the tincture (laudanum) is from ten minims to one drachm,—as an average, from
POISONING WITH OPIUM AND MORPHIA.

thirty to forty minims. Persons have taken very large doses of the tincture, and recovered from the effects. A woman, set. 38, is said to have recovered after swallowing eight ounces. ('Lancet,' 1873, 1, p. 468.) The smallest dose of solid opium which has been known to prove fatal to an adult was in a case reported by Dr. Sharkey, of Jersey. A man, set. 32, died very speedily in a convulsive fit, after having taken two pills, each containing about one grain and a quarter of extract of opium. This quantity is equivalent to four grains of crude opium. ('Med. Gaz.' vol. 37, p. 236.) The smallest fatal dose of the tincture in an adult, which I have found recorded, is two drachms. ('Ed. Med. and Surg. Journ.' July 1840.) In connection with this subject, it is important for a medical jurist to bear in mind that infants and young persons are liable to be killed by very small doses of opium; they appear to be peculiarly susceptible of the effects of this poison. The syrup of poppies, paregoric elixir, Godfrey's cordial, and Dalby's carminative, owe their narcotic effects to the presence of opium. The symptoms and appearances which they produce, when taken in a large dose, are similar to those caused by opium or its tincture.

It has been remarked, that most cases of poisoning by opium prove fatal in from about six to twelve hours. They who recover from the stupor, and survive longer than this period, generally do well; but there may be a partial recovery, or a remission of the symptoms, and afterwards a fatal relapse. The symptoms, however, generally progress steadily to a fatal termination, or the stupor suddenly disappears, vomiting ensues, and the person recovers. Several instances are recorded of this poison having destroyed life in from seven to nine hours. One has occurred within my knowledge, in which an adult died in five hours after taking the drug prescribed for him by a quack. Sir R. Christison met with a case which could not have lasted above five, and another is mentioned by him which lasted only three hours. Mr. Barwis, of Melton, communicated to me the case of an adult (November 1863) which proved fatal in three hours and a half. This drug in all its forms is especially fatal to infants. They die rapidly from very small doses.

Morphia and its Salts.—Morphia is the poisonous alkaloid of opium, of which it forms from five to ten per cent. The two principal salts of this alkaloid are the hydrochlorate and the acetate. Opium owes its narcotic properties chiefly to the presence of morphia in combination with meconic acid. A dose of one grain of a salt of morphia has destroyed life. Dr. Ebertz, of Weilberg, lately met with a case in which an overdose of the hydrochlorate, supplied by mistake for quinine, destroyed the life of a lady in from forty to fifty minutes. Symptoms of narcotism appeared in a quarter of an hour. A very full account of the appearances and analysis will be found in Eulenberg's 'Vierteljahres,' 1873, 1, p. 281.

Morphia and its salts rapidly destroy life by absorption when applied to a wounded or ulcerated surface. A woman thus lost
her life in 1867, by reason of an ignorant druggist applying thirty grains of morphia to an ulcerated breast.

Chemical Analysis. Opium.—There are no means of detecting opium itself, either in its solid or liquid state, except by its smell and other physical properties, or by giving a portion of the suspected substance to an animal, and observing whether any narcotic effects are produced. The smell is said to be peculiar, but a similar smell is possessed by lactucarium, which contains neither meconic acid nor morphia. The odour is a good concomitant test of the presence of the drug, whether it be in a free state, or dissolved in alcohol or water, but it is not perceptible when the solution is much diluted. The analysis in cases of poisoning by opium, is therefore limited to the detection of morphia and the acid with which it is combined, meconic acid.

Morphia.—Morphia may be identified by the following properties:—1. It crystallizes in hexahedral prisms, which are white and perfect, according to their degree of purity. (Fig. 19.) The crystals obtained by adding weak ammonia to a solution of morphia in hydrochloric acid vary in form. When slowly produced they present the forms represented in the annexed figure (Fig. 20). 2. When heated on platinum, the crystals melt, become dark-coloured, and burn like a resin with a yellow smoky flame, leaving a carbonaceous residue. If this experiment is performed in a small reduction tube, it will be found, by employing test-paper, that ammonia is one of the products of decomposition. 3. It is scarcely soluble in cold water, as it requires 1,000 parts to dissolve it: it is soluble in one hundred parts of boiling water, and the hot solution has a faint alkaline reaction. By its insolubility in water, it is readily known from its salts. It is not very soluble in ether or chloroform, thus differing from narcotina; but it
is dissolved by forty parts of cold, and rather less than this quantity of boiling alcohol. It is dissolved by a solution of potash or soda, from which it cannot be removed by ether. It is very soluble in acetic ether, and this liquid has been employed for the purpose of separating morphia from organic liquids. 4. It is easily dissolved by a very small quantity of all diluted acids, mineral and vegetable. 5. Morphia and its solutions have a bitter taste. 6. The salts of morphia are not precipitated in a crystalline form by solutions of sulphocyanide of potassium, ferricyanide of potassium, or chromate of potash. In this respect they are strikingly distinguished from the salts of strychnia, which give well-marked crystalline precipitates with these three reagents. Like all alkaloids, the morphia in solution is thrown down white by the chloriodide of potassium and mercury (made by dissolving sixteen grains of corrosive sublimate and sixty grains of iodide of potassium in four ounces of water). This liquid precipitates albumen; hence this substance, if present, should be separated by boiling before applying the test.

Tests.—In order to apply the chemical tests for morphia, the alkaloid may be dissolved in a few drops of a diluted acid, either the acetic or the hydrochloric. If the hydrochlorate or the acetate of morphia is presented for analysis, the salt may be at once dissolved in a small quantity of warm water. The tests for this alkaloid are the following: 1. Nitric acid. This, when added to a moderately strong solution of a salt of morphia, produces slowly a deep orange-red colour. If added to the crystals of morphia or its salts, nitric oxide is evolved:—the morphia is entirely dissolved, and the solution acquires instantly the deep red colour above described,—becoming, however, lighter by standing. In order that this effect should follow, the solution of morphia must not be too much diluted, and the acid must be strong and added in pretty large quantity. The colour is rendered much lighter by boiling; therefore the test should never be added to a hot solution. 2. Iodic acid with sulphide of carbon. A strong solution of iodic acid should be mixed with its volume of sulphide of carbon. There should be no change of colour. On adding a small quantity of these mixed liquids to morphia or its salts, either solid or in solution, the iodine is separated from the iodic acid and dissolved by the sulphide, which sinks to the bottom, acquiring a pink or red colour, varying in its intensity according to the quantity of morphia present. This reaction distinguishes morphia from the other alkaloids, which do not decompose iodic acid. The presence of morphia may be thus easily detected, in spite of the presence of organic matter, in one drop of the tincture of opium, in chlorodyne, nepenthe, or other opiate liquids. If sulphide of carbon is not used, iodine may be detected by its odour. 3. Sulphomolybdic acid. This is made by dissolving with a gentle heat eight grains of powdered molybdate of ammonia in two drachms of pure and strong sulphuric acid. The liquid should be freshly prepared and kept from contact with air and organic matter. When one or two drops
Detection of Meconic Acid.

are rubbed with dry morphia or any of its salts an intense reddish purple or crimson colour is produced. This changes to a dingy green and ultimately to a splendid sapphire blue. 4. Sulphuric acid and bichromate of potash. When strong sulphuric acid is poured on pure morphia in a solid state, there is either no effect, or the alkaloid acquires a light pinkish colour. On adding to this a drop of solution of bichromate of potash, or a small fragment of a crystal, it immediately becomes green (from oxide of chromium), and retains this colour for some time.

Meconic Acid.—This is a solid crystalline acid, seen commonly in scaly crystals of a pale reddish colour. It is combined with morphia in opium, of which, according to Mulder, it forms on an average six per cent.; and it serves to render this alkaloid soluble in water and other menstrues. Tests.—Many tests have been proposed for meconic acid; but there is only one upon which any reliance can be placed, namely, the perchloride or persulphate of iron. This test produces, even in a diluted solution of meconic acid, a deep red colour; and it is owing to the presence of this acid that a salt of iron strikes a red colour in tincture and infusion of opium, as well as in all liquids containing traces of meconate of morphia. The red colour of the meconate of iron is not easily destroyed by diluted mineral acids, by a solution of corrosive sublimate, or by chloride of gold, but it is by sulphurous acid and chloride of tin. In liquids containing tannic acid, e.g. tea or beer, the action of this test is obscured; but a small quantity of dilute sulphuric acid will remove the tannate of iron and bring out the red colour of the meconate.

Detection of Opium in Organic mixtures.—Opium itself may be regarded as an organic solid, containing the poisonous salt which we wish to extract. It is not often that, in fatal cases of poisoning by opium or its tincture, even when these are taken in large quantity and death is speedy, we can succeed in detecting meconate of morphia in the stomach. The poison is probably removed by vomiting or absorption. If the matter is solid, it should be cut into small slices; if liquid, evaporated to an extract; and, in either case, digested with a large quantity of rectified spirit slightly acidulated with acetic acid. The residue should be well pressed in linen; the alcoholic liquid should then be evaporated in a water-bath until it is almost dry. The residue should be digested in water filtered and treated with acetate of lead, until there is no further precipitation. This liquid should be boiled and filtered: meconate of lead is left on the filter, while any morphia passes through under the form of acetate. The surplus acetate of lead, dissolved in the filtered liquid (containing the morphia), should now be precipitated by a current of sulphuretted hydrogen—the black sulphide of lead separated by filtration, and the filtered liquid evaporated at a very gentle heat to an extract, so that any sulphuretted hydrogen may be entirely expelled. On treating this extract with alcohol, the acetate of morphia, if present in sufficient quantity, may be di-
solved out and tested. If the alcoholic liquid is still much coloured, it may be again evaporated and taken up by water. Animal charcoal deprives it of colour, but at the same time it removes the morphia if this is in small quantity. If there is a sufficient quantity of pure acetate present, the addition of a drop of solution of ammonia to a portion of the liquid on a slide, will produce crystals of the form of slender prisms which are somewhat deliquescent. The remainder may be tested by the nitric and iodic acids. The meconate of lead left on the filter is readily decomposed by boiling it with a small quantity of diluted sulphuric acid; and in the filtered liquid, neutralized if necessary by an alkali, the meconic acid is easily detected by the iron-test.

The detection of meconic acid is most important, for this has been found in no substance but opium, and the tests for it are more certain than those applied to morphia. Morphia may be obtained in an impure state as a precipitate by adding ammonia to a concentrated solution of the opiate extract. It may be then purified and tested.

Trial tests for both the alkaloid and acid should be first applied to the organic liquid, which may for this purpose be submitted to dialysis (see p. 79.) The smell of opium may be entirely absent. Meconic acid may be detected by the action of a persalt of iron on the organic liquid diluted, and morphia may be found by adding to a portion of this liquid, a mixture of iodic acid and sulphide of carbon. The sulphide acquires a pink colour by dissolving the iodine set free by morphia or its salts. The chief difficulty in the detection of meconic acid and morphia is that the alkaloid does not form more than one-tenth part of opium, and the quantity of opium present in an organic liquid is generally very small.

Nepenthe.—This is an opiate compound consisting of citrate of morphia and opium dissolved in sherry wine and rectified spirit, with a proportion of water which brings it to the strength of tincture of opium. Morphia is readily detected in it by a mixture of iodic acid and sulphide of carbon; and meconic acid gives the usual red colour with a persalt of iron, when the darkening effect produced by the tannic acid of the sherry, is removed by diluted sulphuric acid.

CHAPTER 17.

PRUSSIC ACID.—SYMPTOMS AND APPEARANCES.—TESTS FOR THE ACID.—
PROCESS FOR ORGANIC MIXTURES.—CYANIDE OF POTASSIUM.—ESSENTIAL
OIL OF BITTER ALMONDS.—NITROHENGOLE.

HYDROCYANIC OR PRUSSIC ACID.

Symptoms.—This acid has a hot bitter taste and an odour resembling that of bitter almonds diluted. The time at which the symptoms of poisoning commence varies, but it is generally within a few minutes after the poison has been swallowed. When a large
SYMPTOMS AND APPEARANCES.

dose has been taken, as from half an ounce to an ounce of the diluted acid, the symptoms usually commence in the act of swallowing, or within a few seconds. It is rare that their appearance is delayed beyond one or two minutes. When the patient has been seen at this period, he has been perfectly insensible, the eyes fixed and glistening, the pupils dilated and unaffected by light, the limbs flaccid, the skin cold and covered with a clammy perspiration; there is convulsive breathing at long intervals, and the patient appears dead in the intermediate period; the pulse is imperceptible, and involuntary evacuations are occasionally passed. The respiration is slow, deep, gasping, and occasionally heaving, or sobbing. It is generally convulsive, but when the coma or insensibility is profound, it may be stertorous. This was observed in a case which occurred to Sir R. Christison. (‘Edinburgh Monthly Journal,’ February 1850, p. 97.) Convulsions of the limbs and body with a spasmodic closure of the jaw are sometimes noticed among the symptoms.

Appearances.—The body when seen soon after death often exhales the odour of prussic acid; but if it has remained exposed before it is seen, and if it has been exposed to the open air or in a shower of rain, the odour may not be perceptible; again the odour may be concealed by tobacco-smoke, peppermint, copaiba, or other powerful odours. Externally, the skin is commonly livid, or is tinged of a violet colour; the nails are blue, the fingers clenched, and the toes contracted; the jaws firmly closed, with foam or froth about the mouth, the face often pale, but sometimes bloated and swollen, and the eyes have been observed to be wide open, fixed, glassy, very prominent and glistening, with the pupils dilated; but a similar condition of the eyes has been observed in other kinds of violent death. Internally, the venous system is gorged with dark-coloured liquid blood; the stomach and intestines may be in their natural state; but in several instances they have been found more or less congested. The mucous membrane of the stomach of a dog which died in a few minutes from a dose of three drachms of Scheele’s acid, was intensely reddened throughout, presenting the appearance met with in cases of arsenical poisoning.

The smallest dose of this acid which is reported to have caused death was in a case which occurred to Mr. Hicks. (‘Med. Gaz.’ vol. 35, p. 896.) A healthy adult woman died in twenty minutes from a dose equivalent to nine-tenths of a grain of anhydrous prussic acid. This corresponds to about twenty grains of Scheele’s acid. In a case reported by Mr. T. Taylor (‘Med. Gaz.’ vol. 36, page 104), a stout healthy man swallowed this dose, i.e. nine-tenths of a grain, by mistake, and remained insensible for four hours, when he vomited and began to recover. From the facts hitherto observed, we shall not be wrong in assuming that a quantity of Scheele’s acid (at five per cent.) above twenty grains (i.e. one grain of anhydrous acid), or an equivalent proportion of any other acid, would commonly suffice to destroy the life of an adult. This I believe to
be the nearest approach that we can make to the smallest fatal
dose.

When a dose of two drachms and upwards has been taken, we
may probably take the average period for death at from two to ten
minutes. In Mr. Hicks's case, twenty grains of Scheele's acid
destroyed life in twenty minutes. It is only when a dose is just in
a fatal proportion, that we find a person to survive from half an
hour to an hour. In this respect, death by prussic acid is like
death by lightning, the person in general either dies speedily or
he recovers altogether.

Chemical analysis.—Prussic acid is limpid like water; it pos-
sesses a faint acid reaction, and its vapour has a peculiar odour,
which when the acid is concentrated, although not at first percep-
tible, is sufficient to produce giddiness, insensibility, and other
alarming symptoms. The tests which are best adapted for the de-
tection of this poison, either in liquid or vapour, are equally appli-
able whether the acid is concentrated or diluted, and, so far as the
detection of the vapour is concerned, whether the acid is pure or
mixed. In the simple state, the tests are three in number: the
Silver, the Iron, and the Sulphur tests. 1. The Silver Test. Nitrate
of Silver.—This yields, with prussic acid, a dense white precipitate,
speedily subsiding in heavy clots to the bottom of the vessel, and
leaving the liquid almost clear. The precipitate is identified as
cyanide of silver by the following properties:—a. It is insoluble
in cold nitric acid; but when drained of water, and a sufficient
quantity of the strong acid is added, it is easily dissolved on boiling.
b. It evolves prussic acid when digested in hydrochloric acid. c. The
precipitate, when well dried, and heated in a small reduction-tube,
yields cyanogen, which may be burnt as it issues, producing a rose-
red flame with a blue halo. This is a well-marked character, and
at once identifies the acid which yielded the precipitate as prussic
acid. Five grains by weight of the dry precipitate correspond to
one grain of anhydrous Prussic acid, to twenty grains of Scheele's
acid, and fifty grains of the British pharmacopoeial acid.

For the detection of prussic acid in vapour, hold over the liquid
a watch-glass moistened in the centre with a drop of a solution of
nitrate of silver. Cyanide of silver, indicated by the formation of
an opaque white film in the solution, is immediately produced, if the
acid is only in a moderate state of concentration. One drop of a
diluted acid containing less than 1-50th of a grain of the anhydrous
acid produces speedily a visible effect. When the prussic acid is more
diluted, a few minutes are required; and the opaque film begins to
show itself at the edges of the silver solution. In this case the
action may be accelerated by the heat of the hand. If the vapour
is allowed to reach the nitrate of silver gradually and much diluted
with air, then instead of an opaque film of cyanide of silver, crys-
tals well defined under the microscope will be slowly produced, and
these will constitute an additional proof of the presence of the
acid in a state of vapour. As shown in the illustration Fig. 21,
these crystals have the form of slender prisms with oblique termi-
nations. They often hang together in groups, and generally require a high magnifying power to render them visible. 2. The Iron Test.—The object of the application of this test, is the production of Prussian Blue. Add to a small quantity of the suspected poisonous liquid, a few drops of potash and of a solution of green sulphate of iron. A dirty green or brownish precipitate falls; on shaking this for a few minutes, and then adding diluted hydrochloric or sulphuric acid, the liquid becomes blue; and prussian blue, of its well-known colour, unaffected by diluted acids, subsides. 3. The Sulphur Test.—Some years since Liebig proposed the following process for detecting prussic acid as a liquid. ('Oesterreichische Med. Wochen-schrift,' März 27, 1847, p. 396.) A small quantity of the bisulphide of ammonium is added to a few drops of a solution of prussic acid, and the mixture is gently warmed; it becomes colourless, and, on evaporation, leaves crystals of sulphocyanate of ammonia—the sulphocyanic acid being indicated by the intense blood-red colour produced on adding to the dry residue a solution of a nearly neutral persalt of iron: this red colour immediately disappears on adding a few drops of a solution of corrosive sublimate.

The great utility of the sulphur-test, however, is in its application to the detection of the minutest portion of prussic acid when in a state of vapour. In this respect it surpasses any other process yet discovered. In order to apply it, we place the diluted prussic acid in a watch-glass, and invert over it another watch-glass, having in its centre one drop of the bisulphide of ammonium. No change apparently takes place in the sulphide; but if the upper watch-glass is removed after the lapse of from half a minute to ten minutes, according to the quantity and strength of the prussic acid present, crystallized sulphocyanate of ammonia will be obtained on gently evaporating the drop of liquid to dryness. With an acid of from three to five per cent. the action is completed in ten seconds. The addition of one drop of the neutral persulphate of iron (free from nitric acid) to the dried residue, brings out the blood-red colour instantly, which is intense in proportion to the quantity of sulphocyanate present. I have elsewhere made some remarks on the application of this process for the detection of prussic acid. (See Med. Gaz.' 1847, vol. 39, p. 765.)

Prussic Acid in Organic liquids. Detection by vapour without distillation.—The organic liquid may be placed in a wide-mouthed bottle, to which a watch-glass has been previously fitted as a cover,
The capacity of the bottle may be such as to allow the surface of the liquid to be within one or two inches of the concave surface of the watch-glass. The solution of Nitrate of silver is then used as a trial-test for the vapour in the manner above described. If the 1-200th of a grain of prussic acid is present, and not too largely diluted, it will be detected (at a temperature of 60°) by the drop of nitrate of silver being converted into an opaque white or crystalline film of cyanide of silver, the chemical change commencing at the margin. We may then substitute for the nitrate of silver the bisulphide of ammonium, and proceed in the manner above described. In cold weather it may be necessary to place the bottle in a basin of warm water. If the solution of silver is tarnished by sulphuretted hydrogen, as a result of putrefaction, the sulphur-test alone should be used. By this process I have detected prussic acid in the stomach of a person poisoned by it, as late as twelve days after death. After the stomach had been exposed for a few days longer, the acid had entirely disappeared.

If traces of the poison are found, then the organic liquid should be distilled in a water-bath, at 212°, and about one-fourth of the contents of the flask collected in a receiver kept cool by water. (For the form of apparatus see page 110 ante.) The tests may now be applied to the distilled liquid, which will have the odour of prussic acid.

In the tissues.—Soon after death the poison may be easily detected in the blood, secretions, or any of the soft organs, by placing them in a bottle, and collecting the vapour in the manner already described. This will be found more convenient and satisfactory than the process by distillation. In the case of a dog poisoned by a large dose of prussic acid, Mr. Hicks brought to me the stomach after it had been exposed twenty-four hours, and thoroughly washed under a current of water, and yet the poison was readily detected by placing the whole organ in a bottle, and absorbing the vapour by nitrate of silver. This shows how completely the animal tissues at death are penetrated by prussic acid, and how firmly for a time it is retained by them. The poison has been thus discovered, in experiments on animals, in the blood and in the serous exhalation of the chest.

If the body is in a putrefied state, the residuary prussic acid may have been converted into fixed sulphocyanide of ammonium. In order to detect this salt in the stomach or its contents, we should digest the parts finely cut up in hot alcohol, filter the alcoholic liquid, evaporate to dryness, and take up any crystalline residue with water. A solution of a persalt of iron added to this solution, will indicate the presence of a sulphocyanide by imparting to it an intensely red colour. (See p. 159.)

Cyanide of Potassium.

Symptoms.—This salt has a bitter taste, producing first a sense of coldness on the tongue, followed by a feeling of constriction,
and burning heat, in the throat. It is one of the most formidable poisons known to chemists. It has destroyed life in a quarter of an hour. A dose of five grains has proved fatal in three instances. In one case the person died in two hours. (‘Chem. News,’ Sept. 5, 1863.) The symptoms which the cyanide produces are similar to those occasioned by prussic acid:—insensibility, spasmodic respiration, convulsions, with tetanic stiffness of the jaws and body. They appear in a few seconds or minutes, and run through their course with great rapidity.

Appearance.—In a case in which an inspection of the body was made two days after death, there was no remarkable odour:—the muscles were rigid; the face and fore part of the trunk, pale; the back part livid, except those portions which had sustained pressure. The fingers and toes were convulsively bent inwards, the nails blue, eyelids half-closed, lips pale, the vessels of the brain filled with bluish-red (blaurothem) blood. On making a section of the brain and spinal marrow, bloody points were observed. The lungs were congested posteriorly, and on cutting into them, a strong odour of bitter almonds was perceived. A yellowish mucus was found in the stomach, which yielded on analysis cyanide of potassium. The mucous membrane was reddened near the intestinal end. The poison was not detected in any part of the body except the contents of the stomach and intestines. (Casper's 'Wochenschrift,' Oct. 4, 1845, 657.)

Cyanide of potassium has a local chemical action upon the skin; and if this is abraded or wounded, it may be absorbed and produce serious effects. Some accidents of this kind have occurred in the practice of photography. (‘Ann. d’Hyg.’ 1863, vol. 1, p. 454.) This poison has been found as an impurity in reduced iron (Ferrum redactum).

Analysis.—This substance is usually seen in hard white masses. It is deliquescent, and very soluble in water: the solution, when pure, is colourless, and has a strong alkaline reaction, a soapy feel, and a powerful odour of prussic acid. It is not very soluble in cold alcohol. 1. It is decomposed by all acids, and prussic acid is set free. 2. The potash is precipitated by tartaric acid and chloride of platinum. 3. It gives a white precipitate with nitrate of silver, which, when dried and heated, possesses all the properties of cyanide of silver (ante, p. 158). This precipitate is easily redissolved by a slight excess of the solution of cyanide of potassium. 4. If a solution of proto-sulphate of iron is added to a solution of the cyanide of potassium, and after agitation the mixture is treated with diluted sulphuric acid, Prussian blue will be produced.

Essential Oil of Bitter Almonds.

This liquid, which is used for the purpose of giving flavour and odour to confectionery, owes its poisonous properties chiefly to the presence of prussic acid. It contains a variable quantity of this poison, which has been found in it in a proportion of from eight
to twelve per cent. Almond flavour or essence of peach kernels contains one drachm of the essential oil to seven drachms of rectified spirit.

Symptoms.—The following may be taken as a summary: lividity of the face; eyes glassy, prominent, fixed and staring; pupils dilated and insensible to light; jaws spasmodically closed; frothy mucus about the mouth and in some cases vomiting; coldness of the skin; heaving and intermittent respiration, in some instances stertorous; absence of the pulse; head spasmodically drawn backwards, and sometimes the trunk; general relaxation of the limbs; an odour of bitter almonds about the mouth.

Appearances.—In one fatal case nine hours after death no odour of almonds was perceptible in the chest, head, or heart, nor in the blood. The lungs and heart were healthy. The vessels of the brain were congested, and there was a general effusion of serum on the hemispheres. The lining membrane of the stomach was much congested. On opening it, the odour of bitter-almonds was quite perceptible. (See 'Proc. Med. Jour.' Sept. 11, 1844, p. 364.) The blood with which the venous system is gorged is generally liquid and of a dark colour.

Analysis.—The essential oil, which is sometimes called peach-nut oil, is colourless when pure, but it commonly has a pale yellow colour, and a strong odour of bitter almonds, by which it may be at once identified. It has a hot burning taste, and a feebly acid reaction. The smell and taste are generally sufficient for its identification; but nitrobenzole possesses the same odour, and has been mistaken for it. It produces, when dropped on paper, a greasy stain, which does not entirely disappear by the application of heat. It has a sp. gr. of 1.043; hence it sinks in water, which dissolves about one-thirtieth part. It is soluble in alcohol and ether in all proportions. When mixed with a few drops of strong sulphuric acid, it forms a rich crimson-red liquid, which, if exposed to air, acquires a yellow colour. Prussic acid may be detected in it by dissolving the oil in alcohol and adding a solution of potash and green sulphate of iron. On the addition of a diluted acid, Prussian blue remains.

Nitrobenzole.

This liquid, which is largely employed as a substitute for the essential oil of bitter almonds in perfumery and confectionery, has now taken its place among narcotic poisons. It has been mistaken for essential oil of bitter almonds, but its mode of operation is different. In 1859, the late Professor Casper, of Berlin, published an account of this liquid under the name of 'A new Poison' ('Vierteljahrschrift,' B. 16, p. 1.)

Symptoms.—The cases which have yet occurred show that this is an insidious poison both in liquid and vapour. There is a burning taste in the mouth, followed by a sensation of numbness and tingling in the tongue and lips. There is no immediate insensibility, as in
poisoning by prussic acid, and there are no convulsions. The eyes are bright and glassy, the features pale and ghastly, the lips and nails purple, as if stained by blackberries, the skin clammy and the pulse feeble. There is a powerful odour resembling that of oil of bitter almonds. The mind may be clear for an hour, or several hours, after the poison has been swallowed. The patient then becomes suddenly unconscious—the jaws fixed—the hands clenched and blue, and the muscles rigid and convulsed. In one case there was vomiting of a liquid having the odour of nitrobenzole. The breathing was slow and the pulse scarcely perceptible. Reaction set in, in about eleven hours, and recovery took place. (‘Guy’s Hospital Reports,’ Oct. 1864, p. 192.) In a fatal case examined by Dr. Lethby, the appearances were as follows: the superficial vessels were much gorged with blood, which was black and fluid. The lungs were congested, the cavities of the heart were full of blood, the liver was of a purple colour, the brain and its membranes were congested, and there was much bloody serosity in the ventricles. Dr. Lehmann has recently reported the symptoms and appearances in a fatal case. (‘Ann. d’Hyg.,’ 1873, 1, p. 444.)

This compound has a narcotic action, but it differs from the ordinary narcotics in its powerful and persistent odour, which would render it difficult for a person to administer it unknowingly to another, either in liquid or vapour; in the production of profound coma at an uncertain interval after the stupor; and in the rapidly-fatal effects when coma has followed. It operates powerfully as a poison in vapour as well as in a liquid state; but so far as cases have been yet observed in the human subject, the symptoms resembling those of the first stage of narcotic poisoning have very soon appeared. The rapidly-fatal cases only would be likely to be mistaken for apoplexy, but in these the poison would be detected by its odour.

Analysis.—Nitrobenzole or Essence of Mirbane is a pale lemon-coloured liquid of a strong odour resembling that of bitter almonds. It has a pungent hot disagreeable taste. It gives to confectionery and soap, the smell of oil of bitter almonds. It gives a greasy stain to paper. It sinks in water, and is partly dissolved, imparting to it a yellowish colour. It is soluble in alcohol, ether, and chloroform, but when agitated with water, it is in great part separated from its ethereal and chloroformic solutions. It burns with a yellow smoky flame. It yields no Prussian blue when mixed with sulphate of iron, alcohol, and potash. It is distinguished from all other liquids, excepting the essential oil of almonds, by its odour, and from this oil by the following test:—Pour a few drops of each on a plate and add a drop of strong sulphuric acid. The oil of almonds acquires a rich crimson colour with a yellow border, the nitrobenzole produces no colour. In order to separate it from organic liquids, they may be acidulated with sulphuric acid, and submitted to distillation.
CHAPTER 18.

ALCOHOL.—ETHER.—CHLOROFORM.—HYDRATE OF CHLORAL.—CAMPHOR.—
TOBACCO.—NICOTINA.—COCCUS INDICUS.—PERITOXINE.—FUNGI.—
MEMBRANE.

ALCOHOL.

Symptoms.—In general the symptoms produced in poisoning with alcohol come on in the course of a few minutes. There is confusion of thought, with inability to stand or walk, a tottering gait and giddiness, followed by stupor and coma. Should the person recover from this stage, vomiting supervenes. The insensibility produced by alcohol may not come on until after a certain period, and then suddenly. Sir R. Christison met with an instance in which a person fell suddenly into a deep stupor, some time after he had swallowed sixteen ounces of whisky—there were none of the usual premonitory symptoms. In another instance, a person may apparently recover from the first effects,—then suddenly become insensible and die convulsed. There is a ghastly or vacant expression on the features, which are sometimes suffused and bloated, the lips are livid, and the pupils are dilated and fixed; if they possess the power of contracting under the influence of light, it is a favourable sign. The conjunctive or whites of the eyes are generally much suffused. The breath has an alcoholic odour. The more concentrated the alcohol, the more rapidly are the symptoms induced, and they are also more severe in their character. Diluted alcohol commonly produces a stage of excitement before stupor, while in the action of concentrated alcohol there may be profound coma in a few minutes. The cause of death may be generally traced to congestion of the brain or lungs or both. Sometimes a large dose may be taken without causing death. A child, et. 4, swallowed between two and three ounces of brandy. He was found insensible, the breathing was scarcely perceptible, and the pupils were widely dilated. Under treatment he recovered in two days. (‘Lancet,’ 1872, 2, p. 76.)

Alcohol may act as a poison by its vapour. If the concentrated vapour be respired, it will produce the usual effects of intoxication. There is a case on record in which a child two years of age was thrown into an apoplectic stupor by the alcoholic vapour of eau de Cologne. In this manner a child might be destroyed, and no trace of the poison found in the stomach.

Appearances.—The stomach has been found intensely congested or inflamed, the mucous membrane presenting in one case a bright red, and in another a dark red-brown colour. When death has taken place rapidly, there may be a peculiar odour of spirits in the contents; but this will not be perceived if the quantity taken was small, or many hours have elapsed before the inspection is made. The brain and its membranes are found congested, and, in some instances, there is effusion of blood or serum beneath the inner membrane (pia mater).
Ether and Chloroform.

Analysis.—When a large dose has been taken and the case has proved rapidly fatal, the contents of the stomach may have the odour of alcohol, or of the alcoholic liquid taken. The odour however is not always perceptible, and it may be easily concealed by other odours. In a case of poisoning with gin, the liquid drawn from the stomach by the pump after seven hours, had no odour. The smell of brandy has entirely disappeared in twelve hours.

The contents of the stomach or the suspected liquid should be distilled in a water-bath, with a proper condensing apparatus attached (Fig. 8, p. 110). If the liquid has an acid reaction, it should be first neutralized with a solution of carbonate of potash or soda. The watery distillate obtained should be mixed with chloride of calcium or anhydrous sulphate of copper in sufficient quantity, and submitted to a second distillation in a smaller retort by a water-bath. The liquid obtained by the second distillation should be agitated with rather more carbonate of potash than it will dissolve, in a small tube provided with a stopper, and allowed to stand. A stratum of alcohol, if present, will, after a time, float on the surface, and may be drawn off by a pipette and examined. It may be identified by its odour, taste, and inflammability.

Ether.

Symptoms and Effects.—Ether, in moderate doses, has a hot burning taste, and produces during swallowing, a sense of heat and constriction in the throat. It causes, like alcohol, great excitement and exhilaration, with, subsequently, intoxication, but persons may become habituated to it, and thus after a time it may be taken in large quantities with comparative impunity. The effects produced on the system when a large dose has been taken, are similar to those occasioned by alcohol. Ether as a liquid has not, so far as I know, destroyed the life of a human being; but when its vapour has been breathed, it has caused death in several instances. (See ‘On Poisons,’ 2nd Ed. p. 731.)

Analysis.—When ether has been taken as a liquid it may be separated from the contents of the stomach by the process described for alcohol. It is well known by its odour and inflammability.

Chloroform.

Symptoms.—Chloroform, when taken in a large dose, appears to affect the system like alcohol; but as a liquid it cannot be regarded as an active poison. In one case a man swallowed four fluid ounces. He was able to walk for a considerable distance after taking this dose, but he subsequently fell into a state of coma—the pupils were dilated, the breathing was stertorous, the skin cold, the pulse imperceptible, and there were general convulsions. He recovered in five days. (‘Med. Gaz.’ vol. 47, p. 675.) A boy, 4 years old, was found by his father in a state of total insensibility. It appeared that he had swallowed a drachm of chloroform, and soon afterwards laid his head on his mother’s lap, and then lost all con-
scioussness. In about twenty minutes he was insensible, cold, and pulseless. Mustard plasters were applied to his legs; they acted well, but produced no impression on the sensibility. His breathing varied; it was sometimes natural, at other times stertorous. He became warmer, his pulse full and regular; and he continued three hours in this state, when he died quite calmly without a struggle, in spite of every effort made for his recovery. This is the smallest dose of liquid chloroform that has destroyed life.

Chloroform Vapour.—The vapour when respired in a concentrated form, is speedily fatal to life. If it is diluted with a certain proportion of air, it produces insensibility, with entire loss of muscular power, in from eight to ten minutes, and the patient rapidly recovers after the vapour is withdrawn. Cases of death from the inhalation of the vapour for surgical purposes are now very numerous, and the symptoms and post-mortem appearances are well-marked. ('On Poisons,' 2nd Ed. p. 738; also 'Lancet,' April 1859, p. 400, and April 23, p. 426, and 1870, 2, pp. 454, 884.) In some instances death has taken place within two minutes from the commencement of inhalation. In one in which only thirty drops had been inhaled in vapour, the patient died in one minute, and in another so small a quantity as fifteen or twenty drops proved speedily fatal. ('Table of Fatal Cases' by Dr. Warren, U.S. p. 23.) Its fatal effects do not depend so much on the absolute quantity; as on the proportion in which it is breathed in a state of mixture with atmospheric air. It has been stated that the average proportion of this vapour for medicinal purposes should not exceed 3½ per cent., and that 4½ is a maximum quantity to be taken with safety. The proportion should be only slowly increased. The vapour should not be given after a long fast, after a full meal, or while the person is in a sitting or erect posture. ('Ed. Monthly Jour.' Aug. 1864.) The vapour of this liquid operating through the lungs, has destroyed life more rapidly, and in a smaller dose, than any other poison known. Its fatal operation is sometimes suddenly manifested apparently by an accumulative effect in the blood after the withdrawal of the vapour. In one case witnessed by a friend, the heart suddenly ceased to beat four minutes after the vapour had been withdrawn. The digital arteries which had been divided in the operation, ceased to bleed. The man was dead. Two fatal cases are reported in the 'Brit. Med. Jour.' for August 1873, p. 230. In one a man in good general health died suddenly after having inhaled one drachm in vapour. Fatal syncope came suddenly on after the chloroform had been withdrawn. In the other case, a lady died at Brighton, under the effects of chloroform, while having a tooth extracted. In this case, it is said, there was fatty degeneration of the heart. It is to this condition of a fatty or flabby heart that the fatal effects are usually ascribed. Assuming this to be to some extent the true cause of the fatality, it must be admitted that fatty and flabby hearts have become very common since the introduction of chloroform-vapour for surgical and other purposes! The theory of a flabby heart is quite
unnecessary to explain the fatal results occasionally produced by chloroform vapour, even when administered by experienced persons. In January 1866, a healthy man died in three minutes from the effects of only two drachms of chloroform in vapour. This occurred on the operating table of a London hospital—the vapour having been administered by a gentleman who had given it previously to 300 or 400 patients. Death was sudden, and took place after some deep inspirations and expirations had been made. It was on this occasion candidly admitted that the body was quite healthy. In this and similar cases, either the chloroform had been taken in too concentrated a form, or there may have been an idiosyncrasy in the patient to its narcotic poisonous action. In cases of alleged robbery and rape, it has been sometimes stated that the person assaulted was rendered suddenly insensible by chloroform; but chloroform vapour does not produce immediate insensibility, unless it also produces asphyxia and death.

Dr. C. Kidd, who has had much experience in the administration of chloroform vapour, has especially called the attention of the profession to this subject. (‘Chloroform in its Medicolegal Bearings,’ 1870.) There can be no doubt that several false charges of rape have been made against medical men and dentists under the alleged use of this vapour. In general the statement of the prosecutrix alone, has been sufficient to show the falsehood of the charge.

Analysis.—Chloroform is a heavy colourless liquid, sp. gr. 1.484, neutral in its reaction, sinking in water in heavy oily-looking globules, and only to a slight extent dissolving in this liquid. It has a peculiar fragrant odour, resembling that of apples. It is very volatile, but not combustible, and, like alcohol, dissolves camphor. It may be separated from other liquids by distillation at a low temperature.

Hydrate of Chloral.

This is a solid crystalline substance which has been much used of late as a substitute for opium. In doses of from twenty to thirty grains, it has been found to operate as a sedative and narcotic, without producing excitement. It has been given in very large doses, sometimes with benefit, but at other times causing dangerous symptoms, followed by sudden death. Medical men who have taken it incautiously have died from its effects. Two instances of this kind are reported in the ‘Med. Times and Gaz.’ (1871, 1, p. 367). No remarkable symptoms have preceded dissolution. The person has passed from sleep into death.

Symptoms and Appearances.—A lady took six doses of thirty grains each. She fell into a sound sleep. Every attempt failed to arouse her, and she slept into death. The principal post-mortem appearance was great congestion of the cerebral vessels. (‘Med. Times and Gaz.’ 1871, 1, p. 132.) In another case a lady took in three doses, at intervals of four hours, seventy grains of the hydrate. In two hours after the last dose, she suffered from severe cramps in the legs, a feeling of suffocation, swimming in the head, and in-
ability to regulate her movements. Four hours after the last dose her face was flushed, the eyelids were closed, and the conjunctivæ injected; the pulse was quick (120) and bounding. She was with difficulty roused either to speak or take food. She recovered in about sixteen hours. (‘Med. Times and Gaz.’ 1870, 2, 435.) A man took half a drachm of the hydrate at night. He became unconscious almost immediately after swallowing the draught—the face and hands turned livid and cold, and breathing took place only at long intervals; indeed for about five hours death seemed to be impending. He recovered next day. (‘Lancet,’ 1870, 2, 402.)

A case is reported in the same journal in which a dose of 160 grains was given by mistake to an hospital patient, a middle-aged man. The man slept well and recovered, notwithstanding the large dose taken. Dr. N. Smith, of Baltimore, met with two cases in which sudden death followed ordinary doses, and in one instance a drachm and a half thrown in by the rectum produced rapidly insensibility and caused death in three hours. (‘Lancet,’ 1871, 2, 466.) It has been observed in reference to this drug, that in the sleep produced by it, the pupil is contracted, but that it immediately dilates on the person awaking. In other cases the pupil has been found dilated and insensible to light. There appears to be considerable uncertainty in the action of this drug, even when similar doses are given. A slight overdose may cause sudden death by syncope (‘Lancet,’ 1873, 1, p. 640); and ordinary doses long continued, may seriously affect mind and body (‘Lancet,’ 1873, 1, p. 789). After an ordinary dose of twenty or thirty grains, a patient has slept for a quarter of an hour, and has then awakened with a sense of deadly faintness, the lips livid, the face pale, the pulse scarcely perceptible, and a feeling of intense exhaustion and impending dissolution, mingled with delirium, lasting for five or ten minutes. It appears to exert a depressing action on the heart, and in cases of heart-disease it may thus cause sudden death (‘Lancet,’ 1871, 2, 32). One case proved suddenly fatal by causing paralysis of the heart (‘Lancet,’ 1871, 1, pp. 227, 440-473). For the effects of chronic poisoning by this substance, see ‘Lancet,’ 1, 1873, p. 695. A dose of thirty grains proved fatal in thirty-five hours to a young lady, est. 20; while in a case mentioned above, a man recovered from a dose of 160 grains taken at once.

Analysis.—The hydrate of chloral is a white brittle crystalline solid, of a peculiar odour and a pungent bitter taste. When heated on platinum it melts and is entirely volatilized without combustion, unless the liquid is turned into the flame. It is not inflammable. Heated in a close tube it melts and does not rapidly solidify. It is distilled over in a liquid form, and after a time it sets into groups of crystals in the glass tube. It is soluble in water, which retains it on cooling, while the alcoholate is again in great part deposited. The solution is not acid, has no bleaching properties, and gives only a faint milkiness on boiling with a solution of nitrate of silver. It is dissolved by strong sulphuric and
nitric acids, without any change of colour. Potaah added to the solution while boiling converts it instantly into chloroform, which escapes in copious effervescence, and may be recognized by its peculiar odour. It is by this conversion that hydrate of chloral may be detected in the contents of the stomach. The organic liquid should be rendered alkaline with potash, and the mixture then distilled. The chloroform vapour may be condensed in a cool flask.

CHLORIC ETHER—(Spiritus Chloroformi).—This is a mixture of one part, by measure, of chloroform to nineteen parts of rectified spirit. It is given internally in doses of from twenty to sixty minims.

CHLORODYNE.—This is a compound containing chloroform, tincture of opium, and prussic acid. It is mixed with treacle and other substances to conceal its composition. A fatal case from an overdose of this medicine occurred at Oxford in 1871. A lady, aged 23, had been accustomed to take the liquid for the relief of pain, in doses of as much as sixty drops. She was found dead in bed, and the cause of death was referred by her medical attendant to her having taken two doses without letting a sufficient interval elapse between them. (‘Lancet,’ 1871, 2, p. 697.) From 1863 to 1867 there were four recorded deaths from this compound.

CAMPHOR.

Symptoms and Appearances.—Camphor operates on the brain and nervous system. In one case which occurred to Mr. Hallet, a woman swallowed in the morning about twenty grains dissolved in rectified spirit of wine and mixed with tincture of myrrh. In half an hour she was suddenly seized with languor, giddiness, occasional loss of sight, delirium, numbness, tingling and coldness of the extremities, so that she could hardly walk. The pulse was quick and respiration difficult, but she suffered no pain in any part. On the administration of an emetic, she vomited a yellowish liquid smelling strongly of camphor. In the evening, the symptoms were much diminished, but she had slight convulsive fits during the night. The next day she was convalescent; the difficulty of breathing, however, continued more or less for several weeks. This is the smallest dose of camphor which appears to have been attended with serious symptoms in an adult. It has proved fatal to infants and children, the symptoms being chiefly vomiting and purging, with violent convulsions.

A case of poisoning by camphor would be recognized by the odour of the breath, a symptom which would attract the attention of a non-professional person. The presence of this substance in the stomach would be at once indicated by its odour.

TOBACCO.

Symptoms.—The effects which tobacco produces, when taken in a large dose, either in the form of powder or infusion, are well marked. The symptoms are faintness, nausea, vomiting, giddiness, delirium, loss of power in the limbs, general relaxation of the mus-
cular system, trembling, complete prostration of strength, coldness of the surface with cold clammy perspiration, convulsive movements, paralysis, and death. In some cases there is purging, with violent pain in the abdomen; in others there is rather a sense of sinking or depression in the region of the heart, passing into syncope, or creating a feeling of impending dissolution. With the above-mentioned symptoms there is dilatation of the pupils with insensibility to light, dimness of sight with confusion of ideas, a small, weak and scarcely perceptible pulse, difficulty of breathing, and involuntary discharge of urine. Tobacco owes its poisonous properties to the presence of a liquid volatile alkaloid, Nicotina.

Nicotina.—This is a liquid deadly poison, and like prussic acid it destroys life in small doses with great rapidity. It has the powerful odour of tobacco. It is volatile, and may be procured by distillation. I found that a rabbit was killed by a single drop in three minutes and a half. (‘Guy’s Hospital Reports,’ Oct. 1858, p. 355.) A case of poisoning by this alkaloid which occurred in Belgium in 1851, was the subject of a trial for murder—case of the Count Bocarné. (‘Ann. d’Hyg.’ 1851, 2, pp. 147 and 167.) In another, which proved fatal in from three to five minutes, the appearances observed were a general relaxation of the muscles, prominent and staring eyes, bloated features, great fullness with lividity about the skin of the neck. There was no odour resembling nicotine or tobacco perceptible about the body. When the body was examined between two and three days after death, putrefaction had occurred. The swelling of the neck was found to arise from an effusion of dark liquid blood, especially in the course of the veins. The scalp and the membranes of the brain were filled with dark-coloured blood. The lungs were engorged, and of a dark purple colour. The cavities of the heart were empty, with the exception of the left auricle, which contained two drachms of dark-coloured blood. The stomach contained a chocolate-coloured fluid, in which nicotine was detected: the mucous membrane was of a dark crimson red colour from the most intense congestion. There was no odour excepting that of putrefaction. The liver was congested and of a purple black colour. The blood throughout the body was black and liquid, but in some parts it had the consistency of treacle. (G. H. R., Oct. 1858, p. 354.)

Nicotina is present in some cigars in the proportion of about 4 per cent., but the smoke derived from them contains none. Small quantities of sulphide and cyanide of ammonium were found in the smoke. Snuff yielded from ‘04 to ‘06 per cent. of nicotine. (‘Ann. d’Hyg.’ 1873, 1, p. 436.)

Levant Nut. (Cocculus Indicus.)

Symptoms and Effects.—This is the fruit or berry of the Anamirta Cocculus (Levant Nut), imported from the East Indies. The berry contains from one to two per cent. of a poisonous principle (Picrotoxine). The shell or husk contains no picrotoxine but a non-
Cocculus Indicus. Poisonous Fungi.

Poisonous principle called meningmine (see Fig. 22). The seeds, in powder or decoction, give rise to nausea, vomiting, and gripping pains, followed by stupor and intoxication. There are, so far as I am aware, only two well-authenticated instances of this substance having proved fatal to man. Several men suffered from this poison in 1829, near Liverpool: each had a glass of rum strongly impregnated with cocculus indicus. One died that evening; the rest recovered. (Traill’s ‘Outlines,’ 146.) Of the second case, the following details have been published: A boy, aged 12, was persuaded by his companions to swallow two scruples of the composition used for poisoning fish. It contained cocculus indicus. In a few minutes he perceived an unpleasant taste, with burning pain in the gullet and stomach, not relieved by frequent vomiting—as well as pain extending over the whole of the abdomen. In spite of treatment, a violent attack of gastro-enteritis supervened, and there was much febrile excitement, followed by delirium and purging, under which the patient sank on the nineteenth day after taking the poison. On inspection, the vessels of the pia mater were congested with dark-coloured liquid blood. There was serous effusion in the ventricles of the brain, and the right lung was congested. In the abdomen there were all the marks of peritonitis in an advanced stage. The stomach was discoloured, and its coats were thinner and softer than natural. (Canstatt, ‘Jahresbericht,’ 1844, 5, 298.) Porter, ale, and beer owe their intoxicating properties in some instances to a decoction, or extract, of these berries. For some remarks on this adulteration of beer and other liquids, and a process for separating the poisonous principle, picrotoxine, by amylic alcohol, see ‘Chemical News,’ March 12, 1864, p. 123. Cocculus indicus operates readily as a poison on animals, and it has thus been frequently used for the malicious destruction of fish and game. In one instance referred to me, there was reason to believe, that 270 young pheasants had been poisoned by grain soaked in a decoction of this substance. Barber’s poisoned wheat for the destruction of birds owes its poisonous properties to cocculus indicus. (Horsley.)

The poisonous principle of the berry of cocculus indicus is called picrotoxine. It has a remarkably bitter taste.

Poisonous Mushrooms (Fungi).

Symptoms and Effects.—The noxious species of mushrooms act sometimes as narcotics, and on other occasions as irritants. It would appear from the reports of several cases, that when the narcotic symptoms are excited, they come on soon after the meal
at which the mushrooms have been eaten, and they are chiefly manifested by drowsiness, giddiness, dimness of sight, and debility. The person appears as if intoxicated, and there are sometimes singular illusions of sense. The pupils are dilated. Spasms and convulsions have been occasionally witnessed among the symptoms, chiefly in fatal cases. When the drowsiness passes off, there is generally nausea and vomiting; but sometimes vomiting and purging precede the stupor. If the symptoms do not occur until many hours after the meal, they partake more of the characters of irritation; indicated by pain and swelling of the abdomen, vomiting, and purging. In a recent case of poisoning by mushrooms, there was slight vomiting about an hour and a half after the meal, but no violent symptoms until after the lapse of ten hours. Several cases, in which the symptoms did not appear for fourteen hours, are reported in the 'Medical Gazette' (vol. 26, p. 110). In some instances the symptoms of poisoning have not commenced until thirty hours after the meal; and in these, narcotism followed the symptoms of irritation. It might be supposed that these variable effects were due to different properties in the mushrooms; but the same fungi have acted on members of the same family, in one case like irritants, and in another like narcotics. In most cases recovery takes place, especially if there is early vomiting. In the instances which have proved fatal, there has been greater or less inflammation of the stomach and bowels, with congestion of the vessels of the brain. (See 'Med. Gaz.' vol. 46, p. 307; vol. 47, p. 673; and 'Journ. de Chimie Méd.' 1863, p. 694.)

Poisoning with mushrooms is usually the result of accident or mistake. They are not taken for the purpose of suicide, and I have met with only one instance in which it was alleged they were intentionally given to destroy life. In August 1873, a gardener in the metropolitan district was committed on a charge of murder for causing the death of a young woman by giving her poisonous mushrooms. The accused, it was alleged, had a motive for the act, but he denied that he knew the mushrooms to be poisonous. The deceased fried them, and had some for breakfast. She suffered severe pain, and died the same evening. Other persons who partook of them were also taken ill, but recovered.

This form of homicide would be very difficult to establish. It would be necessary to show that the mushrooms were really poisonous, and to the knowledge of the accused. None might be forthcoming, so that there would be no botanical evidence of their poisonous nature. But as persons have died from taking edible mushrooms (see case, infra), it might be alleged that there was nothing criminal in the act, and that the death was owing to idiocy-sympathy.

In the Guy's Hospital Reports for October 1865, p. 382, I have recorded two fatal cases,—in a mother and daughter, who died from the effects of the _Amanita citrina_: a yellow-coloured fungus, gathered in mistake for mushrooms. The woman fried the fungi, and they were eaten for supper. No symptoms appeared for seven
POISONOUS FUNGI. HENBANE.

hours. The child when seen by a medical man was feverish and thirsty, and the pupils were strongly dilated. There was severe pain in the stomach, and a sense of constriction in the throat. The child became convulsed and insensible, and died forty-one hours after eating the fungi. The mother and another child suffered from similar symptoms; the mother partially recovered, but had a relapse, and died on the fifth day. No inspection of the bodies was made.

These fungi can be recognized only by their special botanical characters. An experienced mycologist (the Rev. J. Berkeley) says, "No general rule can be given for the determination of the question whether fungi are or are not poisonous. Colour is quite in- elusive, and some of the most dangerous fungi, and amongst them the Agaricus Phalloides, are void of any unpleasant smell when fresh, though the most wholesome may be extremely offensive when old. Experience is the only safe test, and no one should try species incautiously with whose character he is not thoroughly acquainted." The learned mycologist who gives this advice, appears to have forgotten that a person may lose his life in making this "thorough acquaintance" with the characters of fungi. Portions of the fungi may be found in the food or in the contents of the stomach, but if there has been vomiting and purging, it is probable that the whole of the substance will be expelled. Fungi contain but little solid matter.

Much has been said and written on the methods of distinguishing the edible from the noxious fungi, but instances have occurred in which the former have produced symptoms of poisoning and have destroyed life. A case in which a woman died in twenty hours from eating ordinary mushrooms, was communicated to me by Dr. H. P. Smith, of Shepton Mallet, in August 1873. The symptoms resembled those above described.

HENBANE. (HYOSCYAMUS NIGER.)

Symptoms and Appearances.—The seeds, roots, and leaves of this plant are poisonous. When the dose is not sufficient to destroy life, the symptoms are—general excitement, fulness of the pulse, flushing of the face, weight in the head, giddiness, loss of power, and tremulous motion of the limbs, somnolence, dilatation of the pupils, double vision, nausea, and vomiting. After a time these symptoms pass off, leaving the patient merely languid. When a large quantity of the root or leaves has been eaten, an accident which has occurred from the plant having been mistaken for other vegetables, more serious effects are manifested. In addition to the above symptoms in an aggravated form, there will be loss or incoherency of speech, delirium, confusion of thought, insensibility, coma, and, sometimes, a state resembling insanity; the pupils are dilated and insensitive to light, there is coldness of the surface, cold
perspiration, loss of power in the legs, alternating with tetanic rigidity and convulsive movements of the muscles, the pulse small, frequent, and irregular, the respiration deep and laborious. (See 'Med Gaz.' vol. 47, p. 640.) Occasionally there is nausea, with vomiting and purging. Death may take place in a few hours or days, according to the severity of the symptoms.

The special effect of this poisonous plant is manifested in its tendency to produce a general paralysis of the nervous system. It owes its properties to the presence of an alkaloid (Hyoscyamia). According to Mr. White, the biennial is more powerful than the annual plant. This gentleman reports the case of a woman, est. 34, who swallowed, by mistake for a black draught, an ounce and a half of the tincture of hyoscyamus. Symptoms came on in ten minutes,—the most marked among them being a complete loss of power to move her legs; insensibility and delirium followed, and it was six days before she began to recover. She entirely lost her memory. ('Lancet,' July 5, 1873, p. 8.)

(Spinal Poisons.)

CHAPTER 19.

NUX VOMICA.—STRYCHNIA.—SYMPTOMS AND APPEARANCES.—CHEMICAL AND MICROSCOPICAL ANALYSIS OF NUX VOMICA AND STRYCHNIA.—PROCESS FOR ORGANIC MIXTURES.—DIALYSIS.—BRUCIA.

NUX VOMICA. STRYCHNIA.

Symptoms.—At a variable interval after taking either nux vomica or strychnia in a poisonous dose, the person experiences a sense of uneasiness and restlessness, accompanied by a feeling of impending suffocation. There is a shuddering or a trembling of the whole frame, with twitchings and jerkings of the arms and legs. Tetanic convulsions then commence suddenly with great violence, and nearly all the muscles of the body are simultaneously affected. The limbs are stretched out involuntarily, the hands are clenched: the head, after some convulsive jerkings, is bent backwards, and the whole of the body becomes as stiff as a board. As the convulsions increase in frequency and severity, the body assumes a bow-like form (opisthotonos), being arched in the back and resting on the head and heels. The head is firmly bent backwards, and the soles of the feet are incurvated or arched and everted, the legs sometimes separated. The abdomen is hard and tense, and the chest spasmodically fixed, so that respiration appears to be arrested. The face assumes a dusky, livid or congested appearance, with a drawn, wild or anxious aspect; the eyeballs are prominent and staring, and the lips are livid. The intellect is clear, and the sufferings, during this violent spasm of the voluntary muscles, are severe. The patient in vain seeks for relief in gasping for air and
SYMPTOMS AND APPEARANCES.

requiring to be turned over, moved or held. The muscles of the lower jaw, which are the first to be affected in tetanus from disease, are generally the last to be affected by this poison. The jaw is not always fixed during a paroxysm. The patient can frequently speak and swallow, and great thirst has been observed among the symptoms. In some cases of poisoning with nux vomica, the jaw has been fixed by muscular spasm; but, unlike the lock-jaw of disease, this has come on suddenly in full intensity with tetanic spasms in other muscles, and there have been intermissions which are not usually witnessed in the tetanus of disease.

The sudden and universal convulsion affecting the voluntary muscles, has sometimes been so violent that the patient has been jerked off the bed. After an interval of half a minute to one or two minutes, the convulsions subside, there is an intermission, the patient feels exhausted, and is sometimes bathed in perspiration. It has been noticed in some of these cases that the pupils during the paroxysm are dilated, while in the intermission they are contracted. The pulse during the spasms is so quick that it can scarcely be counted. Slight causes, such as an attempt to move, a sudden noise, or gently touching the patient, will frequently bring on a recurrence of the convulsions. In cases likely to prove fatal, they rapidly succeed each other and increase in severity and duration until at length the patient dies, utterly exhausted. The tetanic symptoms produced by strychnia, when once clearly established, progress rapidly either to death or recovery. The person is conscious, and the mind is commonly clear to the last. He has a strong apprehension of death. The duration of the case, when the symptoms have set in, is reckoned by minutes, while in the tetanus of disease, when fatal, it is reckoned by hours, days, and even weeks. As a general statement of the course of these cases of poisoning—within two hours from the commencement of the symptoms, the person either dies or recovers, according to the severity of the paroxysms and the strength of his constitution. Death sometimes takes place in a paroxysm. (See case by Mr. Lawrence, 'Lancet,' June 1861, p. 572.)

The time at which the symptoms commence appears from the recorded cases to be subject to great variation. In poisoning with nux vomica they are generally more slow in appearing than in poisoning with strychnia. Until they set in suddenly, the patient is capable of walking, talking, and going through his or her usual occupations. In a case which occurred to M. Pellarin, a man swallowed about 300 grains of nux vomica, and no symptoms appeared for two hours. He died speedily in a violent convulsive fit. ('Ann d'Hyg.' 1860, vol. 2, p. 431.) On an average in poisoning by strychnia the symptoms appear in from five to twenty minutes.

Appearances after Death.—In general the body is relaxed at the time of death, and stiffens afterwards: but the commencement and duration of the rigid state depend on various conditions. Among the internal appearances which have been met with in different
cases, are congestion of the membranes and substance of the brain, as also of the upper part of the spinal marrow, with congestion of the lungs. The heart is contracted and empty; but its right cavities in some instances have been distended with liquid blood. The blood has been found black and liquid throughout the body. The mucous membrane of the stomach has occasionally presented slight patches of ecchymosis or congestion, probably depending on extraneous causes; such as the process of digestion—the presence of food, or of alcoholic liquids. In most instances the stomach and intestines have been found quite healthy, and it is not in the nature of this poison either to inflame or irritate the mucous membrane. Of the appearances observed in poisoning with strychnia, there are none which can be considered strictly characteristic. Congestion of the membranes of the brain and spinal marrow is probably the most common.

Fatal dose.—The sixteenth part of a grain of strychnia killed a child between two and three years of age in four hours. The smallest fatal dose in an adult was in the case of Dr. Warner. _Half a grain_ of the sulphate of strychnia here destroyed life. (‘On Poisoning by Strychnia,’ pp. 138, 139.) So powerful are the effects of this drug in certain cases, that ordinary medicinal doses cannot be borne. Symptoms of its poisonous action have frequently been unexpectedly produced. Dr. Fraser states that its action is most powerful through the skin. He found that when applied to rabbits hypodermically, from one-twentieth to one-fiftieth of a grain produced violent tetanic convulsions, followed, in a few minutes, by death.

With respect to _nux vomica_, three grains of the alcoholic extract have destroyed life. The smallest fatal dose of _nux vomica_ in powder was in a case reported by Hoffmann, and quoted by Christison (p. 901), also by Trail (‘Outlines,’ p. 137). _Thirty grains_ of the powder, given in two doses of fifteen grains each, proved fatal. The poison was given by mistake for bark to a patient labouring under quartan fever. This is about equivalent to the weight of one full-sized seed, and to only one-third of a grain of strychnia in the two doses.

In fatal cases death generally takes place within two hours after the taking of strychnia. One of the most rapidly fatal cases recorded is that of Dr. Warner. The symptoms commenced in five minutes, and he was dead in _twenty minutes_. In the case of J. P. Cook, the symptoms commenced in an hour and a quarter, and he died in _twenty minutes_. In poisoning by _nux vomica_, death may occur within two hours; but Dr. Christison mentions a case in which a man died in _fifteen minutes_ after taking a dose. This is probably the shortest period known.

Vermic and Insect Killers.—Although it is difficult to procure strychnia at a druggist’s shop, it is extensively sold to the public by grocers, oilmen, and others, under the name of Vermic Killers, in threepenny and sixpenny packets. _Butler’s Vermic Killer_ consists of a mixture of flour, soot, and strychnia. I have found the
NUX VOMICA. CHEMICAL ANALYSIS.

sixpenny packet to weigh about a drachm, and to contain from two to three grains of strychnia. As the poison is mechanically mixed with the other ingredients (flour and colouring matter), and is probably manufactured on a large scale, the proportion of strychnia is liable to variation. The threepenny packet contains about half the quantity of strychnia, but this is quite sufficient to destroy the life of an adult. In place of soot, Prussian blue is sometimes used as a colouring substance. Battle's Vermin Killer is a powder similar to that of Butler, containing a fatal proportion of strychnia, as it is sold in packets. These powders are a fertile source of poisoning either through accident or design: they are openly sold by ignorant people to others still more ignorant.

Chemical analysis.—Nux vomica is well known as a flat round kernel, about the size of a shilling, with radiating silken fibres, slightly raised in the centre. It is of a light brown colour, and covered with fine silky fibres. (See Fig. 24 and 25.) It is very hard, brittle, tough, and difficult to pulverise. The powder is of a grey brown colour, like that of liquorice: it is sometimes met with in a coarsely rasped state; it has an intensely bitter taste. It yields to water and alcohol, strychnia, bruica, igasuria or strychnic acid, and some common vegetable principles. Heated on platinum foil, it burns with a yellow smoky flame. Nitric acid turns it of a dark orange-red colour, which is destroyed by chloride of tin. These chemical properties are sufficient to distinguish it from various medicinal powders which it resembles in colour; but the presence of any silky hairs or fibres revealed by the microscope (Fig. 26) would at once distinguish it from all other powders. They may be obtained from the contents of the stomach or any liquid article of food by washing and decantation. They are quite insoluble in water. The aqueous infusion or decoction of nux vomica is deeply reddened by nitric acid, and is freely precipitated by tincture of galls. Persulphate of iron gives with it an olive-green tint.
Strychnia.—This alkaloid may be readily obtained crystallized from an alcoholic solution. The crystal is very small, and its form is subject to great variation, according to the strength of the solution, rapidity or slowness of evaporation, the presence of foreign matters, &c. It is commonly seen in octahedra, sometimes lengthened into prisms of a peculiar shape, bevelled at the ends, and crossing each other at angles of 60°. (See Fig. 27.) There are as many as six or eight varieties of crystals, so that too much importance must not be attached to this branch of the analysis. As strychnia is procured from the solutions of its salts by the addition of ammonia, it is usually deposited in long slender prisms (Fig. 28).

1. Strychnia is white, of an intensely bitter taste, even when it forms only 1-30,000th part of a watery solution. 2. When heated on platinum, it melts and burns like a resin, with a black smoky flame; in a close tube it yields ammonia. 3. It is not perceptibly dissolved by cold water; it requires 7,000 parts for its solution. 4. It is easily dissolved by acids, and is precipitated from its concentrated solutions by potash, in which it is insoluble. 5. Strong nitric acid imparts to it a pale reddish colour, owing to the presence of brucia. 6. Sulphuric acid produces no apparent change in it; but when to the mixture a small crystal of bichromate of potash, of ferricyanide of potassium, or a small quantity of black oxide of manganese or of peroxide of lead, is added, a series of beautiful colours (blue, purple, and violet) appear, passing rapidly to a light red tint (green with bichromate). Among these substances black oxide of manganese will be found preferable for use.

Mr. Horsley has suggested that a solution of strychnia should be sufficiently concentrated, and then precipitated by chromate of potash: the crystals may be examined microscopically; they are generally seen in tufts of radiated prisms of a yellow colour (Fig. 29.)
On being touched with strong sulphuric acid, the colour-reactions of strychnia are at once brought out. Chloride of gold is a delicate precipitant of strychnia. According to M. Filhol, 1-650th part of a grain is thus thrown down in a crystalline state. This precipitate, collected and dried, may be dissolved in concentrated sulphuric acid, and any of the colour tests then applied to it. Iodic acid is not decomposed by strychnia or its salts, and sulphomolybdic acid gives to it slowly, only a pale blue colour. It is thus distinguished from morphia.

In testing solutions of strychnia the presence of alcohol should be avoided.

In Organic mixtures, a modification of the process originally suggested by Stas is employed for the separation of this poison. The principle of its operation consists in dissolving the strychnia by a gentle heat out of the tissue or organ, very finely cut up, by means of rectified spirit mixed with a small quantity of acetic acid. The liquid is strained, and the residue well pressed and washed with alcohol: the acid solution of strychnia thus obtained is concentrated in a water-bath. The concentrated liquid is neutralized by potash or its bicarbonate, and a slight excess of alkali is added. The alkalized liquid is then shaken in a long stoppered tube, with twice its volume of ether, or a mixture consisting of two parts of ether and one of chloroform. These liquids dissolve the strychnia set free by the alkali. The ethereal solution is separated from the watery liquid by a pipette, and submitted to spontaneous evaporation, when, if strychnia is present, the alkaloid will be obtained, but generally associated with oily and other organic matters, which may interfere with the production of crystals. The impure residue left by the ether is heated in a water-bath, with a few drops of strong sulphuric acid: this destroys the organic matter. Water is added, and the acid liquid is filtered through paper, neutralized by potash, and again treated with ether, when strychnia will be obtained in small and slender prisms. The crystals, after an examination by the microscope (see Fig. 28, p. 178), are treated with sulphuric acid and peroxide of manganese, and the colour-reactions of strychnia, if the alkaloid is present, will appear. Mr. Bloxam has recommended the use of benzole in place of ether, while the process of separating strychnia by dialysis (p. 79) has been most successfully carried out by Dr. Gray, of Glasgow. The reader will find in his essay on strychnia a full account of the method of employing this process for the detection of the poison in organic liquids and the best modes of applying the tests. (‘Strychnia,’ by Dr. James St. Clair Gray, Glasgow, 1872, p. 75.) Whatever process may be adopted, the
DETECTION OF BRUCIA.

The analyst should bear in mind that it is better to operate on a small quantity of strychnia in a pure state than on a large quantity in an impure state. Strychnia does not appear to undergo any change in the dead body from the process of putrefaction.

Brucia.—Brucia is an alkaloid generally associated with strychnia in the seeds of nux vomica, but it is more abundantly contained in the bark of the tree. It is not so powerful a poison as strychnia, but the symptoms which it produces are similar. It is considered to have about one-sixth of the strength of strychnia. It is not affected by the colour-tests employed for the detection of strychnia, and it acquires an intense red colour on the addition of nitric acid. It is much more soluble in water than strychnia, and has a bitter taste. Its aqueous solution is strongly alkaline, and by spontaneous evaporation, it yields groups of slender prismatic crystals arranged in a fan-like shape. Unlike strychnia, it cannot be crystallized from a solution in benzole, and only imperfectly from a solution in alcohol. Hydrochloric and iodic acids produce in it no change, either in the cold or when heated. Sulphuric acid gives to it a pink red colour without carbonizing it. The sulphate of brucia crystallizes in well-defined prisms truncated at the ends. They are larger and longer than the prisms of strychnia. (See Fig. 30.) From a case of poisoning with this alkaloid which occurred to Dr. Edwards, it is necessary to give a caution to medical men respecting the possible criminal use of brucia. The symptoms which it causes so closely resemble those of poisoning with strychnia, that, in the event of death, the latter poison only may be sought for and not found. The tetanic symptoms are more slowly produced, and the poison is not so rapidly fatal as strychnia; but these conditions may be altered by the larger quantity given.

When, in any suspected case, the colour-tests for strychnia fail to show the presence of this alkaloid, nitric acid should be added to the crystalline residue obtained, as in the process for strychnia, by the use of ether or chloroformic ether. The intense reddening produced by this test, with the other characters above mentioned, will indicate the presence of brucia. Sulphomolybic acid (p. 154) also forms a striking distinction between the alkaloids. While it slowly gives a pale blue with strychnia, it rapidly gives a deep brick red colour, passing to brown red, with brucia or its salts.
POISONING WITH HEMLOCK.

(CEREBRO-SPIRAL POISONS.)

CHAPTER 20.

CONIUM MACULATUM.—HEMLOCK.—CONIA.—GENANTHE CROCATA.—RHUS CYNAPIUM.—ACONITE OR MONKSHOOD.—ACONITINA.

COMMON OR SPOTTED HEMLOCK. (CONIUM MACULATUM.)

Symptoms and Appearances.—The effects produced by hemlock have not been uniform; in some instances there have been stupor, coma, and slight convulsions; while in other cases the action of the poison has been chiefly manifested on the spinal marrow—i.e. it has produced paralysis of the muscular system. A man ate a large quantity of hemlock-plant, by mistake for parsley. In from fifteen to twenty minutes there was loss of power in the lower extremities; but he apparently suffered no pain. In walking, he staggered as if he was drunk; at length his limbs refused to support him, and he fell. On being raised, his legs dragged after him, and when his arms were lifted, they fell like inert masses, and remained immovable. There was perfect paralysis of the upper and lower extremities within two hours after he had taken the poison. There was loss of power of swallowing, and a partial paralysis of sensation, but no convulsions, only slight occasional motions of the left leg; the pupils were fixed. Three hours after eating the hemlock, the respiratory movements had ceased. Death took place in three hours and a quarter; it was evidently caused by gradual asphyxia from paralysis of the muscles of respiration; but the intellect was perfectly clear until shortly before death. On inspection, there was slight serous effusion beneath the arachnoid membrane. The substance of the brain was soft; on section there were numerous bloody points, but the organ was otherwise healthy. The lungs were gorged with dark fluid blood; the heart was soft and flabby. The stomach contained a green-coloured pulpy mass resembling parsley. The mucous coat was much congested, especially at its greater end. Here there were numerous extravasations of dark blood below the membrane, over a space of about the size of the hand. The intestines were healthy, here and there presenting patches of congestion in the mucous coat. The blood throughout the body was fluid and of a dark colour.

In a case which was the subject of a trial for murder (Reg. v. Bowyer, Ipswich Summer Assizes, 1848), the child died in one hour after swallowing part of a teacupful of a decoction of hemlock, alleged to have been administered by the mother. The child sipped the decoction, until it lost the power of holding the cup; it became insensible and paralyzed, and died in the chair in a sittir
posture. There were no morbid appearances, and no hemlock leaves were found in the body, these having subsided in the cup, and being left in the dregs. The child had been poisoned by the upper stratum of clear liquid. The mother was acquitted for want of proof, the death of the child having taken place in secrecy.

Hemlock is known from most other plants which resemble it by its large round smooth stem, with dark purple spots. The leaves are of a dark green colour, smooth and shining. Every portion of the plant has a peculiar and disagreeable smell when bruised, resembling cat’s urine, or, according to some, the odour of mice. It is strongly brought out when the stem, leaves, or seeds are rubbed with a solution of caustic potash. An illustration of the seeds of hemlock, is annexed (Fig. 31). They are peculiar in their form, and are easily distinguished from the seeds of other umbelliferous plants. A person may be poisoned by a decoction of leaves of hemlock, and no leaves be found in the stomach or bowels (case of Bouyer, supra). In this case the stomach had been emptied, and the contents lost, before it was sent to me! No trace of conia was found.

The poisonous alkaloid of hemlock is known under the names of Conia, conein, conicine, and conicina. It resembles nicotine and ammonia in its liquidity, volatility, alkaline reaction, and in some of its chemical properties. It is a liquid of oily consistency, of a pale yellow colour, powerfully alkaline, and has, when its vapour is diluted, a smell resembling that of mice, and an acrid bitter taste. It gives a volatile greasy stain to paper, and burns with a yellow flame and thick smoke. 1. It is not coloured or affected by nitric, sulphuric, or hydrochloric acid; the last-mentioned acid produces with it dense white fumes of hydrochlorate of conia, and on heating the mixture, this salt is obtained in prismatic crystals. 2. It is not dissolved by water, but floats on it in oily globules. 3. It is soluble in alcohol and ether, and this last-mentioned liquid removes it from its aqueous solution, and leaves it in oily globules on evaporation. In reference to its presence in organic mixtures, it may be detected by its peculiar odour, or by distilling the liquid with a solution of potash and examining the distillate.

The reactions produced by tests on small quantities should be distrusted, unless there is strong evidence of the action of the poison on the body from the symptoms.

Water-hemlock. (Cicuta Virosa.)

Symptoms and Appearances.—The symptoms produced by the roots of this plant are giddiness, dimness of sight, headache, and
POISONING WITH CENANTHE CROCATA.

difficulty of breathing. There is burning pain in the stomach, with vomiting, and these symptoms are accompanied by heat and dryness of the throat. Convulsions have been observed to precede death. In the cases of three children who died in convulsions from this poison, Mertzdorff found an injected state of the mucous membrane of the stomach, with redness of the air-passages, as well as of the cardia and pylorus; the vessels of the brain and the sinuses were filled with dark liquid blood. (Wibmer, 'Cicuta,' 119.)

Hemlock Water-Dropwort. (Cenanthè Crocata.)

This umbelliferous plant grows on the banks of rivers, streams, and ditches. It is one of the most poisonous of the order, and is considered to be one of the most virulent of English vegetable poisons.

Symptoms and Appearances.—In April 1857, two cases of poisoning with this plant occurred at West Boldon, in Durham. Two labourers ate some of the roots of the cenanthe. They were found soon afterwards lying insensible and speechless, their faces livid, tongues swollen and protruded, and there were convulsive movements of the jaws, with frothy mucus and blood about their mouths, the eyes full and projecting, pupils dilated, breathing stertorous and laboured, with occasional general convulsions. They both died in an hour and a half from the time at which they were first discovered. On inspection, it was found that there had been bleeding from the ears; the abdomen was livid and swollen. The stomach contained a gruelly liquid with some of the partly digested roots; on removing this liquid, the lining membrane was found congested and softened. The lungs were engorged with dark liquid blood, and the blood contained in the heart was in a similar state. Mr. Boyle, to whom these cases occurred, forwarded to me a portion of the roots, and there was no doubt that they were the roots of the cenanthe crocata. (For other cases see 'Medical Gazette,' vol. 34, p. 288.) This plant is equally fatal to animals. Dr. Cameron states that forty-three oxen which were turned into a pasture in which the cenanthe grew were killed by eating the plant. Foaming at the mouth, shivering, difficult breathing, and tetanic spasms, with pleuro-thotonos or spasmodic bending of the body to one side, were among the symptoms. ('Lancet,' June 28, 1873, p. 918.)

It is not often that attempts are made to destroy others by the administration of these vegetable poisons; but a case occurred in France in which a woman attempted to poison her husband by mixing slices of the root of this plant with his soup. His suspicions were excited by the acrid taste of the soup. The woman was tried for the crime, and M. Toulouache deposed at the trial that the plant from which the root had been taken was the cenanthe crocata—that it was a powerful poison, and might cause death in two or three hours. The prisoner was convicted, and condemned to ten years at the galleys. ('Gaz. Med.' Jan. 3, 1846, 18; also, 'Jour. de Chim. Med.' 1845, 533.)
Analysis.—The *Cenanthe crocata* can be identified only by its botanical characters. The leaves are of a dark green colour, with a reddish-coloured border. They have no unpleasant odour when rubbed. The seeds, of which an illustration is annexed (Fig. 32), are peculiar. The plant bears a greater resemblance to celery than most of the other umbelliferae. Its stem is channelled, round, smooth

![Diagram of Cenanthe Crocata](image)

Seeds of *Cenanthe Crocata*. a Natural Size. b Magnified 30 diameters. c One half of a seed magnified. d One half natural size. e Group of Seeds.

and branched, of a yellowish-red colour, and growing to the height of two or three feet. The root consists of a series of oblong tubercles, with long slender fibres. It is of a yellowish-white colour, and not unpleasant to the taste. It is the most active part of the plant. The leaves yield much tannic acid to water, but the decoction appears to contain no alkaloidal base, since the chloriodide of potassium and mercury produces no precipitate in it. The roots and stems of this plant are more frequently eaten than the leaves or seeds.

Fool's Parsley. (ÆTHUSA CYNAPNIUM.)

Fool's Parsley, or Lesser Hemlock, is very common in gardens and hedge-rows. The leaves so closely resemble those of parsley that they have often been gathered for them by mistake.

Symptoms and Appearances.—In May 1845, a girl, 5 3/4 years, in good health, ate the bulbs of the æthusa by mistake for young turnips. She was suddenly seized with pain in the abdomen, followed by a feeling of sickness; but she did not vomit. She complained of feeling very ill. On trying to eat, she could not swallow. She was incapable of answering questions, and her countenance bore a wild expression. The lower jaw became fixed, so as to prevent anything being introduced into the mouth. She then became insensible, and died in an hour from the commencement of the symptoms: so far as could be ascertained, there were no convulsions. A second child, 5 1/2 years, shortly after eating the same substance, was attacked with pain in the stomach, sickness, vomiting, and profuse perspiration. She soon recovered, with the exception of suffering severe griping pains without purging;
but these disappeared on the following day. A third child, of the
same age, suffered from similar symptoms. Recovery in the two
last cases was partly due to the plant
having been eaten on a full stomach, and
to the effect of early and copious vomiting.
('Med. Times,' Aug. 23, 1845, 408.)
This plant is known from garden parsley
by the smell of its leaves when rubbed,
which is peculiar, disagreeable, and very
different from that possessed by the leaves
of parsley. The leaves of Fool's parsley
are finer, more acute, and of a darker
green colour. The seeds are also peculiar.
They are represented in the annexed illus-
tration (Fig. 33). Its flower-stem, which
is striated or slightly grooved, is easily
known from all other umbelliferous plants
by the beard, or three long pendulous
leaves of the involucrem under the flower.
The flowers are white; those of the garden
parsley are of a pale yellow colour. The poisonous properties
of the plant are believed to be due to an alkaloid, which has not yet
been isolated.

MONKSHOOD. (ACONITUM NAPELLUS.)

This well-known garden plant is in some parts of the country
called Wolfbane, and in Ireland Blue-rocket. The roots, seeds,
and leaves are highly poisonous, owing to the presence of the alka-
loid aconitina; the root is especially noxious, and when the leaves
have fallen off, it appears to possess its greatest virulence. These
parts of the plant, when masticated, produce a peculiarly cool
numbing sensation, affecting the lips, tongue, and interior of the
mouth generally. At first the root appears to be tasteless, as the
effects are only strongly manifested after a quarter of an hour or
twenty minutes. From tasting only a small portion of the dried
root, I found that this disagreeable sensation remained on the
tongue and lips for four hours. In larger quantity the taste has
been described as burning, and it is stated to have been followed
by a hot acrid sensation in the throat.

Symptoms and Appearances.—In from a few minutes to an hour
after the poison has been taken, the patient complains of numbness
and tingling in the mouth and throat, which are parched:—there
is giddiness, with numbness and tingling in the limbs, a loss of
power in the legs, sometimes frothing at the mouth, and severe pain
in the abdomen, followed by vomiting and purging. In some cases
the patient is completely paralyzed, but retains his consciousness:
in others the giddiness is followed by dimness of sight, delirium,
and other cerebral symptoms, but not amounting to the complete
coma produced by the cerebral or narcotic poisons. The pupils are
dilated, the pulse sinks, the skin is cold and livid, and the breathing is difficult. Convulsions are not commonly observed in man, or they are indicated by general tremors or twitchings of the voluntary muscles. The poison produces convulsions in animals. Poisoning by the root of aconite is by no means unfrequent. In the spring or autumn, the root is liable to be mistaken for that of horseradish. It has been thus accidentally eaten on several occasions, and has caused death. A mistake of this kind led to fatal results in three hours in a case which occurred at Lammeth; and another set of cases occurred at Dingwall, in Scotland, in January 1856. Here three persons were poisoned by reason of their having had sauce made with the root of aconite, served at dinner with roast beef in place of horseradish sauce! They were healthy adults; they all died within three hours and a half. These mistakes show deplorable ignorance, but there is always the risk of their occurrence when horseradish and aconite are grown near to each other in a garden, at that season of the year when the leaves have fallen.

The tincture of the root is a powerful poison. In January 1853, a woman took by mistake seventy minims of Fleming's tincture of the root mixed with one grain of acetate of morphia. In a few minutes she became very thirsty, complained of a burning sensation and pain in her stomach, to relieve which she swallowed a quantity of cold water. In fifteen minutes there was violent vomiting, which continued for two hours. She lost the power of standing, and was very restless. The pain in the stomach increased, and there were convulsive movements of the muscles. She was conscious until shortly before her death, which took place in about four hours after she had taken the poison. There were no general convulsions: the pain in the stomach was well marked throughout. On inspection, the membranes of the brain were congested, but the brain itself was firm and healthy. The lungs were healthy: and the heart was flaccid, the uterus congested. The stomach contained some mucus, and the lining membrane at the larger curvature was injected (reddened) in patches, but otherwise natural. The mucous membrane of the duodenum was in a high state of inflammation, partially abraded, softened, and broken down. Some spots were of a very dark colour, passing into mortification. In October 1852, an excise officer lost his life by merely tasting Fleming's tincture of aconite, under the supposition that it was flavoured spirit. He was able to walk from the Custom House over London Bridge, but he died in about four hours after taking the poison.

The case of the man Hunt, who, in November 1863, destroyed his wife and children by prussic acid, presents some features of interest in reference to the symptoms and appearances produced by tincture of aconite. The quantity of tincture taken by him was not determined; but the man was soon afterwards seized with violent spasmodic retching, face pale, skin cold and clammy, pulse small and hardly perceptible, and the action of the heart feeble. The pupils were much dilated, and the eyes brilliant and sparkling; the
ROOTS OF ACONITE AND HORSEHERRADISH.

breathing was quiet and regular, except during the fits. He complained of pain in his heart. In attempting to walk, he staggered, and had no power to raise his arms. He was perfectly conscious, called for writing materials, and wrote a few lines. He then became suddenly worse, and a quarter of an hour before his death he lost all power and sensation in his limbs, the sharpest pinches producing

Fig. 34.

Root of Aconite.

Root of Horseherradish.

no impression. The pulse was imperceptible. There were no convulsions, but complete relaxation of the limbs at death, which appeared to arise from syncope three-quarters of an hour after he had taken the poison. On inspection forty-two hours after death, there was great rigidity of the muscles. The substance of the brain was firm and healthy: the vessels on the surface were filled with blood. The heart was healthy: the right side was greatly distended.
with dark fluid blood: the left side contracted and quite empty. The lungs were healthy. In the abdomen the visera were healthy, with the exception of the stomach and duodenum. There was great capillary congestion at the larger end of the stomach, the mucous membrane having a bright red colour. There were marks of irritation, with softening and separation of the mucous lining, the whole of the membrane being in a highly corrugated condition. Traces of aconita were found in the contents of the stomach. The deceased had provided himself with an ounce of the tincture of aconite, and had swallowed the greater part of this mixed with water.

Analysis.—The botanical characters of the leaves and root, when any portions can be obtained, will enable a medical witness to identify this vegetable poison. The root has been frequently and fatally mistaken for horseradish, but there are these striking differences:—1. Aconite root is very short, conical, and tapers rapidly to a point (Fig. 34, p. 187). 2. It is externally of an earthy-brown colour, internally white, and of an earthy smell; the cut surface is rapidly reddened by exposure to air. It has numerous long thin fibres proceeding from it. 3. It has at first a bitter taste, but after a quarter of an hour or twenty minutes it produces a disagreeable sense of tingling and numbness on the lips and tongue. 1. Horse-radish root is long, cylindrical, or nearly so, and of the same thickness for many inches (Fig. 35, p. 187.) 2. It is externally whitish-yellow, and has a pungent odour when scraped. 3. Its taste is sometimes bitter, but it produces an immediate hot or pungent sensation.

The leaves of aconite or monkshood are of a dark-green colour and of a peculiar shape. When masticated they slowly produce on the lips and tongue the persistent sense of tingling and numbness, with the sense of coolness observed in the root. They are less powerful than the root and seeds. The seeds differ in appearance from those of other poisonous plants (Fig. 36).

Aconitina.—The alkaloidal base of this plant, aconitina, is a formidable poison, exceeding all others in its effects. In one case one-fiftieth part of a grain nearly proved fatal to an elderly lady (Pereira, 'Mat. Med.' vol. 2, pt. 2, p. 695); and it is probable that one-tenth part of a grain of pure aconitina would prove fatal to a human being. Some samples of this alkaloid are, however, much less potent than others, and the chemical properties are also different. (See paper by Schröff, 'Reil's Journal für Toxikologie,' 3rd H. 1867, p. 335, and one by Liégeois 'Chem. News,' Oct. 24, 1863, p. 201.) This contains the account of a simple method for the extraction of the alkaloid.

A sample of English aconitina possessed the following properties:—It was in whitish granular masses, without any distinctly
POISONING WITH BELLADONNA.

crystalline structure. 1. When heated it readily fused and burnt in the air with a bright yellow flame. 2. Heated in a close tube, it evolved first an alkaline and then an acid vapour. 3. It was scarcely soluble in water, but was dissolved by weak acids and alcohol; it did not readily crystallize. 4. Nitric acid dissolved it, without causing any change of colour. 5. Sulphuric acid gave to it a yellowish colour, and green oxide of chromium was separated on adding to it a crystal of bichromate of potash. Aconitina cannot be separated from its solutions in a crystalline state by the addition of ammonia. 6. Tannic acid and the chloriodide of potassium and mercury readily precipitated it.

Aconitina is sufficiently soluble in ether to allow of its separation from organic liquids by a process similar to that used for strychnia (p. 179). Dr. Headland recommends, as a physiological test, the production of an alcoholic extract of the contents of the stomach and its application to animals. One-twentieth of a grain will be sufficient: the 1-300th of a grain will poison a mouse; the 1-100th, a bird; and 1-1000th causes tingling and numbness of the tip of the tongue. The 1-100th of a grain dissolved in spirit and rubbed into the skin, causes loss of feeling, lasting for some time. (Lancet,' March 29, 1856, p. 343.) There is, however, a great difference in the properties of this alkaloid according to the mode in which it is prepared (Bouchardat, 'Ann. de Thérapeutique,' 1864, pp. 48 and 54; also 'Annuaire,' 1863, p. 41).

CHAPTER 21.

ATROPA BELLADONNA, OR DEADLY NIGHTSHADE.—POISONING BY ATROPINA.—LOBELIA.—FOXLACE.—DIGITALINE.—DATURA STRamonIUM OR THORNAPPLE.—DATURIA.—OTHER VEGETABLE POISONS.

DEADLY NIGHTSHADE. (ATROPA BELLADONNA.)

Symptoms.—The symptoms which are produced by the leaves, berries, seeds, and root of belladonna are of a uniform character, and, as a summary, they may be thus described:—Heat and dryness of the mouth and throat, nausea, vomiting, giddiness, indistinct or double vision, delirium, great excitement, convulsions, followed by stupor and lethargy. The pupils are much dilated, and the eyes are insensible to light. In two cases which occurred to Mr. Tufnell, the pupils were contracted during sleep, although dilated in the waking state. ('Dublin Med. Press,' Jan. 5 1853. Journal de Chimie Médicale,' 1853, p. 695.) Several deaths from the poisonous effects of the berries occurred in London in 1846. The following case was admitted into Guy's Hospital:—A boy, at 14, ate, soon after breakfast, about thirty of the berries of the belladonna, which he had bought as fruit in the streets. In about three hours he had the sensation of his face being swollen; his
throat became hot and dry, his vision was impaired, objects appeared double, and they seemed to revolve and run backwards. His hands and face were flushed, and his eyelids swollen: there were occasional flashes of light before his eyes. He tried to eat, but could not swallow on account of the state of his throat. In endeavouring to walk home he stumbled and staggered; and he felt giddy whenever he attempted to raise his head. His parents thought him intoxicated: he was incoherent,—frequently counted his money, and did not know the silver from the copper coin. His eyes had a fixed, brilliant, and dazzling gaze; he could neither hear nor speak plainly, and there was great thirst; he caught at imaginary objects in the air, and seemed to have lost all knowledge of distance. His fingers were in constant motion: there was headache, but neither vomiting nor purging. He did not reach the hospital until nine hours had elapsed; and the symptoms were much the same as those above described. He attempted to get out of bed with a reeling, drunken motion; his speech was thick and indistinct. The pupils were so strongly dilated that there was merely a ring of iris, and the eyes were quite insensible to light. The eyelids did not close when the hand was passed suddenly before them. He had evidently lost the power of vision; although he stared fixedly at objects as if he saw them. The nerves of common sensation were unaffected. When placed on his legs he could not stand. His pulse was 90, feeble and compressible; his mouth was in constant motion, as if he were eating something. His bladder was full of urine on admission. He continued in this state for two days, being occasionally conscious, when by a free evacuation of the bowels, some small seeds were passed: these were examined and identified as the seeds of belladonna. The boy gradually recovered, and left the hospital on the sixth day after his admission:—the progress of recovery was indicated by the state of the pupils, which had then only acquired their natural size and power of contraction.

In three other cases which occurred at the same time, the berries having been baked in a pie, pains in the limbs, drowsiness, insensibility, and convulsions, were among the symptoms. In two instances of poisoning by the berries related by Dr. Moll, the symptoms bore a strong resemblance to those of delirium tremens, but among them were heat and dryness of the throat, loss of power of swallowing, incoherent speech, double vision, and strange spectral illusions, with occasional fits of wild and ungovernable laughter. On the following morning both these patients recovered as if from a dream; but they suffered for some time from languor, thirst, and dryness of the throat: the pupils also continued dilated. (Casper's 'Wochenschrift,' 10 Jan. 1846, p. 26.) Two cases, showing the poisonous effects of the berries on children, are quoted in the 'Edinburgh Medical and Surgical Journal.' (Vol. 29, p. 452.)

The following case, which occurred in Nov. 1871, is remarkable for the fact that a woman recovered from a large dose of the extract.
A nurse gave by mistake to a lady whom she was attending a belladonna liniment containing three drachms of the extract mixed with soap liniment. She had vomited slightly. When seen by Mr. F. Keen he found her suffering from dryness of the throat, difficulty of swallowing, drowsiness, delirium, pupils dilated, fixed stare of the eyes, loss of power and difficulty of speech. Paralysis of the extremities came on, with great pain in the back. Emetics with brandy and cayenne pepper were employed with success. The woman recovered, but not until after five weeks from the time of swallowing the liniment.

Appearances.—The appearances observed in several cases of poisoning with the berries which proved fatal in London during the autumn of 1846, were as follows: the vessels of the brain were congested with liquid blood; the stomach and intestines were pale and flaccid; there were some red spots towards the cardiac end. In other fatal cases, of which the appearances have been reported, the vessels of the brain and its membranes were found distended with thick black blood. Red spots have also been observed around the throat and gullet, and congested patches of a dark purple colour on the coats of the stomach. In some instances the mucous membrane has been completely dyed by the juice of the berries. A boy, aged 5, after having eaten a quantity of the berries of the belladonna, went to bed, was very restless, vomited once, and died in convulsions about fifteen hours after having taken the poison. On inspection, the eyes were half-open, with an intense lustre; the pupils dilated; the mouth was spasmodically closed, and the sphincter ani relaxed. The cerebral vessels were distended with dark-coloured blood: the substance of the brain, cerebellum, and medulla oblongata presented numerous bloody points. In the throat and gullet there were several patches of redness. In the stomach there was some fluid, with three open berries; the mucous membrane was of a reddish-blue colour in various parts. (Case by Dr. Rosenberger, Canstatt's 'Jahresb.' 1844, v. 295.)

Analysis.—The indigestible nature of the leaves, fruit, and seeds will commonly lead to their detection in the matters vomited or passed by the bowels, or in the contents of the visceræ after death. The seeds of belladonna are very small,—they can be distinguished by the microscope from the seeds of other poisonous plants. They are of a somewhat oval shape and of a dark colour. Under a low magnifying power they present a honeycombed surface (Fig. 37). In henbane the surface of the seeds presents more irregular depressions, resembling those seen on certain corals or madreporés. The colouring matter of the berry is of a deep purple hue; it is turned green by alkalies, and red by acids. The leaves would be known by their botanical characters, and a decoction or infusion of them by the liquid causing dilatation of the pupil.
Atropia.—Atropia is the name given to the alkaloidal principle of belladonna; it is a powerful poison. Some consider it to be identical with daturia, the poisonous alkaloid of thornapple, but this is not yet satisfactorily established, either chemically or physiologically. Symptoms of poisoning have been produced by the application of a weak solution of atropia to the eyes. One-eighth of a grain injected beneath the skin for the relief of sciatica, caused all the symptoms of poisoning with belladonna. One grain used endermically nearly proved fatal at Guy’s Hospital, and in the following case reported by Mr. Leach (‘Med. Times and Gaz.’ July 6, 1865, p. 34)—a man who swallowed, by mistake, a grain of sulphate of atropia in solution, had a narrow escape of his life. In an hour afterwards, the following symptoms were observed:—the pupils were enormously dilated, so that the irides were scarcely visible; the eyes moved restlessly from side to side. The pulse was very quick, and the patient appeared as if intoxicated. In another hour his hands were cold,—the pulse was weak—and there was loss of power in the limbs. He became restless, incoherent, and unconscious of preceding events. There was also delirium. In a later stage there was a morbid sensitiveness to sounds and objects,—the tongue was furred and the skin was dry and hot. The pupils continued dilated for a week, and for several days there was a partial paralysis of the bladder. He recovered in a fortnight.

Atropia is a white crystalline substance, not very soluble in water, but easily dissolved by alcohol, ether, and diluted acids. It does not readily crystallize, but it forms crystallizable salts. The crystals melt at 194°, and at 284° they are volatilized, being at the same time in great part decomposed. Ammonia added to a solution of sulphate of atropia does not separate the alkaloid in distinct crystals. In this respect it differs from morphia and strychnia. When atropia is heated on platinum it melts, darkens in colour, and burns with a yellowish smoky flame. Sulphuric, hydrochloric, and nitric acids dissolve it without any change of colour. It does not decompose iodia acid. Sulphomolybdic acid produces in it no change; but after a time the mixture acquires a light blue colour. When to the mixture with sulphuric acid, a crystal of bichromate of potash is added, a green colour is produced by the formation of oxide of chromium. Tannic acid precipitates the alkaloid from its solutions: but the most effectual precipitant is the chloridide of potassium and mercury, which throws down a dense white precipitate even in very diluted solutions. Atropia is also precipitated by chloride of gold, but, unlike strychnia, it is not precipitated by sulphocyanide of potassium or chromate of potash. It may be detected in, and separated from, organic liquids by the process of Stas. (See p. 179.)

There are no absolute or certain chemical tests for this alkaloid when contained in an organic liquid. The only test usually employed is of a physiological nature, namely, the effect produced on the pupil by small quantities of liquid, or extract, containing traces
of atropia. The pupil is largely dilated and the eye loses its sensibility to light. Datura, hyoscyamus, and digitaline also produce dilatation of the pupil. Poisonous mushrooms and other noxious organic matters have a similar effect, so that there is nothing conclusive in this result, unless there is also strong evidence from symptoms that belladonna has been actually taken or administered.

At the Exeter Autumn Assizes for 1865 (Reg. v. Sprague), a medical man was charged with attempting to poison his wife and other persons with atropia, which it was alleged had been placed in a rabbit pie. The evidence failed to show at the trial that the prisoner, or any other person, could have mixed poison with the pie, much less such a poison as this, which in the dose of one or two grains, either destroys life or produces serious illness continuing for some time. The symptoms, as described, resembled those caused by noxious food, and differed in many respects from those of poisoning by atropia. The only fact on which this chemical theory seemed to rest, was that the pupils of those who ate of the pie and were taken ill afterwards—were dilated and a portion of the extract of the scrapings of the pie dish is said to have caused a dilatation of the pupil of the analyst. (See 'Med. Times and Gaz.' August 12, 1865, p. 168; also 'Chemical News,' August 11, 1865, p. 72.) It is stated that the supposed poison was separated from the baked leg of a rabbit, by soaking it in dilute hydrochloric acid, but according to those who have examined the properties of atropia, this alkaloid melts at 194°, is entirely volatile under 300°, and is then in great part decomposed. This is below an ordinary cooking temperature. ('Chemie der Organischen Alkalien, Schwartzkopf,' p. 317.) The whole of the scientific theory rested upon the dilatation of the pupils, and this, although presumptive, is not positive evidence of atropia having been administered.

The criminal administration of atropia is a rare event in this country. A trial for murder by this alkaloid took place at the Manchester Lent Assizes, 1872 (Reg. v. Steele). The prisoner, who was a nurse in the workhouse, was charged with administering atropia to the senior surgeon, Mr. Harris, and thereby causing his death. The deceased was taken suddenly ill after his breakfast, and died under the usual symptoms of poisoning with atropia in about twelve hours. The poison was detected in the body by Mr. Calvert, and also in a liquid found in the room—a solution of atropia in spirit. Milk was the vehicle through which it was taken. The milk as sent from the kitchen contained nothing injurious, but that found in deceased’s room was tasted by two of the nurses and both suffered from poisoning by atropia. The prisoner had access to this room, and it was alleged that she had a strong motive for this criminal act, but there was no direct proof to show that she put the poison into the milk, and she was acquitted.
POISONING WITH LOBELIA.

INDIAN TOBACCO. (LOBELIA INFLATA.)

The powdered leaves of Indian tobacco contain an acrid principle, lobelin, which is capable of producing poisonous effects on the brain and spinal marrow, attended with irritation of the stomach and bowels. When administered in doses of from ten to twenty grains, lobelia operates as an emetic; but in larger quantity it acts deleteriously. In one case a man lost his life by swallowing one drachm of the powdered leaves, prescribed by a quack. This person was seen by a medical practitioner soon after he had taken the poison: he was evidently suffering great pain, but he was quite unconscious,—the pulse was small, and the pupils were strongly contracted and insensible to light. He had vomited the greater part of the poison. He suffered from spasmodic twichings of the face, sank into a state of complete insensibility, and died in about thirty-six hours. On inspection, some fluid was found in the stomach, but none of the powder. The mucous membrane was intensely inflamed, and the vessels of the brain were strongly congested. (‘Pharm. Times,’ May 1, 1847, p. 182.) The seeds of lobelia are equally poisonous. In the ‘Med. Times and Gazette,’ Nov. 26, 1853, p. 568, two cases are reported in which the seeds proved fatal. In one, the mucous membrane of the stomach was highly inflamed. Another case is referred to in the same journal, March 12, 1853, p. 270. There have been many inquests and trials for manslaughter in this country as the result of the improper administration of the leaves of the Lobelia inflata by ignorant quacks, calling themselves medical botanists and dealers in vegetable medicines. The medical evidence given on these trials has proved that in large doses lobelia is a most noxious drug.

Lobelia is seen in the form of a greenish-coloured powder (fragments of leaves.) This powder acquires a reddish-brown colour from strong nitric acid, and is blackened by concentrated sulphuric acid. Iodine water has no effect upon the infusion. The proto- and per-sulphate of iron produce with it a dark-green colour, the per-sulphate very rapidly. The leaves and seeds contain a resinoid substance called lobelin, which has the smell and taste of the plant. It acts as a powerful emetic in doses of from one-half to one grain. The leaves of lobelia are generally seen in fragments which do not readily admit of identification by the microscope. The seeds are very small, of a lengthened oval shape (Fig. 38), reticulated on the surface with projecting hairs or fibres, and of a light brown colour. The discovery of them among the fragments of leaves would furnish a sufficient proof of the presence of lobelia.
FOXGLOVE. SYMPTOMS AND EFFECTS.

Foxglove. (Digitalis Purpurea.)

Symptoms and Effects.—Cases of poisoning with foxglove are not very common. A boy who swallowed six ounces of a strong decoction of the leaves was soon attacked with vomiting, purging, and severe pain in the abdomen. After some time, he became lethargic, and slept for several hours; in the night he was seized with convulsions. The pupils were dilated and insensible, the pulse was slow, small, and irregular; coma followed, and the boy died twenty-two hours after taking the poison. On inspection, the membranes of the brain were found much injected, and the mucus lining of the stomach was partially inflamed. The prisoner was acquitted of the charge, because he had only given his fatal advice on the application of the friends of the deceased! (‘Ed. Med. and Surg. Jour.,’ 27, 223.) A young man swallowed a strong decoction of foxglove by mistake for purgative medicine. He was soon seized with vomiting, pain in the abdomen, and purging. In the afternoon he fell asleep. At midnight he awoke, was attacked with violent sickness, colic, and convulsions; the pupils were dilated and insensible to light; the pulse was slow and irregular. He died twenty-two hours after taking the poison. (Wibmer, op. cit. Digitalis.) A few grains of the powdered leaves have been known to produce giddiness, languor, dimness of sight, and other nervous symptoms. A drachm has, however, been taken without causing death; but in this instance it produced violent vomiting. A common effect of this poison is to produce great depression of the heart’s action.

When foxglove has been taken in substance, i.e., in the form of seeds or leaves, or any portion of these has been swallowed in a decoction or infusion, fragments may be found in the stomach and bowels. In reference to the infusion, decoction, tincture, or extract, except there be sufficient to allow of the separation of digitaline, there is no chemical process known by which the poison may be recognised. If any fragments of leaves or seeds are found in the contents of the stomach or in food, they may be identified by the aid of the microscope. The annexed illustration (Fig. 39) represents the seeds of foxglove: they are of a reddish brown colour, remarkably small, oblong, and somewhat angular in shape. They have peculiar markings. By the aid of the microscope, they may be easily distinguished from the seeds of hyoscyamus, datura, bella donna, and most other poisonous plants.

Digitaline is the active principle of foxglove. It constitutes one per cent. of the dried leaves. Its physiological properties have been fully investigated by M. Homolle (‘Journal de Pharmacie,’ Janvier 1845–57; also, by Bouchardat, ‘Ann. de Thérapeutique,’ 1864, p. 155.) It is an uncrystallizable substance, and has no well-defined chemical characters.
POISONING WITH STRAMONIUM.

Pure digitaline itself operates as a poison on man and animals in very small doses. The 1-16th of a grain, which is considered to be equal to eight grains of the well-prepared powder of the dried leaves, is sufficient to cause symptoms of poisoning. Doses of from 1-11th to 1-32nd part of a grain have lowered the pulse and caused nausea, vomiting, griping, purging, and an increased secretion of urine. (Pereira, 'Mat. Med.,' vol. 2, p. 528.) Doses of from one-quarter to one-half of a grain would probably prove fatal to life. Digitaline has acquired some notoriety by reason of the trial of Dr. De la Pommerais, at Paris, in May 1864, for the murder of a woman named Pauw. (See 'Principles of Med. Jur.' p. 364; also, 'Ann. d’Hygiène,' 1864, tom. 2, p. 105.)

THORNAPPLE. (DATURA STRAMONIUM.)

Symptoms and Appearances.—The symptoms produced by stramonium whether the leaves or seeds are used, are as follows: soon after the poison has been taken there is giddiness, dimness of sight, a sense of fainting—insensibility—fixed and dilated pupils, flushed countenance, and a slow and full pulse. Sometimes there is great restlessness, with a hot and red skin, and a wild and staring expression in the countenance, the breathing hurried and gasping, incessant talking without distinct articulation, and there are attempts to drive away, or grasp at, imaginary objects. There is picking at the bed clothes, with paroxysms of excessive laughter, and if the person can walk, it is with a staggering gait, and he falls to the ground as if intoxicated, or completely exhausted. The seeds of two varieties of datura were used by the Thugs of India for rendering their victims powerless and insensible.

Appearances.—In a well-marked case of poisoning by stramonium seeds, in which death took place in less than eight hours, the following appearances were found: great congestion of the vessels of the brain and its membranes, the brain firm and highly injected, choroid plexus turgid, ventricles containing serum, substance of the lungs congested, and the heart flaccid. The stomach contained about four ounces of digested food mixed with eighty-nine seeds of stramonium. There were two patches of extravasation in the mucous coat—one on the larger curvature, and the other near the pylorus. Many seeds and fragments were also found in the intestines. ('Lancet,' Sept. 18, 1847, p. 298.) In another case there were marks of diffused inflammation about the cardiac end of the stomach.

Analysis.—The seeds of stramonium, from which accidents have most frequently occurred, are flattened, kidney-shaped, but half oval, rough, and of a dark-brown or black colour. They are liable
to be mistaken for the seeds of capsicum. Of the dry datura stramonium, there are about eight seeds to a grain. They are of an oblong kidney-shape, and of a dark-brown or black colour. The illustration (Fig. 40) shows their appearance under a low power of the microscope. The leaves of the common datura stramonium are well characterized by their peculiar shape.

Daturia.—The poisonous properties of thornapple are owing to the presence of an alkaloid, daturia, which forms about one per cent. of the dried vegetable. Some have considered this alkaloid to be identical with atropia, but the physiological properties are different. See Bouchardat, 'Ann. de Thérapeutique,' 1864, p. 24. Daturia crystallizes in long colourless prisms or needles (Fig. 41); it has a bitter taste, somewhat acid, and slightly resembling that of tobacco. It is poisonous. The eighth of a grain killed a sparrow in three hours. When placed on the eye or introduced into the cellular membrane of an animal, it is observed, like atropia, to cause dilatation of the pupil. When heated in a tube it is decomposed, and ammonia is evolved as with other alkaloids. It is soluble in water, and the solution has an alkaline reaction. It is precipitated by tannic acid and by the chloriodide of potassium and mercury. Nitric and hydrochloric acids dissolve it, without producing any change of colour. Sulphuric acid produces, with the crystals, a pale rose-red colour, which becomes paler when the acid mixture is diluted with water. Stramonium is sometimes smoked like tobacco, but daturia has not been found in the smoke.

The bark, seeds, berries, and leaves of the Laburnum, Yew, and Privet, Holly and Guelder Rose have in a few cases given rise to symptoms of poisoning. These poisons affect the brain and the alimentary canal, producing vomiting and purging, followed by insensibility and convulsions. Accidents from these plants are not frequent, and when they occur there is usually sufficient botanical evidence of the nature of the poison taken. (See 'Principles of Med. Jur.' 2nd edit.)
WOUNDS AND PERSONAL INJURIES.

CHAPTER 22.

DEFINITION OF A WOUND.—DANGER TO LIFE.—GRIEVOUS BODILY HARM.—
EXAMINATION OF WOUNDS.—DESCRIPTION OF WOUNDS.—CHARACTERS OF
WOUNDS INFlicted ON THE LIVING AND DEAD BODY.—ECCHYMOSIS IN
THE LIVING AND DEAD.—EFFECTS OF VIOLENCE ON THE DEAD BODY.—
ECCHYMOSIS NOT ALWAYS A RESULT OF VIOLENCE.

Definition.—In a medico-legal sense a wound implies a breach of
continuity in the structures of the body, whether external or in-
ternal, suddenly occasioned by mechanical violence. This definition
therefore includes injuries to the skin or mucous membrane of the
outlets of the body—dailocations and fractures, whether simple
or compound, as well as ruptures of the viscera. In a medical
point of view a wound is commonly restricted to those external
injuries in which the skin is implicated; but in legal medicine the
term has a much wider signification.

Danger to life.—When a wound has been criminally inflicted
on a person by the wilful act of another, one of the first ques-
tions which presents itself for consideration is how far the injury
is dangerous to life. In order to justify the detention of the
accused, a magistrate may require a medical opinion or a written
statement from the surgeon in attendance. The meaning of the
words 'dangerous to life,' is left entirely to the professional
knowledge of a witness. It is not sufficient on these occasions that
he should make a naked declaration of the wound being dangerous
to life; he must, if called upon, state to the Court satisfactory
reasons for his opinion; and these reasons are rigorously inquired
into by counsel for the defence. As a general principle it would
not be proper to consider those wounds dangerous to life, in which
the danger is not imminent. A wound of a great blood-vessel, of
any of the viscera, or a compound fracture with depression of the
bones of the head, must in all instances be regarded as bodily
injuries dangerous to life; because, in such cases the danger is
imminent. Unless timely assistance be rendered, these injuries
will most probably prove fatal, and, indeed, they often destroy life
in spite of the best surgical treatment. When, however, the
danger is remote, as in a puncture or laceration of the hand or
foot, which may be followed by tetanus, or in a laceration of the
sculpt, which may be followed by erysipelas, or in penetrating wounds of the orbit, which may be attended by fatal inflammation of the brain or its membranes, the case is somewhat different. Such injuries as these are not directly dangerous to life—they are only liable to be attended with danger in certain cases, and under certain circumstances; hence the medical opinion must be qualified. The law, on these occasions, appears to contemplate the direct and not the future or possible occurrence of danger; if the last view were adopted it is clear that the most trivial lacerations and punctures might be pronounced dangerous to life; since tetanus or erysipelas proving fatal, has been an occasional consequence of very slight injuries. A difference of opinion will often exist among medical witnesses whether a particular wound is or is not dangerous to life. Unanimity can only be expected when the judgment and experience of the witnesses are equal. The rules for forming an opinion in these cases will, perhaps, be best deduced from the results of the observations of good surgical authorities in relation to injuries of different parts of the body.

Wounds causing grievous bodily harm.—A wound may not be dangerous to life, but it may have produced 'grievous bodily harm.' This question is sometimes put, although the usual practice is to leave it to be drawn by the jury as an inference from a professional description of the injury. These words have a vague signification; but it would perhaps be difficult to substitute for them others less open to criticism. They evidently refer to a minor description of offence, and are applied commonly to those injuries which, while they do not actually place life in danger, may be attended with considerable personal inconvenience, or be in some way detrimental to the health of the wounded person. The late C. B. Pollock stated on one occasion that 'grievous bodily harm' would reasonably apply to such an injury as would render medical treatment necessary. It is always a question for a jury whether the intent of the prisoner, in inflicting a wound, was or was not to produce grievous bodily harm. In some cases the nature or the situation of a wound, as well as the kind of weapon used, will at once explain the intent: so far the medical witness may assist the Court by giving a plain description of the injury, as well as of the consequences with which it is usually attended. It may happen either that the wound itself is not of a serious nature, and yet the intention of a prisoner may have been to do grievous bodily harm to the wounded person, or the injury may be really serious, and yet the prisoner may not have intended to do grievous bodily harm.

On a trial for manslaughter which took place at the Central Criminal Court in April 1873, Baron Clesby made the following legal distinction between a simple wounding and wounding with intent to do grievous bodily harm. There was, he said, no proof as to the instrument, if any, with which the wound was inflicted. The injuries were certainly serious, and it would be for the jury to say whether they were done with the intention to inflict grievous bodily
harm. The intention, as it happened in this case, could only be inferred from the injury which really was done. Possibly the prisoner inflicted more than he really intended.

Let us suppose that the wounded person is found dead, and an examination of the body is required to be made. The most difficult part of the duty of a medical jurist now commences. Among the numerous questions which here present themselves, the first which demands examination, is whether the wound was inflicted on the body before or after death.

Examination of wounds.—In examining a wound on a dead body, it is proper to observe its situation, extent, length, breadth, depth, and direction:—whether there is about it effused blood, either liquid or coagulated, and whether there is ecchymosis, i.e., a livid discoloration of the skin from the effused blood. It should also be ascertained whether the surrounding parts are swollen, whether adhesive matter or pus is effused, whether the edges of the wound are gangrenous, or any foreign substances are present in it. Care must be taken that putrefaction is not mistaken for a gangrenous condition of the wound. The wound may be examined by gently introducing into it a bougie, and carrying on the dissection around this instrument, avoiding as much as possible any interference with the external appearances. The preservation of the external form will allow of a comparison being made at any future time between the edges of a wound and a weapon found on a suspected person. Of all these points notes should be taken, either on the spot or immediately afterwards. In the dissection, every muscle, vessel, nerve, or organ involved in the injury should be traced and described. This will enable a witness to answer many collateral questions that may unexpectedly arise during the enquiry. Another point should be especially attended to. A medical practitioner has frequently contented himself with confining his dissection to the injured part, thinking that on the trial of the accused the questions of counsel would be limited to the situation and extent of the wound only, but this is a serious mistake. If the cause of death be at all obscure, on no account should the inspection be abandoned until all the important organs and cavities of the body have been closely examined; since it may be affirmed that a natural cause of death might have existed in that organ or cavity which the medical witness had neglected to examine. It rests with the practitioner to disprove the probability thus urged by counsel, but he is now destitute of facts on which he can base an opinion,—legal ingenuity will triumph, the witness will be discomfited, and the prisoner, of whose guilt there may be, morally speaking, but little doubt, will have the benefit of his inattention, and be acquitted by the jury. In the medical reports on the examination of the bodies of wounded persons, care should be taken to avoid the introduction of any remarks in the form of inferences from the facts of the case (ante, p. 13). The facts should be simply recorded, and the inferences or comments reserved for evidence at the inquest or trial. In
making an inspection of the wounded body the state of the stomach should not be overlooked. Death may have been apparently caused by violence, and yet really be due to poison of which a portion may be found in the stomach or bowels.

Description of wounds.—It is impossible to impress too strongly on the mind of a medical witness, that in describing the wounds which he has found on the examination of a body, he should employ plain and simple language, and avoid as much as possible the use of technical or professional terms. The natural desire of a good witness is to make himself understood; but this cannot be accomplished if he clothes his ideas in language which is incomprehensible to educated men of the legal profession, and à fortiori to the class of men who constitute juries. There are few assizes which do not afford many illustrations of the injury done to scientific evidence, and the clear understanding of a case, by the technical language in which it is given. A medical witness should, for his own credit and for that of the profession to which he belongs, employ plain and simple language in describing a wound, as well as in giving his evidence generally. (See page 36, ante.)

Characters of a wound inflicted during life.—If we find about a wound marks of gangrene, the effusion of adhesive or purulent matter, or if the edges are swollen and enlarged, and cicatrization has commenced, it is not only certain that the injury must have been inflicted before death, but that the person must have lived some time after it was inflicted. Marks of this description will not, however, be commonly found when death has taken place within ten or twelve hours from the infliction of the injury. A wound which proves fatal within this period of time will present throughout much the same characters. Thus, supposing it to have been incised, there will be traces of more or less bleeding, the blood having chiefly an arterial character, and it will be found coagulated where it has fallen on surrounding bodies. The edges of the wound are everted, and the muscular and cellular tissue around is deeply reddened by effused blood. Coagula or clots are found adhering to the wound, provided it has not been interfered with. The principal characters of a wound inflicted during life, are, then, the following: 1. Eversion of the edges owing to vital elasticity of the skin. 2. Abundant hemorrhage or bleeding, often of an arterial character, with general diffusion of blood in the surrounding parts. 3. The presence of coagula. The wound may not have involved any vessel, and there may be no appearance of bleeding, still the edges will be everted, and the muscles and skin retracted. By an observation of this kind made on the body of a new-born child (Case of Elphick, March 1848), Mr. Prince was enabled to state that the child was living when it was inflicted, an opinion afterwards confirmed by the confession of the mother.

Characters of a wound made after death.—If the wound on a dead body be not made until twelve or fourteen hours have elapsed from the time of death, it cannot be easily mistaken for one produced
during life. Either no blood is effused, or it is of a venous character, i.e., it may have proceeded from some divided vein. The blood is commonly liquid, and does not coagulate as it falls on surrounding bodies, like that poured out of a wound in the living. The edges are soft, yielding, and destitute of elasticity; they are therefore in close approximation. The cellular and muscular tissues around are either not infiltrated with blood, or only to a very partial extent. There are no coagula within the wound. In experimenting upon amputated limbs, I have found these characters possessed by a wound produced two or three hours after death, although they are best seen when the wound is not made until after the body has lost all its animal heat. In wounds on the dead body, divided arteries have no marks of blood about them, while in the living body the fatal bleeding commonly proceeds from these vessels. Hence in a wound on the living, it will be found that the surrounding vessels are empty. The chief characters of a wound after death are, therefore: 1. Absence of copious bleeding. 2. If there is bleeding it is exclusively venous. 3. The edges of the wound are close, not everted. 4. There is no diffusion of blood in the cellular tissue. 5. There is an absence of coagula. But it may happen that a wound has been inflicted soon after the breath has left the body, and while it was yet warm. The distinction between a wound then made and one made during life, is not so well marked as in wounds inflicted at a later period after death.

In any case in which it is doubtful whether a wound was inflicted on a living or dead body, we should be cautious in giving an opinion; since it must be remembered there are no decisive characters by which wounds of the kind referred to can be distinguished; and a medical witness is as likely to be wrong as right in selecting either hypothesis. It is a considerable step in evidence, when we are able to assert that a particular wound, found on a dead body, must have been inflicted either during life or immediately after death; for it can scarcely be supposed that in a case calling for criminal investigation, any one but a murderer would think of inflicting upon a body immediately after death, a wound which would assuredly have produced fatal effects had the same person received it while living. So soon as such an opinion can be safely expressed by a witness, circumstantial evidence will often make up for that which may be, medically speaking, a matter of uncertainty.

Wounds or injuries unattended with haemorrhage.—The copious effusion of blood has been set down as a well-marked character of a severe wound received during life; but this observation applies chiefly to cuts and stabs. Lacerated and contused wounds of a severe kind are not usually accompanied by much bleeding, even when a large blood-vessel is implicated. It is well known that a whole member has been torn from the living body, and that little blood has been lost; but in such cases coagula or clots of blood are commonly found adhering to the separated parts, a
ECCHYMOSIS FROM VIOLENCE.

character which indicates that the wound was inflicted either during life or soon after death, while the blood was warm and fluid. When a lacerated or contused wound involves a highly vascular part, although no large blood-vessel may be implicated, it is liable to cause death by loss of blood.

Ecchymosis from violence.—Contusions and contused wounds are commonly accompanied by a discolouration of the surrounding skin, to which the term ecchymosis (ἐκχύω, to pour out) is applied. This consists essentially in the extravasation or effusion of blood generally from small ruptured vessels, into the surrounding cellular membrane beneath the skin. An ecchymosis is commonly superficial, affecting only the layers of the skin, and showing itself externally, either immediately or in the course of a short time, in the form of a deep blue or livid red patch, but the effusion may be so deeply seated as not to produce any external discolouration of the skin.

Violence inflicted on a living body may not show itself under the form of ecchymosis until after death. A man received from behind several kicks on the lower part of his abdomen, which caused a rupture of the bladder, and death by peritonitis. He died in about thirty-five hours; but there was no ecchymosis in the seat of the blows, i.e., in the pubic and lumbar regions, until after death. Dr. Hinze met with a case of suicidal hanging, in which it was observed that ecchymosis appeared in the course of the cord only after death. (See ‘Hanging.’) It has been remarked by Devergie that ecchymoses are often concealed on the bodies of the drowned, when first removed from water, owing to the sodden state of the skin; they may become apparent only after the body has been exposed for some days and the water has evaporated.

A medical jurist must guard against the error of supposing that when a blow has been inflicted on a living person, it is necessary that the individual who is maltreated should survive for a long period in order that ecchymosis may be produced. Among numerous instances proving the contrary, the case of the Duchess de Praeslin (August 1847) may be mentioned. This lady, who was assassinated by her husband, was attacked while asleep in bed. The number of wounds on her person (thirty) showed that there had been a mortal struggle, which, however, could not have lasted more than half an hour. Yet, on inspection, there were the marks of numerous ecchymoses, which had resulted from the violent use of a bruising instrument. (‘Ann. d’Hyg.’ 1847, t. 2, p. 377.) The late Prof. Casper of Berlin considered that ecchymosis required a certain time for its production, and that if a person died speedily from the effects of violence, no ecchymosis would be found on the body, although the violence might have been of a bruising nature. (‘Handbuch der Ger. Med.’ vol. 1, p. 121.) The case of the Duchess de Praeslin shows that this is not correct, and Casper himself has admitted that ecchymosis may be produced as the result of violence applied to a recently dead body.
ECCHYMOSIS IN THE DEAD BODY.

(see ‘STRANGULATION’), a result which is in accordance with other facts mentioned above; but if ecchymosis can be produced by violence to the recently dead, it is clear that a continuance of active life is not necessary for its production. The following case shows how these facts may be misapplied. In June 1870, a young man was seen to strike one of his companions. The person struck died suddenly. On a post-mortem examination the mark of a bruise was seen over the sixth and seventh ribs on the right side. About a fortnight before this blow was struck, the deceased had met with an accident: a heavy box fell on his right side, knocked him senseless, and nearly killed him. The question at issue, according to Dr. Guppy of Falmouth who reports this case, was, whether the ecchymosed mark on the side was owing to the blow struck shortly before the man died, or to the fall of the box upon his body a fortnight previously. It was suggested, on the authority of Casper, that as the man died soon after the blow was struck, the ecchymosis could not have arisen from the blow, but that it was most probably due to the fall of the box a fortnight before. (‘Lancet,’ 1870, vol. 2, p. 35.) Such a case does not present much difficulty. If the ecchymosed mark was blue or livid, and without any marginal colours, it was probably the result of the blow struck just before death. If the blood is fluid at the time of the violence, and the small capillary vessels are torn through, sudden death following, a blow may cause the effusion of blood, and the production of a mark on the skin. The warm liquid blood thus effused will find its way into the cellular tissue, and produce the usual external appearance. If in the case quoted the ecchymosis had been produced a fortnight before, it would have shown some changes of colour at the margin, as described in the next paragraph.

The changes which take place in the colour of an ecchymosed spot are worthy of attention, since they may serve to aid the witness in giving an opinion on the probable time at which a contusion has been inflicted. After a certain period, commonly in eighteen or twenty-four hours, the blue or livid margin of the spot is observed to become lighter; it acquires a violet tint, and before its final disappearance it passes successively through shades of a green, yellow, and lemon colour. During this time the spot is much increased in extent, but the central portion of the ecchymosis which received the violence is always darker than the circumference.

Contusions on the dead.—Sir R. Christison found that blows inflicted on a dead body within two hours after death, gave rise to appearances on the skin similar to those which resulted from blows inflicted on a person recently before death. The livid discoloration thus produced generally arose from an effusion of the thinnest possible layer of the fluid part of the blood on the outer surface of the true skin, but sometimes also from an effusion of blood into a perceptible stratum of the true skin itself. He likewise found that dark fluid blood might even be effused into the cellular tissue in the seat of the discolorations, so as to blacken or redden the membranous
partitions of the cells containing the fat; but this last effusion was never extensive. From this, then, it follows, that, by trusting to external appearances only, contusions made soon after death may be easily confounded with those which have been produced by violence shortly before death. If a contusion has been caused some hours before death, there will be swelling of the part, and probably also certain changes of colour in the ecchymosed patch, in either of which cases there will be no difficulty in forming an opinion. Although ecchymosis, or an appearance analogous to it, may be produced on a body after death, the changes in colour are then met with only under peculiar circumstances, as where the person is labouring under general dropsy, and the serum effused beneath the skin, may lead to the diffusion of the blood. The most satisfactory mark of distinction between the effects of blows on the living and dead body, in the opinion of Sir R. Christison, is the following:—In a contusion inflicted during life, the ecchymosed portion of cutis (true skin) is generally dark and much discoloured from the infiltration of blood throughout its whole thickness; the skin at the same time is increased in firmness and tenacity. This is not, however, a uniform consequence of a contusion during life; for a blow may cause effusion of blood beneath the skin without affecting the cutis in the manner stated. The state of the skin here described, cannot be produced by a contusion on a dead body; although it is still an open question, whether it might not be produced if the contusion were inflicted a few minutes after death. As it is, the value of this sign is somewhat circumscribed,—it is not always produced on the living,—it might be possibly produced on the recently dead; so that when it does not exist, we must look for other differential marks, and when it does exist we ought to satisfy ourselves that the contusion was not inflicted recently after death.

The period at which such injuries cease to resemble each other has not been fixed with any degree of precision; but, as in the case of incised wounds, it would seem that there is little danger of confounding them, when a contusion has not been inflicted on a dead body until after the disappearance of animal heat and the commencement of cadaveric rigidity.

The practical inference from these observations is, that discolourations of the skin caused by blows inflicted soon after death, may be sometimes mistaken for marks of violence on the living body. An instance has been communicated to me, on respectable authority, in which, for the sake of experiment, blows with a stick were inflicted on the recently dead body of a woman, while still warm. The body was afterwards accidentally seen by non-professional persons, who were not aware of the performance of these experiments; and so strong was the impression from the appearances, that the deceased had been maltreated during life, that a judicial enquiry was actually instituted, when the circumstances were satisfactorily explained. The fact, therefore, that severe blows after death resemble slight blows during life, is, in a practical view, unim-
portant. It does not aid our diagnosis, nor prevent serious mistakes from occurring.

Is Ecchymosis a necessary result of violence?—This medico-legal question has often created great difficulty. It has been repeatedly asserted in Courts of law, that no severe blow could have been inflicted on the body of a person found dead, in consequence of the absence of ecchymosis or other indication of violence on the part struck; but this assertion is entirely opposed to well-ascertained facts. However true the statement may be that severe contusions are commonly followed by ecchymosis, it is open to numerous exceptions; and unless these are known to a practitioner, his evidence may mislead the Court. The presence of ecchymosis is commonly presumptive evidence of the infliction of violence, but its absence does not necessarily negative this presumption.

It was long since remarked by Portal that the spleen had been found ruptured from blows or falls, without any ecchymosis or abrasion of the skin appearing in the region struck. This has been also observed in respect to ruptures of the stomach, intestines, and urinary bladder, from violence directly applied to the abdomen. Portal supposed that the mechanical impulse was simply transferred through the supple parietes (or skin) of the abdomen to the viscera behind, as in the striking of a bladder filled with water. Whether this be the true explanation or not, it is quite certain that the small vessels of the skin often escape rupture from a sudden blow, so that their contents are not effused. A case is reported by Henke, in which a labouring man died some hours after fighting with another, and on an inspection of the body the peritoneum was found extensively inflamed, owing to an escape of the contents of the small intestines, which had been ruptured to a considerable extent. There was, however, no ecchymosis or mark on the skin externally, and the medical inspectors were inclined to affirm, contrary in this case to direct evidence, that no blow could have been struck; but others of greater experience were appealed to, who at once admitted that the laceration of the intestines might have been caused by a blow, even although there was no appearance of violence externally. Mr. Watson states that a girl, aged nine, received a smart blow upon the abdomen from a stone. She immediately complained of great pain; collapse ensued, and she died in twenty-one hours. On inspection there was no mark of injury externally, but the ileum (small intestines) was found ruptured, its contents extravasated, and the peritoneum extensively inflamed. (‘On Homicide,’ p. 187.) Dr. Williamson, of Leith, met with a case in which a man received a kick on the abdomen from a horse: he died in thirty hours from peritonitis. The ileum was found to have been torn completely across in its lower third. There was not the slightest trace of ecchymosis externally, a fact which is the more remarkable, since the blow was here struck by a somewhat angular or pointed body—the hoof of a horse. (‘Med. Gaz.’ May 1840. See also Guy’s Hosp. Reports, Oct. 1865, p. 285.) Many other
EVIDENCE OF THE USE OF A WEAPON.

207
cases might be adduced in support of the statement that ecchy-
mosis is not a necessary or constant result of a severe blow; but
these sufficiently establish the fact. This medico-legal question
frequently arises in cases in which the bladder or liver is ruptured,
as, owing to the general absence of marks of violence, it is often
alleged in defence that no blow or kick could have been inflicted
on this part of the abdomen. It is unnecessary to say that this
view is not in accordance with facts. (See Ruptures of the heart,
liver, spine, and intestines, post.)

CHAPTER 23.

EVIDENCE OF THE USE OF A WEAPON.—CHARACTERS OF WOUNDS CAUSED BY
WEAPONS.—INCISED, PUNCTURED, LACERATED, AND CONTESTED WOUNDS.—
STARS AND CUTS.—WHAT ARE WEAPONS?—EXAMINATION OF THE DRESS.—
IMPLIED OR SELF-INFICTED WOUNDS.

Evidence of the use of a weapon.—It is not necessary to prove that
a weapon has been used for the production of a wound, for the
words of the new statute are:—'Whosoever shall, by any means
whatsoever, wound or cause any grievous bodily harm to a person,'
&c.; yet evidence of the use of a weapon in cases of assault
may materially affect the amount of punishment awarded on
conviction. When, upon the clearest evidence, it is certain that a
weapon has been used, it is not unusual for prisoners to declare
that no weapon was employed by them, but that the wound had
been occasioned by accidental circumstances. A witness should
remember that he is seldom in a position to swear that a particular
weapon produced at a trial must have been used by the prisoner:
—he is only justified in saying that the wound was caused either by
it or by one similar to it. Schwörer relates the following case. A
man was stabbed by another in the face, and a knife with the blade
tire was brought forward as circumstantial evidence against him,
—the surgeon having stated that the wound had been caused by
this knife. The wounded person recovered; but a year afterwards
an abscess formed in his face, and the broken point of the real
weapon was discharged from it. The wound could not therefore
have been produced by the knife which was brought forward as
evidence against the prisoner at the trial. ('Lehre von dem
Kindermorde.') Although the criminality of an act is not affected
by an occurrence of this kind, it is advisable that such mistakes
should be avoided by the use of proper caution on the part of a
witness. (On this question, see the case of Renaud, by Dr. Boys
de Louy, 'Ann. d'Hyg.' 1839, t. 11, p. 170. As to what is a
weapon, see Henke, 'Zeitschrift der S. A.' 1844, vol. 1, p. 67.)

Characters of wounds produced by weapons.—Let us now suppose
that no weapon is discovered, and that the opinion of a witness in
to be founded only on an examination of a wound. It is right for him to know that on all criminal trials, considerable importance is attached by the law to the fact of a wound having been caused by the use of a weapon; since this generally implies malice, and in most cases a greater desire to injure the party assailed, than the mere employment of manual force. Some wounds, such as cuts and stabs, at once indicate that they must have been produced by weapons.

1. Incised wounds.—In incised wounds, the sharpness of the instrument may be inferred from the cleanliness and regularity with which the edges are cut; in stabs, also, the form and depth of a wound will often indicate the kind of weapon employed. Stabs sometimes have the characters of incised punctures, one or both extremities of the wound being cleanly cut, according to whether the weapon is single or double-edged. Dupuytren has remarked that such stabs, owing to the elasticity of the skin, are apparently smaller than the weapon—a point to be remembered in instituting a comparison between the size of a wound and the instrument. A lateral motion of the weapon may, however, cause a considerable enlargement of the wound. (See case ‘Ann. d’Hyg.’ 1847, t. 1, p. 400.) When a stab has traversed the body, the entrance-aperture is commonly larger than the aperture of exit; and its edges, contrary to what might be supposed, are sometimes everted, owing to the rapid withdrawal of the instrument. That facts of this kind should be available as evidence, it is necessary that the body should be seen soon after the infliction of a wound, and before there has been any interference with it.

In general, wounds made by glass or earthenware are characterized by their great irregularity and the unevenness of their edges. In Reg. v. Ankers (Warwick Lent Assizes, 1845), a clean cut as from a penknife, about two inches long and one deep, was proved to have existed on the person of the prosecutor, who had fallen during a quarrel with the prisoner. Some broken crockery was lying near the spot, and it was alleged in the defence that a fall upon this had caused the wound. This allegation was quite inconsistent with the clean and even appearance of the edges of the wound. The prisoner, in whose possession a penknife had been found, was convicted.

Punctured wounds.—It is necessary to notice whether the edges of a punctured wound are lacerated and irregular, or incised; because it may be alleged in defence, that the wound was produced by a fall on some substance capable of causing an injury somewhat resembling it. In a case that occurred to Mr. Watson, a deeply penetrating wound on the genital organs of the deceased, which had evidently caused the woman’s death, was ascribed by the prisoners charged with the murder, to her having fallen on some broken glass; but it was proved that the edges of the wound were bounded everywhere by clean incisions, which rendered this defence inconsistent, if not impossible. I have known a similar defence made on two other occasions, where the cases came to trial. In general,
LACERATED AND CONTUSED WOUNDS.

Wounds made by glass or earthenware are characterized by their great irregularity and the unevenness of their edges. Cases of this kind show that as it is not always possible to know when this sort of defence may be raised, a medical witness should never fail to make a minute examination of a wound which is suspected to have been criminally inflicted. These medical difficulties are now for the most part removed by the 24th and 25th Victoria, Chapter 100. This must not, however, lead the witness to suppose that a personal injury is not to be carefully examined with a view to the determination of this question.

2. Lacerated and Contused wounds.—Lacerated wounds do not in general present greater difficulty with regard to their origin than those which are incised or punctured. The means which produced the laceration are commonly well indicated by the appearance of the wound. These injuries are generally the result of accident; they are, however, frequently met with on the bodies of new-born children, in which case they may give rise to a charge of infanticide. If it could be proved that they had arisen from the use of a weapon, and that the weapon fitted the wounds, these facts would, of course, go far to a conviction on a charge of murder. In the case of Montgomery (Omagh Summer Ass. 1873) it was proved that a bill-hook, found buried in a spot to which the prisoner was seen to go, fitted the injuries produced on the skull of the deceased, and this piece of evidence served to connect the prisoner and the weapon with the act of murder, which took place in a dwelling-house.

Contused wounds and severe contusions present much greater difficulty to a medical jurist. It is not often in his power to say whether a contused wound has resulted from the use of a weapon, from a blow of the fist, or a fall, by reason of the deceased having accidentally fallen against some hard surface. The question is frequently put to medical witnesses on those trials for manslaughter which arise out of the pugilistic combats of half-drunk men. One of the combatants is generally killed, either by a blow on the head, by a fall, or by both kinds of violence combined. The skull may or may not be fractured; and the person may die of concussion, inflammation of the brain, or from effusion of blood. The general defence is that the deceased struck his head against some hard substance in falling on the ground, and a surgeon is asked whether the particular appearances might not be explained on the supposition of a fall. A medical witness is rarely in a position to swear with certainty that a contused wound of the head must have been produced by a weapon and not by a fall. Some circumstances, however, may occasionally enable him to form an opinion on this point.

There are contused wounds on several parts of the head, withious effusion of blood beneath the skin, the presumption is that weapon must have been used. If the marks of violence are on summit of the head, it is highly probable that they have been made by a weapon, since this is not commonly a part which can receive injury from a fall. So if sand, gravel, grass, or other sub-
stances be found in a contused wound, this will render it highly probable that the injury was really caused by a fall.

It matters not, under the new Statute on wounding, whether the wound was produced directly by a weapon employed by an assailant, or indirectly by any act of violence on his part. A man may fracture the skull of another either by striking him with a brick, or by striking him with his fist and thus causing him to fall against a brick. Acquittals formerly took place upon technicalities of this kind (‘Law Times,’ March 21, 1846, p. 501): but in Reg. v. Dodd (Shrewsbury Summer Assizes, 1853) Coleridge J. expressed a strong opinion against the distinction thus made. The prisoner, it was alleged, threw a stone at the deceased, who immediately fell on a stone floor. The deceased was able to go about for several days, but he died, a week after he had sustained the violence, from inflammation of the brain, as a result of fracture of the skull. The medical witness ascribed the fracture to a blow from a stone. In the defence it was urged that the fracture might just as well have arisen from a fall on a stone floor. Coleridge J. held, if the prisoner knocked the deceased down, that it would make no difference whether deceased died from a fall on a stone floor, or from an injury produced by the stone which was thrown at him.

A doubt may arise whether a weapon has or has not been used in reference to lacerated or contused wounds. Contused wounds on bony surfaces, as on the head, sometimes present the appearance of incised wounds, the skin being evenly separated. When a wound is recent, a careful examination will generally enable a witness to form a correct opinion, but if some time has elapsed before a wound is examined, great caution will be required in forming a judgment.

In January 1853, Mr. Hancock was enabled, by the careful examination of a wound, to disprove a charge of maliciously wounding made against innocent persons. A little girl was represented to have received, while sitting over an iron grating, a wound in the pudendum, by some persons pushing a toasting-fork or pointed instrument between the bars of the grating from below. There were no marks of punctures, which would have been found had this statement been true, but a slight laceration of the parts, such as might have been produced by an accidental fall on the edge of the iron grating while the girl was in a sitting position. There were also marks of bruises on the thigh, such as might have occurred from an accident of this kind. The mother of the child had made a false charge for the sake of exciting public compassion and extorting money. A proper surgical examination of the injury clearly established that it had resulted from accident. The part of the body in which the injury existed in this case is not usually exposed to laceration or punctures from accident; but the child, for a certain purpose, had placed herself voluntarily in this position, and had, on her own admission, slipped, and thus probably injured herself.
INJURIES FROM BLOWS OR FALLS.

A surgeon should be cautious in listening to the statements of others, that a weapon has been used, unless the wound itself bears about it such characters as to leave the fact indisputable. During a scuffle, the person assaulted may be easily deceived as to the way in which an accused person inflicted a wound upon him; and a bad motive may sometimes exist for imputing to an assailant the use of a weapon during a quarrel. In such cases we should, as medical witnesses, rather trust to the appearance of the wound for proof of the use of a weapon, than to any account given by interested parties.

A late learned judge suggested to me that some means of discrimination between the effects of falls and blows affecting the same part of the body, would greatly aid the administration of justice. There is no doubt that it would, but as no two cases coming under this class of injuries are precisely alike either in the part wounded or the amount of force employed, it is scarcely possible to introduce general rules or to make statistics practically available. It is commonly supposed that a mere fall is not sufficient to produce the same degree of injury that may be caused by a blunt weapon applied suddenly to the head by human force; but a severe fracture may arise from a simple accident of this kind, and present nearly all the characters of homicidal violence. The difficulties at criminal trials will, I think, be found to proceed, not so much from want of rules to assign the violence to one condition or the other, as from a want of proper observation when the wounds are first examined. If minute attention were given to an examination of these injuries soon after their occurrence, circumstances would be noticed which would help the medical witness to a conclusion. The defence that they might have been produced by a fall is not set up until a subsequent period, and the surgeon is then obliged to trust to his memory for the main points of distinction. Such improvised opinions usually fail in impressing a jury.

When it is a question which of two weapons produced certain bruised wounds found on the head, the difficulties of medical evidence are increased. Under these circumstances the presence of blood, hair, cotton, or woollen fibres on one of the weapons, may render it probable that this weapon was used. In most instances an accurate observation of the form of a contused wound and an early comparison of it with the alleged weapon, or the substance said to have produced it, will enable a witness to come to a correct conclusion on the subject. The situation, depth, and shape of the wound may be such that no accidental fall could reasonably account for its production. In assaults on women, it is not unusual to find that the complainant herself endeavours to exculpate the assailant (her husband) by ascribing the marks of violence, not to blows, but to some accidental fall. In August 1864, a woman deposed before a magistrate that certain severe injuries which she had sustained had been caused by her falling on a fender. The medical man who examined her, found on the top of the head three distinct wounds,
which were bleeding. Two appeared as if they had been caused by a blunt instrument: the third on the back part of the head was a clean cut wound. He considered that they had been produced by a chopper, and that none of them had been caused by a fall or a series of falls. The prisoner on this evidence was committed for trial.

3. Stabs and Cuts.—It has been remarked that the law in some cases attaches great importance to the clear proof of the use of a weapon; and a medical man has therefore a certain responsibility thrown upon him when, in the absence of a weapon and the denial of its use, he is called upon to say whether one has or has not been used. In reference to cuts and stabs, there can in general be no difficulty, for these injuries carry with them distinct evidence of their mode of production. Formerly stabbing and cutting were treated as distinct from wounding, and very nice legal distinctions were drawn between these terms, which had the effect of procuring acquittals on mere legal technicalities. Under the new consolidated Act, the words ‘stab’ and ‘cut’ are properly omitted, and the word ‘wound’ only has been retained. Medical men would always agree upon a stab or cut being a wound, but they might reasonably differ upon the question whether in a given case a wound was really a stab or cut. It might be punctured, lacerated, or contused, and not fairly come under the professional description either of a cut or a stab. In the meantime the only person who derived benefit from this grammatical confusion, was the assailant who had inflicted the undefined injury on another. A medical witness has now only to prove that the personal injury falls strictly within the meaning of the term wound; he is not called upon to prove the precise variety of wounding to which the injury should be assigned. At the same time, he will always be prepared with a full description of the characters of an injury in case questions on the subject should be put to him.

What are Weapons.—The new statute has removed those legal subtleties which raised doubts on the true significance of the term weapon. Thus the teeth, the hands or feet uncovered, were formerly held by the judges not to be weapons; and injuries produced by them, however severe, were not treated as wounds within the meaning of the statute. Persons were tried on charges of biting off fingers and noses, and although the medical evidence proved that wounds of a severe kind had been inflicted, and that great disfigurement and mischief had been done to individuals, yet the nature of the injury produced was not so much regarded as the actual method by which it was accomplished. The persons charged were acquitted under an indictment for ‘wounding,’ since wounds in a legal sense could be produced only by weapons, while the teeth, hands, and feet were not weapons in law!

Examination of the Dress.—This is sometimes a most important part of the duty of a medical man. In a case of severe wounding, of whatever kind, he should always require to see the dress of the
wounded person. It may throw a material light upon the mode in
which a wound has been produced; it may remove an erroneous
suspicion of murder, and may sometimes serve to indicate that a
wound has been self-inflicted for the concealment of other crimes,
or falsely to impute its infliction to other persons. Marks of blood,
dirt, grass, or other substances on the clothing, may also throw a
light upon the mode of infliction. So again the use of a weapon,
in reference to cuts and stabs, may be inferred from the dress pre-
senting corresponding cuts or perforations. Contused wounds by
bludgeons may, however, be readily produced through the dress,
without tearing or injuring it. Considerable laceration of the skin
and muscles, and even severe fractures, may be caused without ne-
necessarily penetrating the dress, supposing it to be at all of an elastic
or yielding nature. In self-inflicted or imputed wounds, if of the
nature of cuts or stabs, there is often a want of correspondence
between the perforations of the dress and the wounds on the per-
son: this is one of the characters by which the correctness of a
statement may be tested. A severe wound may be indirectly pro-
duced by a bruising weapon, and medical witnesses have been often
questioned on this point. Thus, the prosecutor may at the time
have worn about his person some article of dress which received
the blow, and this may have actually caused the wound. Cases of
this kind must be determined by the circumstances which accom-
pany them. Hence it is obvious that a medical practitioner should
always make a minute and careful examination of wounds which
are likely to become the subject of criminal charges, as well as of
the dress or clothing worn by the wounded person at the time of
the assault. In performing his duties as a surgeon, he is bound,
so far as he consistently can, to notice as a medical jurist the cha-
acters of all personal injuries, so as to be able to give an opinion
on the mode in which they were produced. A careful examination
of the dress has served to remove doubts respecting the mode in
which contused wounds have been inflicted on the body of a person
found dead,—while, on the other hand, a neglect to examine the
dress has led to accidental being mistaken for homicidal violence,
as in the following case, communicated to me by Mr. Codd, coroner
for Essex:—

A woman, set 60, was found dead in her bed. She had vomited
slightly, and there was a small quantity of blood on the floor, which
had flowed from her nose. She had been seen in her usual health
on the previous night. On inspection, there were found two in-
dentations about the middle of the right parietal bone, and there
was a large clot of blood in this situation beneath the skin. On
removing this clot, the bone was found fractured to the extent of
four inches. Nearly three ounces of dark clotted blood were found
on the outer membrane of the brain (dura mater), between it and
the skull. All the other viscera were healthy. This was the only
injury, and quite sufficient to account for death; but a question
arose respecting the mode in which this fracture was caused.
was in evidence that on the evening before her death, deceased had been suddenly knocked down, while she was walking in a public road, by a man accidentally running against her. One witness stated that she fell heavily on the back of her head, on which at the time she wore a bonnet. She appeared stunned—was raised up by the men—some brandy was given to her, and she recovered sufficiently to walk home and eat her supper as usual, after which no one saw her until she was found dead in bed on the following morning. Some suspicion arose that the violence done to the head was too great to be accounted for by a mere fall, and it was a question whether, with such an amount of injury, the deceased could have walked to her home, at the distance of a mile and a half, and have eaten her supper before going to bed. At first it was thought that this was a case of murder, and a man who lodged in the house with deceased was suspected. His room was searched, and a hammer with two claws was found. On comparing these claws with the two indentations and fracture, the medical witness thought that this weapon would at once account for their production. Deceased and this man had been in the habit of quarrelling, and they were the only persons in the house on this occasion. The lodger said that he left the woman in about nine o'clock (the fall in the road occurred about 7.30); her appearance presented nothing unusual, and he saw no more of her until called at seven the next morning, when she was found dead and cold. It was only at the adjourned inquest that the bonnet worn by the deceased at the time of the fall was called for by the coroner. Two indentations were then found upon the back part of it, corresponding to those on the skull of deceased. The indentations on the bonnet contained dust and dirt, thereby confirming the statements of the witnesses, and rendering it probable that the fall in the road had caused the fatal injury to the head. The examination of the dress, in this case, cleared up what might have been otherwise doubtful. It is probable that the large internal effusion of blood which had caused death did not take place until deceased had reached home, and perhaps as a result of the exertion made. She must have died very soon after she went to bed, as her body was found cold at seven o'clock the next morning. In addition to the caution which this case conveys respecting medical opinions on the origin of wounds, it shows that persons may walk and die at a great distance from the spot where a serious injury to the head has been sustained.

If several wounds have been inflicted through the dress an examination of this may sometimes suffice to show which was first received. A man, in struggling with an assailant, received three stabs with a knife—two on the left elbow and a third in the back. The latter was at about the level of the eighth rib;—it was vertical to the chest and had clean edges. The lower margin was obtuse—the upper acute; hence it was evident that the cutting edge of the weapon had been directed upwards. It had traversed the left lung
IMPUTED WOUNDS.

and the heart, and had caused immediate death. It was obvious, on examination, that this mortal wound had been first received, and the stabs at the elbow inflicted subsequently. These two stabs, which were slight, had divided the cloth coat and shirt, and had only grazed the skin, so that no blood had been effused. But the edges of the cuts in the cloth coat and shirt were stained with blood; hence it was evident that they must have been produced by a weapon already rendered bloody by a previous wound. The fact was of some importance in the case, and the correctness of the medical opinion was confirmed by the evidence at the judicial inquiry. (See 'Ann. d'Hygiène,' 1847, p. 461.)

Imputed or self-inflicted wounds.—A man may produce upon himself one or more wounds for the purpose of simulating a homicidal assault which he may allege to have been committed upon him. With the motives for the self-infliction of wounds a medical jurist is not concerned—it is of the fact only that he can take cognizance. From the cases that have yet occurred, it would appear that the object has been to extort money, to conceal murder, robbery, or some other crime, and to turn away a suspicion of criminality from the wounded person himself, but it is not always easy to trace a motive for the self-infliction of injuries; and when a reasonable motive is not at once forthcoming, persons are apt to be misled and to credit the story. Persons who have been convicted of thus imputing violence to others have frequently borne respectable characters until the occurrence, and this has contributed to give support to their statements. When a person intending to commit suicide fails in the attempt, he has sometimes, under a sense of shame, attributed the infliction of a wound in his throat to another; but facts of this kind may without difficulty be cleared up by circumstantial evidence. Imputed wounds, if we except the case of an actual attempt at suicide, in which the injury is commonly severe, are generally of a superficial character, consisting of cuts or incisions not extending below the true skin; deep stabs are seldom resorted to where the purpose is not suicide but merely to conceal other crimes. Further, these wounds are in front of the person, and may be on the right or left side, according to whether the person is right or left-handed. They have also been generally numerous, and widely-scattered; sometimes they have had a complete parallelism, unlike those which must have been inflicted by an adversary during a mortal conflict with a weapon. The hands are seldom wounded, although in the resistance to real homicidal attempts these parts commonly suffer most severely. The injuries are not usually situated over those parts of the body in which wounds are by common repute considered mortal, and there is in general an entire want of correspondence between the situation of the wounds on the person, and the cuts or other marks on the dress. This is a fact which requires special attention.

In comparing cuts on the dress with wounds on the person, there are several circumstances to be attended to. What articles of dress
were worn at the time of the assault? In a case of actual stabbing by another, all ought to present marks of perforation, corresponding in direction, form, size, sharpness of the edges of the weapon, &c. In imputed wounds, the marks on several layers of dress may not correspond with each other in the characters above mentioned. It is very difficult for a man simulating such injuries, so to arrange his clothes when off his person as to deceive a careful examiner. There will be some inconsistency or want of adjustment. Apart from the fact that several stabs or cuts cannot exist on the same part of the clothes, without one or more being stained with blood from the outside or inside, an impostor may either do too much or too little, and thus lead to his detection. In a case which excited much public discussion in London many years since, a simple circumstance led to the inference that certain stabs or cuts through a shirt had not been produced while the shirt was on but while it was off the body. There were two cuts in the shirt near to each other, precisely similar in size, form, and direction; in fact, the knife or dagger producing them must have gone through a fold of the shirt, so accurate was the correspondence. Then, however, it followed that the shirt could not have been upon the body of the wounded person, as he alleged, because a stab through a shirt when worn over the skin must, in order to reach the body, traverse not only a fold (producing two cuts), but a single layer in contact with the skin, and thus produce three cuts, or in the event of traversing two folds, five cuts. In simulating the wounds by cuts on the shirt, the person is supposed to have forgotten this, and have merely stabbed a fold of the shirt while lying on a table, or in some situation convenient for the purpose. This, among other facts, rendered it probable that the slight wounds on the chest were self-inflicted. A case occurred at Nottingham in February 1872, which shows how persons who inflict wounds and at the same time cut the dress covering the wounded part, may furnish evidence against themselves. A youth charged a man with unlawfully wounding him on the highway. He stated that the man had stabbed him in the arm, cutting through his shirt and coat-sleeve. There was no attempt at robbery, and no motive for such an act. On examining the coat and shirt-sleeve it was found that they had been cut, but there was no corresponding cut in the lining of the coat-sleeve. The prosecutor could give no explanation of this. It was clear that the charge was false, that there had been no cutting or stabbing by another, but that the wound was self-inflicted when the coat was not worn. The youth wished to leave the place where he had been sent for private study, and he had adopted this singular plan to induce his friends to remove him.

It has been contended that no rules can be laid down for the detection of such cases; each must be decided by the facts which accompany it. The facts which a medical man must endeavour to ascertain are the following:—1. The relative positions of the assailant and the assaulted person at the time of the alleged attack.
2. The situation, direction, and depth of the wound or wounds. 3. The situation or direction of marks of blood or wounds on the person or dress of either, or of both, the assailant and assailed, and, 4. The marks of blood, and the quantity effused at the spot where the mortal struggle is alleged to have taken place. The importance of these inquiries cannot be over-estimated. A strong suspicion was raised against the late Duke of Cumberland, in the year 1810, in reference to the death of Sellis, when a proper examination of the wounds on the deceased would have shown that they might have been self-inflicted.

It is worthy of remark that imputed wounds are generally cuts or stabs. They are seldom of the contused kind; the impostor cannot, in reference to contusions, so easily calculate upon the amount of mischief which is likely to ensue. Dr. Bergeret, however, has related some cases in which females labouring under hysterical attacks have inflicted upon themselves severe contusions, and have charged innocent persons with attempts to murder. (‘Ann. d’Hg.’ 1863, vol. 1, p. 463.) In general the inconsistency of the story is so palpable as to betray the imposture at once; but the public are easily deceived, and much prejudice is often unjustly excited against those who have been falsely accused. Slight excoriations or bruises may be magnified into marks of murderous violence; and if a medical man can be found to admit in an unqualified form, that a severe blow may be inflicted and yet leave but slight marks on the skin, the charge will be considered proved against the unfortunate accused.

The case of M. Armand, a merchant of Montpellier, who was tried at the Assizes at Aix, in March 1864, for an alleged murderous assault upon his servant Maurice Roux, furnishes a good illustration of the readiness with which the most inconsistent stories are accepted by the public, when they are supported by pseudo-medical evidence. This case was rather one of imputed homicidal strangulation than imputed wounding; nevertheless a foundation was laid for medical opinions by the presence, as it was alleged, of a slight excoriation of the skin on the nape of the neck. The injury was so slight that it escaped the observation of some medical men who examined the complainant, and there could be no doubt from the facts that it had been produced either accidentally or designedly by the complainant on himself. Several medical gentlemen, taking the man’s story as true, asserted without any qualification, 1. That a blow on the nape of the neck might produce cerebral concussion and syncope. 2. That a blow to produce such effects need not be violent; and 3. That such a blow so inflicted would not always leave upon the skin marks of contusion or ecchymosis. These admissions were taken by the Court to support the man’s story—that his master struck a severe blow on the back of his neck, and this had produced concussion of the brain, and that he had been rendered insensible for many hours. (‘Ann. d’Hg.’ 1864, 1, 451.) The evidence for the defence, and chiefly that given by M. Tardieu,
removed the evil effect produced by such loose medical answers as these, and satisfied the jury that the statement of the complainant was a pure fabrication. The accused was justly acquitted of the charge. Although it has been elsewhere stated that severe blows are not always attended with external marks of violence (p. 206), it by no means follows that such blows have been struck in all cases in which the skin presents a slight abrasion. This would be converting the exception into the rule, and every superficial injury might be thus distorted into a proof of the infliction of murderous violence.

Pistol-shot wounds are sometimes voluntarily inflicted for the purpose of imputing murder or extorting charity. A man intending to commit suicide by fire-arms and falling in the attempt, may, from shame and a desire to conceal his act, attribute the wound to the hand of some assassin. In examining such imputed wounds they will not be found to involve vital parts, except in cases of attempted suicide, and they will possess all the characters of near-wounds produced by gunpowder, wadding, or a bullet. The skin around will be more or less lacerated and bruised; there will be much ecchymosis, and the hand holding the weapon, as well as the dress and the wounded skin, may be blackened or burnt by the exploded gunpowder. A pistol-shot wound from an assassin may be produced from a distance, while an imputed wound which is inflicted by a person on himself must always partake of the characters of a near wound.

CHAPTER 24.

WOUNDS INDICATIVE OF HOMICIDE, SUICIDE, OR ACCIDENT.—EVIDENCE FROM THE SITUATION OF A WOUND.—EVIDENCE FROM NATURE AND EXTENT.—EVIDENCE FROM THE DIRECTION OF A WOUND.—WOUNDS INFLECTED BY THE RIGHT OR LEFT HAND.—SEVERAL WOUNDS.—USE OF SEVERAL WEAPONS.

Wounds indicative of Homicide, Suicide, or Accident.—Supposing that the wound which is found on a dead body, is proved to have been caused before death, it may be necessary to inquire whether it was the result of suicide, homicide, or accident. It might at first sight be considered that the determination of a question of this nature was wholly out of the province of a medical jurist. In some instances it may be so, and the settlement of it is then properly left to the legal authorities; but, in a large number of cases, it is so closely dependent for its elucidation on medical facts and opinions, that juries could never arrive at a satisfactory decision without medical evidence. Let us suppose, then, that a medical jurist is consulted in a doubtful case,—What are the points to which he should direct his attention? They are, with
regard to the wound, 1, its situation, 2, its nature and extent, and, 3, its direction.

1. Evidence from the situation of a wound.—It is a general principle, in which most medical jurists agree, that wounds inflicted by a suicide are usually confined to the fore or lateral parts of the body. The throat and chest are commonly selected when cutting instruments are employed; while the chest, especially in the region of the heart, the mouth, the orbit, and the temples, are the spots generally chosen for the perpetration of suicide by fire-arms. But it is obvious that any of these parts may be also selected by a murderer, with the especial design of simulating a suicidal attempt; therefore the mere situation of a wound does not suffice to establish the fact of suicide. Some have regarded it as fully established in legal medicine, that when wounds exist at the back part of the body, it is a positive proof that they have not been self-inflicted. This situation is certainly unusual in cases of suicide; but, as Orfila observes, it is not the situation, so much as the direction of a wound, which here furnishes evidence against the presumption of suicide. A wound, traversing the body from behind to before in a direct line, is not likely to have resulted from a suicidal attempt: at least it must be obvious that it would require more preparation and contrivance on the part of a self-murderer so to arrange matters that such a wound should be produced than we can believe him to possess at the moment of attempting his life. Besides, his object is to destroy himself as quickly and as surely as circumstances will permit; he is, therefore, not likely to adopt complicated and uncertain means for carrying this design into execution. Nevertheless, we must not always expect to find suicidal wounds in what an anatomist would pronounce to be the most appropriate situation to produce instant destruction. An incised wound in a concealed or not easily accessible part is presumptive of murder: because this kind of injury could have resulted only from a deliberate use of the weapon. Suicidal wounds are, however, sometimes found in unusual situations. In reference to this subject, it has been remarked that there is no wound which a suicide is capable of inflicting upon himself which may not be produced by a murderer; but there are many wounds inflicted by a murderer which, from their situation and other circumstances, a suicide would be incapable of producing on his own person. We cannot always obtain certainty in a question of this kind,—the facts will often allow us to speak only with different degrees of probability.

The situation of a wound sometimes serves to show whether it is of an accidental nature or not,—a point often insisted on in the defence. Accidental wounds are generally found on those parts of the body which are exposed. Some wounds, however, forbid the supposition of accident even when exposed; as deeply incised wounds of the throat, and gunshot wounds of the mouth and temples. For the report of a case in which an accidental wound on
the head by an axe, closely simulated a homicidal wound, see Casper's 'Wochenschrift,' May 24, 1845.

2. Evidence from the nature and extent of a wound.—Contused wounds are rarely seen in cases of suicide, because in producing them there is not that certainty of speedily destroying life to which a self-murderer commonly looks. There are, of course, exceptions to this remark; as where, for instance, a man precipitates himself from a considerable height, and is wounded by the fall. Circumstantial evidence will, however, rarely fail to clear up a case of this description. Greater difficulty may exist when life is destroyed by a contused wound, voluntarily inflicted. When persons labouring under insanity or delirium commit suicide, they often inflict upon themselves wounds of an extraordinary kind,—such as would, at first view, lead to a suspicion that they had been produced by the hand of a murderer: and, therefore, the rules which are here laid down to distinguish homicidal from suicidal wounds, must be guardedly applied to cases of this kind. In 1850, a case occurred at Guy's Hospital, in which a person in a fit of delirium tore away the whole of the abdominal muscles from the lower and fore part of the abdomen. Had the body of this person been found dead with such an unusual and serious personal injury, it is not improbable that it would have been pronounced homicidal and not suicidal.

The extent of a wound, by which we are to understand the number and importance of the parts injured, must in these cases be always taken into consideration. It has been somewhat hastily laid down as a rule that an extensive wound of the throat, involving all the vessels and soft parts of the neck to the spine, could not be inflicted by a suicide. Although, in general, suicidal wounds of this part of the body do not reach far back, or involve the vessels of more than one side, yet we find occasionally that all the soft parts are thus completely divided. These are cases in which, perhaps, with a firm hand, there is a most determined purpose of self-destruction. In a case of suicide, observed by Marc, the weapon had divided all the muscles of the neck, the windpipe, and gullet,—had opened the jugular veins and both carotid arteries,—and had even grazed the anterior ligaments of the spine. A wound so extensive as this is rarely seen in a case of suicide, but there is no ground for the assertion that such extensive wounds in the throat are incompatible with self-destruction. (See also 'Ann. d'Hyg.' 1872, I, p. 419.)

Incised wounds in the throat are generally set down as presumptive of suicide, but murderers sometimes wound this part for the more effectual concealment of crime. Circumstances connected with the form and direction of a wound may in such cases lead to detection, for, unless the person attacked be asleep or intoxicated, resistance is offered,—evidence of which may be obtained by the presence of great irregularity in the wound or the marks of other wounds on the hands and person of the deceased.
The peculiar form of a wound on the throat has sometimes led to a justifiable suspicion of homicide. In one instance a man was found dead with his throat cut in the manner in which butchers are accustomed to kill sheep. This led the medical man to believe that the wound had been inflicted by a butcher. The police, guided by this observation, arrested a butcher, who was subsequently tried and convicted of this act of murder. In some instances, however, it is extremely difficult to say whether the wound is homicidal or suicidal,—the medical facts being equally explicable on either hypothesis. (See case by Marc, 'Ann. d'Hyp.' 1830, t. 2, p. 406; another by Devergie, ib. 414; and a third by M. Ollivier, 'Ann. d'Hyp.' 1836, t. 1, p. 394.) Regularity in a wound of the throat has been considered to be presumptive of suicide. This was the publicly-expressed opinion of Sir Everard Home in the well-known case of Selli. The deceased was found lying on a bed, with his throat extensively cut, and the edges of the incision were regular and even. This condition of the wound, it was inferred, repudiated the idea of homicide, but, as a general principle, it appears to me to be a fallacious criterion. A murderer, by surprising his victim from behind, by having others at hand to assist him, or by directing his attack against one who is asleep or intoxicated, or who from age or infirmity is incapable of offering resistance, may easily produce a regular and clean incision on the throat.

3. Evidence from the direction of a wound.—The direction of a wound has been considered by some to afford presumptive evidence sufficiently strong to guide a medical jurist in this inquiry. It has been remarked that in most suicidal wounds which affect the throat, the direction of the cut is commonly from left to right, either transversely or passing obliquely from above downwards: in suicidal stabs and punctured wounds the direction is commonly from right to left and from above downwards. In left-handed persons, the direction would, of course, be precisely the reverse. Suicidal wounds are, however, subject to such variation in extent and direction that it is scarcely possible to generalize with respect to them. Nevertheless, an attention to these points may sometimes be of real assistance to the inquirer, especially when the body has not been removed from its position. It is recommended that the instrument with which the wound has been inflicted should be placed in either hand of the deceased, and the arm moved towards the wounded part, so that it may be clearly seen whether the direction of the wound could or could not correspond to it in any position. It might happen that neither arm would reach the wounded part, so as to inflict a wound of the particular direction observed: this may be the case in wounds situated on the back. It is obvious that if a murderer makes an incised wound in the front of the throat from behind, the direction will be the same as that commonly observed in cases of suicide. (See on this point the case of Reg. v. Dalmas, Cent. Crim. Court, May 1844.) Again, if the person attacked is powerless, the wound may be deliberately made.
so as to simulate a suicidal act; indeed, murderers seldom attack the throat but with the design of simulating an act of suicide. A homicidal stab may also take the same direction as one which is suicidal, but this would be confined to those cases in which the assailant was placed behind or aside. If in front of the person whom he attacks, the direction would probably be from left to right; but in suicide, when the right hand is commonly used, it is the reverse. Oblique wounds, passing from above downwards, are common to homicide and suicide, but those which take an oblique course from below upwards are generally indicative of homicide, for it is extremely rare that a person bent on suicide, unless a lunatic, thus uses a weapon. Homicidal incisions, especially in the throat, are often prolonged below and behind the skin forming the angles of a wound, deeply into the soft parts. Those which are suicidal rarely possess this character; they terminate gradually in a sharp angle, and the skin itself is the furthest point wounded,—the weapon is not carried either behind, below, or beneath it. Suicides may graze the ligaments in front of the spinal column, but that they should make deep incisions into the bones, cut off hard bony processes, and divide the intervertebral substance and the vertebral arteries, is a proposition contrary to all experience and probability. The case of the Earl of Essex, who was found dead in the Tower in July 1683, bore somewhat on these points. The deceased was discovered with his throat cut, and a razor lying near him. This razor was found to be much notched, while the throat was smoothly and evenly cut from one side to the other and to the vertebral column. Some considered this to have been an act of suicide, others of murder. Those medical witnesses who supported the view of suicide were asked to explain how it was that such an even wound could have been produced by a notched razor. They attempted to account for this by asserting that the deceased had probably drawn the razor backwards and forwards across the neck-bone; forgetting that before this could have been done by the deceased, all the great vessels of the neck must have been divided! Exceptions to these characters of homicidal and suicidal wounds may exist; but in a dark and intricate subject of this nature, we have only limited rules to guide us. The instrument with which a wound is supposed to have been inflicted should be adapted to the edges of the incision; its sharpness compared with the cleanliness and evenness of the cut, and its length with the depth of the incision or stab. It is no uncommon occurrence for a murderer to substitute some instrument belonging to the deceased or another person for that which he has actually employed; and this by its size, shape, bluntness, or other peculiarities, may not account for the appearances presented by the wound.

It is not often that any difficulty is experienced in distinguishing a suicidal from an accidental wound. When a wound has really been suicidally inflicted, there are generally to be found about it clear indications of design; and the whole of the circumstances are
seldom reconcilable with the supposition of accident. But if the position of the deceased with respect to surrounding objects has been disturbed, if the weapon has been removed, and the body transported to a distance, then it will not always be easy to distinguish a wound accidentally received from one inflicted by a suicide or a murderer. The evidence of those who find the body can alone clear up the case; and the medical witness may be required to state how far this evidence is consistent with the situation, extent, and direction of the wound by which the deceased has fallen. It is unnecessary to dwell further on this subject, since the observations already made will suggest to a practitioner the course which he should pursue. Circumstantial evidence is commonly sufficient to show whether a wound has been accidentally received or not; but as an accidental wound may sometimes resemble one of homicidal or suicidal origin, so it follows that it is not always possible for a medical jurist to decide the question peremptorily from a mere inspection of the wound.

It would not be difficult to produce instances in which murderers have alleged, in defence, that the wounds observed on the bodies of their victims were of accidental origin, and the allegations have been clearly refuted by medical evidence. A witness must be prepared, therefore, in all cases in which death has taken place in secrecy, and the nature of the wound is such as to render its origin doubtful, to be closely examined by counsel for a prisoner charged with felonious homicide, on a question whether the wound might not have been accidental. The law requires that it should be rendered evident to a jury, before such a charge can be sustained, that the fatal wound could not have had an accidental or suicidal origin.

The subject of wounds of the neck has been recently examined in relation to homicide, suicide, and other medico-legal questions, by Dr. Güterbock, of Berlin. (‘Eulenberg’s Vierteljahrschrift,’ 1873; 2, p. 1.)

Wounds inflicted by the right or left hand.—Some remarks have been made in reference to the direction of a cut or stab varying according to whether the right or the left hand has been used by a suicide. It is necessary for a medical jurist to be aware, that there are many persons who are ambidextrous, i.e. who have equal facility in the use of the right and the left hand. This may not be generally known to the friends of the deceased: and such persons are often pronounced, even by those who have associated with them, to have been right-handed. A want of attention to this point is said to have been one of the circumstances which led to a suspicion of murder in the case of Selles. (Wills’ ‘Circ. Evidence,’ p. 97.) The man was found dead on his bed with his throat cut,—the razor was discovered on the left side of the bed; whereas it was generally supposed and asserted that he was right-handed. The truth was, he was ambidextrous,—equally expert in the use of the razor with his left and right hand; and thus the apparently
suspicious circumstance of the razor being found on his left side, was at once explained away. The importance of making due allowance for the characters presented by wounds in the throat is also illustrated by a case which occurred in London in November 1865. A publican and his wife had been frequently in the habit of quarrelling. One night the wife gave an alarm, and the man was found dead on the bed, with his throat severely cut. On examination, the fatal wound had all the characters of a left-handed cut, while the deceased was generally believed to be right-handed; and there was bloody water in a wash-hand basin in the room. The wife, who had marks of bruises upon her, said that she left her husband in the bed-room for a short time, and on her return found him dead. The suspicious facts were explained at the inquest by a daughter of the deceased by a former marriage. She stated that her father had been brought up as a wood-carver, a trade which requires a man to use both hands equally well—that he had frequently threatened to destroy himself, and that the blood in the wash-hand basin was owing to her having washed her hands after she had touched her father's head. This satisfactorily explained the medical circumstances, which appeared at first to point to an act of homicide.

The presence of several wounds.—In suicides, commonly, one wound only is seen, namely, that which has destroyed life, and the presence of several wounds on the body, or the marks of several attempts around the principal wound, have been considered to furnish presumptive evidence of murder. But any inferences of this kind must be cautiously drawn, since not only may a murderer destroy his victim by one wound, but a suicide may inflict many, or leave the marks of several attempts before he succeeds in his purpose.

The use of several weapons.—In general, suicides, when foiled in a first attempt, continue to use the same weapon; but sometimes, after having made a severe wound in the throat, they will shoot themselves, or adopt some other method of self-destruction. These cases can only appear complicated to those who are unacquainted with the facts relative to self-murder. Neither the presence of several wounds by the same kind of weapon, nor of different wounds by different weapons, can be considered of themselves to furnish any proof of the act having been homicidal. In one instance which is reported, a lunatic, in committing suicide, inflicted thirty wounds upon his head. In a case of murder, when many wounds are found on a dead body, it may happen that the situation or direction of some will be incompatible with the idea of a suicidal origin. Thus a stab or cut may be close to a contusion or contused wound, and although a fall or other accident might account for the latter, the former would indicate violence separately inflicted.

Two or more mortal wounds.—When we find several wounds on the body of a suicide, it generally happens that one only bears about it a mortal character, namely, that which has caused death. **On this account it has** been asserted by some medical jurists, that
EVIDENCE FROM CIRCUMSTANCES.

when two mortal wounds are found upon a body, and particularly, if one of them is of a stunning or stupifying tendency (i.e. affecting the head), they must be considered incompatible with suicide. An inference of this kind can be applied to those cases only in which the two wounds, existing on different parts of the body, were likely to prove immediately fatal. It must, however, be borne in mind, that all suicides do not immediately perish from wounds which are commonly termed mortal: on the contrary, they have often the power to perform acts of volition and locomotion, which might by some be deemed wholly incompatible with their condition. It is difficult to say whether one wound was likely to destroy life so rapidly as to render it impossible for the person to have inflicted another upon himself; but when there are several distinct incisions on the throat, each involving important blood-vessels, there is good reason to infer that they have resulted from an act of murder.

Wounds produced simultaneously or at different times.—When several wounds are found on a dead body, the question is frequently asked,—Which was first received? If one is what is commonly termed mortal, and the others not, it is probable that the latter were first inflicted. This remark applies both to cases of homicide and suicide; but it is apparent that when, in a murderous assault, a person has been attacked by several assailants at once, the wounds may have been simultaneously produced. This is, however, a question to which it is not easy to give a specific answer. Each case must be decided from the special circumstances attending it; and in most instances, unless some direct evidence is forthcoming, a medical opinion can be little more than conjectural. I here refer to it, because it is a question almost always put in a court of law; and a witness should at least prepare himself to meet it by a proper examination of the medical circumstances of the case.

CHAPTER 25.

EVIDENCE FROM CIRCUMSTANCES.—THE POSITION OF THE BODY—OF THE WEAPON.—EVIDENCE FROM BLOOD, HAIR, AND OTHER SUBSTANCES ON WEAPONS.—MARKS OF BLOOD ON CLOTHING AND FURNITURE, ON THE DECEASED, AND ON THE ASSAILANT.

Evidence from circumstances.—In pursuing the examination of the question respecting the homicidal or suicidal origin of wounds, the attention of the reader may be called to the force of evidence which sometimes derives from the circumstances under which the body of a person, dead from wounds, is discovered. It may be said that this is a subject wholly foreign to the duties of a medical jurist, if I cannot agree to this statement. There are few in the profession who, when summoned to aid justice by their science in the
detection of crime, do not seek for circumstances by which to support
the medical evidence required of them. A practitioner would cer-
tainly be wrong to base his professional opinion on these circum-
stances, but it is scarcely possible for him to avoid drawing an in-
ference from them as they fall under his observation. Care must
be taken that this inference is not overstrained. The medical evi-
dence may be of itself weak, and insufficient to support a charge
against the accused; in such a case, if any suspicious circumstances
have come to his knowledge, he may be often unconsciously induced
to attach greater importance to the medical facts than he is justified
in doing. In short, he may, through a feeling of prejudice, which
it is not always easy to avoid, give an undue force to the medical
evidence. But if a proper degree of caution is used in drawing in-
ferences, and the circumstances are not allowed to create a preju-
dice in his mind against the accused, a practitioner is bound to
observe and record them; for, being commonly the first person
called to the deceased, many facts capable of throwing an important
light on the cause of death, would remain unnoticed or unknown
but for his attention to them. The position of a dead body, the
suddenness of death, the discovery of a deadly poison, the distance
at which a knife or pistol is found,—the position of the instrument,
—whether situated to the right or left of the deceased,—the marks
of blood or wounds about the person, or of blood on the clothes or
furniture of the apartment, are facts which must assist materially
in developing the real nature of a case, and in giving force to a
medical opinion. Many of these circumstances can fall under the
notice of him only who is first called to the deceased; and, indeed,
if observed by another, no advantage could be taken of them, ex-
cept from the interpretation of a medical man.

At the same time, a person may have died suddenly, and a
weapon or poison be found near the body, and yet the death may
have taken place from natural causes. Due allowance must be
made for coincidences of this kind. The purchase and possession
of a deadly poison shortly before a sudden death may create suspi-
cion, but a careful analysis may show that there is no poison in the
body, and further that the post-mortem appearances are consistent
with natural disease,—and unless treated as exceptional in charac-
ter they are not consistent with death from poison. Mr. Stedman,
of Guildford, met with a case in which a woman was found dead
under very suspicious circumstances. Within half an hour of her
death she had sent a boy to a shop to purchase a packet of Battle’s
vermin-killer (strychnia). He gave it to her and left the house.
When he returned at the time mentioned, he found her leaning on
the table, speechless and motionless. She was then dead. There
was no rigidity and no evidence of convulsions. Some fluid was
found in the stomach, but in this there was no strychnia, and none
of the blue colouring matter which had been sold with the powder.
No trace of the powder could be found on the premises, and no cup,
glass, or vessel in which the poison might have been mixed, could
be seen. ('Med. Times and Gaz.' Jan. 14, 1865, p. 34.) The absence of any characteristic symptoms, and the non-detection of the poison and its colouring ingredient under the circumstances, negatived the suspicion of poisoning. The purchase, possession, and the non-discovery of the purchased packet after the death of the woman, were circumstances which created suspicion, but nothing more. The medical facts proved that the suspicion was unfounded. The state of the lungs and heart accounted for sudden death.

Among the questions which present themselves on these occasions are the following:—Is the position of a wounded body that which a suicide could have assumed? Is the distance of a weapon from the body such as to render it improbable that it could have been placed there by the deceased?—In answering either of these questions, it is necessary to take into consideration the extent of the wound, and the time at which it probably proved fatal. Again, it may be inquired—Has the deceased bled in more places than one? Are the streams of blood all connected? Are there any marks of blood on his person or clothes which he could not well have produced himself? Are there any projecting nails or other articles which might account for wounds on the body as the result of accident? These are questions, the answers to which may materially affect the case; hence, a practitioner, in noticing and recording the circumstances involved in them, ought to exercise due caution.

The rules for investigating a case of alleged death from violence have been elsewhere described (p. 7, ante). Among the additional circumstances to which a medical witness should specially direct his attention on these occasions are the following:—

1. The Position of the Body.—The body may be found in a position which the deceased could not have assumed on the supposition of the wound or injury having been accidental or suicidal. The position of a dead wounded body is often only compatible with homicidal interference, either at the time of death or immediately afterwards. In order to determine the probable time of death, we should always notice whether there is any warmth about the body, —whether it is rigid, or in a state of decomposition, and to what degree this may have advanced.

2. The Position of the Weapon.—If a person has died from an accidental or self-inflicted wound, likely to cause death either immediately or within a few minutes, the weapon is commonly found either near to the body or within a short distance of it. If found near, it is proper to notice on which side of the body it is lying; if at a short distance, we must consider whether it might have fallen to the spot, or have been thrown or placed there by the deceased. If there has been any interference with the body, evidence from the relative position of it and the weapon will be inadmissible. In a case which was referred to me some years since, a woman had evidently died from a severe wound in the throat, which was homicidally inflicted; the weapon, a razor, was found under the left shoulder, a most unusual situation, but which, it appears, it had
taken, owing to the body having been carelessly turned over before it was seen by the surgeon who was first called.

It is compatible with suicide that a weapon may be found at some distance, or in a concealed situation; but it is much more frequently either grasped in the hand, or lying by the side of the deceased. In one instance, it is stated the deceased was discovered in bed with his throat cut, and the razor lying closed or shut by his side. In another case, the bloody razor, closed, was found in the deceased’s pocket. There is, however, one circumstance in relation to the weapon which is strongly confirmatory of suicide. If the instrument is firmly grasped in the hand of the deceased, no better circumstantial evidence of suicide can be offered. It is so common to find knives, razors, and pistols grasped in the hands of suicides, that it is quite unnecessary to produce cases illustrative of this statement. The grasping of a weapon appears to be owing to muscular spasm persisting after death, and manifesting itself under the form of what has been called cadaveric spasm—a condition quite distinct from rigidity, although often running into it. It does not seem possible that any murderer could imitate this state, since the relaxed hand of a dead person cannot be made to grasp or retain a weapon like the hand which has firmly held it by powerful muscular contraction at the last moment of life. In reference to the weapon being found at a distance from the body, all the circumstances of the case should be taken into consideration before any opinion is expressed. If the weapon cannot be discovered, or it is found concealed in a distant place, this is strongly presumptive of homicide, provided the wound is of such a nature as to prove speedily fatal. If found near the body, it will be proper to notice whether the weapon is sharp or blunt, straight or bent, also whether the edge is or is not notched. These circumstances may throw a light on the question of suicide or murder.

3. Blood on weapons.—The weapon with which a wound has been inflicted is not necessarily covered with blood. The popular view is that if much blood is found about a dead body, the weapon ought always to be more or less bloody. In reference to heavy blunt instruments applied with force to the head, severe contusions and fractures may be produced without immediate effusion of blood. Unless the bludgeon is used in a subsequent struggle or handled by a bloody hand, no blood whatever may be found on the end which produced the injuries. In reference to stabs, the knife is frequently without any stains of blood upon it, or there is only a slight film, which, on drying, gives to the surface a yellowish-brown colour. The explanation of these facts appears to be that in a rapid blow or plunge the vessels are compressed, so that bleeding takes place only after the sudden withdrawal, when the pressure is removed. Even if blood should be effused, the weapon, in being withdrawn, is sometimes cleanly wiped against the edges of the wound, owing to the elasticity of the skin. Thus the first stab through the dress may not present any appearance of blood on the outside, but in a
second stab, with the same weapon, the outside of the dress should
present a bloody mark, unless the weapon had previously been
wiped. The blood may have been removed by washing, from the
blade of a knife or dagger; hence the handle and inner portions,
the notch for opening the blade and the indentations of any letters
stamped upon it, should be closely examined.

The blood on a weapon may be wet or dry, in a partly coagulated
state, or diffused as a mere yellowish-red film. If coagulated, this
would render it probable that the blood had issued from the body
of a living person or animal, or from a body recently dead. But
the blood of a dead animal dried in small spots on the blade of a
knife may sometimes present a similar appearance, and thus lead
to a mistake in evidence.

4. Hair and other substances on weapons.—In some instances no
blood may exist on a weapon, but a few hairs or fibres may be
found adhering to it if the weapon is of a bruising or cutting kind.
The main questions may be, in such a case, whether the hair is
that of a human being or of an animal, and whether the fibres
correspond in their nature, form, and colour to articles of dress on
the deceased or the accused. Before any coagulated blood is re-
moved from a weapon it should be examined carefully by the
microscope. Hairs or fibres of linen, woollen, silk, or cotton, may
be found imbedded in the solidified blood, either on the edge or
on the blade; and evidence of this kind may occasionally be of
great importance. In a case of murder by manual strangulation
which occurred to Dr. Hofmann, so much violence had been
employed by pressure with the fingers, that not only was a quantity
of blood effused, but portions of cuticle with the fine downy hairs
of the neck of deceased had been removed. The blood with the
abraded cuticle and hairs were found upon a towel which was
traced to the assailant. (Eulenberg's 'Vierteljahrs.' 1873, 2, p. 112.)

Foreign substances are sometimes found in contused and lacerated
wounds which may throw a light on the mode in which they
were inflicted. In gunshot wounds it is not unusual to find por-
tions of paper or other substances, used as wadding for the gun or
pistol. The preservation of articles of this description, or of por-
tions of the projectiles found under these circumstances, has proved
a means of fixing the crime upon the guilty person. When a gun
or pistol is discharged near to the body, a portion of the wadding
is generally carried into the large irregular wound produced. In a
case of stabbing, a portion of the weapon may be found in the
wound.

5. Marks of blood on clothing or furniture.—It is proper to
notice all marks of blood on the clothes of the deceased or in the
apartment, and to observe where the greatest quantity of blood
has been effused: this is generally found on the spot where the
deceased has died. The deceased may have bled in more places
than one; if so, it is proper to notice whether there is any com-
munication in blood between these different places. Blood on.
distant clothes or furniture may show whether deceased has moved about, and whether he has struggled much after receiving the fatal wound. Acts of locomotion by a wounded person who has died from loss of blood, or by a criminal whose hands and feet may be bloody, are generally indicated by tracks or marks of blood. The observation of these marks, if made at the time that a dead body is found, is of great importance. They may be so situated as to show that the body of the deceased has been moved or been interfered with after death, and thus throw a light upon the question whether the act has been one of homicide or suicide. In reference to clothing, it is advisable, if it be possible, to have some clear proof that the clothes sent for examination were actually worn by the accused or belonged to the deceased. Serious mistakes are sometimes made, and medical opinions should therefore be expressed with caution. It should be noticed on these occasions whether the blood is deposited in large patches on clothing, or whether it is sprinkled, and also whether it is in large or small quantity. The sprinkling may have proceeded from a wounded artery, or from a splashing of blood as a result of continued violence. We should likewise observe whether, if the wound is in the throat or chest, blood has flowed down in front of the clothes or person, or whether it has flowed so as to collect in the armpits, or on each side of the neck; for these appearances will sometimes show that the wound was inflicted when the person was standing, sitting, or lying down. If the throat is cut while a person is lying down, it is obvious that the blood will be found chiefly on either side of the neck, and not extending down the front of the body. Few suicides cut the throat while in a recumbent posture, and the course which the blood has taken may, therefore, be sometimes rendered subservient to the distinction of a homicidal from a suicidal wound. The position in which the body was, when a wound was inflicted, is a frequent question on inquests and criminal trials.

When spots of blood are found upon articles of dress or furniture, their form and direction may occasionally serve to furnish an indication of the position of the wounded person with respect to them. Thus, if the form of a spot is oval and elongated, the presumption is that the person was placed obliquely with respect to the stained furniture during the hemorrhage. (‘Ann. d’Hyg.’ 1840, p. 397.) The force with which the blood has been thrown out, will be in some measure indicated by the degree of obliquity and length of the spot. This is in general wide and rounded at the upper part, but narrow and pointed below.

6. Marks of blood or violence on the dead body.—In examining a dead body, attention should be paid to the state of the mouth and throat. Assailants who make their attack during sleep, sometimes endeavour to close the mouth, or to compress the throat, so as to prevent an alarm being given. In one instance there were the marks of finger-nails around the mouth; in another, ecchymosed impressions, as if produced by a hand, were found upon the throat.
BLOOD ON THE ASSAILANT.

of the deceased. The hands of a dead person should always be examined; many recent cuts, excoriations, or incisions found upon them, especially if on the back of the fingers or thumbs, will indicate that there has been a mortal struggle with the assailant. In the inspection, the examination of the stomach should not be omitted. The presence or absence of food, mucus, or blood, may furnish evidence of considerable importance in the elucidation of the case. All marks or stains of blood or dirt on a dead body require special observation. The impression of a hand, or of some of the fingers, may be found on the skin in a situation where it would have been improbable or impossible for the deceased to have produced it, even supposing that one or both of his hands were covered with blood.

In one case of murder there was found the bloody impression of a left hand upon the back of the left hand of the deceased, in such a position that it was quite impossible the deceased himself could have made the mark! In all cases it should be noticed whether the inside or outside of the hand, or whether one or both hands are stained with blood, and the size and position of the stains should be described. Marks of blood on the dress of a wounded person or a dead body may often furnish important circumstantial evidence. If there are several stabs or cuts on the body involving the dress, it should be observed whether the edges of one or more of them are stained with blood, as if from the wiping of a weapon, and whether the stain is on the outside or inside of the article of dress. In simulated personal injuries, the stain of blood may be, through inadvertence, applied to the outside of the dress—a fact which might, in some instances, lead to the detection of the imposture. (See case by Dr. Bayard, Ann. d'Hyg. 1847, vol. 2, p. 219.)

7. Marks of blood on the assailant. It is a very common idea that no person can commit a murder in which blood is diffused, without having his person and clothes more or less covered with blood. Nothing can be more erroneous. On several occasions I have been required to examine articles of clothing which had been worn by persons subsequently convicted of murder by wounding, and either no blood has been found on any part of the dress, or only small spots wholly out of proportion to the quantity of blood which must have flowed from the deceased. (Reg. v. Harrington, Chelmsford Assizes, 1852. Reg. v. Flack, Ipswich Assizes, 1853. Reg. v. Cass, Carlisle Assizes, 1860. Reg. v. Rowlands, Beaumaris Assizes, 1861. Reg. v. Edmonds, Swansea Assizes, 1862.) In the case of Gardner (C.C.C., 1862), in which there had been a large effusion of blood from a severe wound in the throat, no blood-stains were found on the clothing of the man who was convicted of the murder. Policemen are frequently misled in searching for criminals by looking for blood on clothing as a necessary accompaniment of an act of murder. This also leads them to magnify stains of red paint, iron rust, and fruit stains on the dress of an accused person into marks of blood.

It is obvious that the throat of a person while standing, sitting,
or kneeling, may be cut by a murderer from behind, and thus in appearance simulate suicide. Under these circumstances the clothes of the assassin would escape being stained with blood. The flowing or spurtting of blood upon the clothes of the assailant will depend upon his position in relation to the deceased at the time of inflicting the wound, and this must always be a matter of pure speculation. In entire violation of this simple principle, the fact of a prisoner's clothes not being marked with blood has been on more than one occasion urged as a proof of his innocence. (Reg. v. Dalmas, C.C.C., June 1844.) In this case the counsel for the prisoner wished to impress the jury, in what is commonly denominated a 'powerful' speech (in which medical facts and opinions are usually ignored), that no person could cut the throat of another without having his clothes covered with blood; and as there was not proved to be any blood on his clothes, the prisoner could not have been guilty of the crime. The facts were simply that the throat of the woman was cut while she was walking across Battersea Bridge, the prisoner having inflicted the wound from behind!

Another circumstance to be noticed is that the accused may have had time to change his clothes in spite of the supposed vigilance of the police. This has occurred in several trials for murder. (Reg. v. Heath, Bucks Lent Assizes, 1854; Reg. v. Cass, Cumberland Assizes, 1860.) In one case the trousers taken from the prisoner soon after the murder presented no marks of blood; but the trousers actually worn by him were found with blood upon them pending the trial.

In some cases the prisoner may have had time to remove any stains by washing. Owing to the erroneous assumption that where much blood has been lost by the deceased the assassin could not have escaped having his clothes 'deluged' with blood, juries have been led to return verdicts of acquittal in cases in which all the other circumstances were only consistent with the theory of murder.

On the trial of Sub-Inspector Montgomery for the murder of Mr. Glasse (Omagh Assizes, July 1873), the absence of blood-stains on the clothing of the prisoner, was conceived to be a strong proof of his innocence of the crime. In this case the wounds on the head of the deceased were of a contused kind, produced by a bill-hook. Much blood was on the floor around the body, but much of this had, no doubt, flowed from the body after death. The wounds were not likely to have been attended with a great spurtting of blood or any copious effusion at the time of their infliction, yet it was assumed that such a murder could not have been perpetrated without the clothes of the assassin being 'covered' with blood. As the evidence against the accused was entirely circumstantial, much stress was laid upon this state of the clothes as a proof of his innocence. The prisoner had been previously tried twice for the crime, and the juries were not able to agree, chiefly owing to the absence of blood from his clothes. On the third trial he was convicted, and the conviction was imme-
diately afterwards justified by an admission of his guilt. He admitted that he had removed the blood-stains from his clothes with cold water soon after the perpetration of the crime. A case like this is surely sufficient to show the danger of trusting to such a fallacious criterion as a proof of innocence.

The counsel who defended Courvoisier for the murder of Lord William Russell (Reg. v. Courvoisier, C.C.C., 1840) contended in the strongest terms, that the accused could not have perpetrated the crime because there were no marks of blood on any of his clothes, and no bloody weapon was found in his possession or in the house. As all the vessels of the throat of the deceased had been cut to the vertebral column while he was lying asleep, it was alleged to be impossible that the assassin could have escaped from the spurt ing of blood from the large vessels. After his conviction the prisoner admitted that when he committed the murder at night he wore no clothes, but was in a state of nudity, and that all he did was to wash his hands! The weapon which he employed was the carving-knife of the house, which he washed and returned to the tray with the other knives!

The presence of spots of blood on articles of clothing, knives, &c., taken from the persons of those who are accused of murder, may be quite consistent with innocence. Small spots or stains have often an undue importance attached to them. I have known minute spots of blood on the shirt of a man tried for murder by wounding, regarded as furnishing proof of criminality, until it was explained that they were probably derived from flea-bites, and that some were on one side and some on the other, showing that the shirt had been worn on the two sides. The coarse clothing worn by labourers may acquire blood-spots from a variety of accidental circumstances, which the accused may not always be able to explain. When he knows the stains are there, and shows great anxiety to give some explanation of their presence, as by falsely stating that he had assisted in killing a pig, a rabbit, or that he was carrying game about him,—there may be strong ground for suspicion; but a medical practitioner should always make due allowance for the accidental presence of blood on the clothes of working men.

In a case of suicide (October 1872) by cutting the throat, the son who first discovered his father lying dead imagined that he had broken a blood-vessel. The son lifted up the body, and then went for assistance. In this way his hands and clothes became bloody. At the inquest he was closely questioned on this point. There could not be the least doubt that the act was one of suicide, and that the clothes of the son had become accidentally covered with blood in the manner in which he stated.
CHAPTER 26.

CHEMICAL EXAMINATION OF BLOOD-STAINS.—STAINS OF BLOOD ON LINEN AND OTHER STUFFS.—AGE OR DATE OF THE STAINS.—OTHER STAINS RESEMBLING BLOOD.—BLOOD ON WEAPONS.—ARTERIAL AND VENOUS BLOOD.—VARITIES OF BLOOD.—BLOOD OF MAN AND ANIMALS.—MICROSCOPICAL EVIDENCE.

Examination of Blood-stains.—It may appear at first sight an easy matter to say whether certain suspected spots or stains on articles of clothing, furniture or weapons are or are not owing to blood; but in practice, great difficulty is often experienced in answering the question. If the stains are large and recent, most persons may be competent to form an opinion; but the physical characters of blood are soon changed, even when the stuff is white and otherwise favourable for an examination. If the stains, whether recent or of old standing, are upon dark-dyed woollen stuffs, as blue, black, or brown cloth, or if they appear in the form of small or detached spots, or in thin films on dark clothing or rusty weapons, no one but a competent medical man should be allowed to give an opinion.

Chemical Analysis.—There is no direct chemical process by which blood can be identified, but we presumptively establish its nature by determining the presence and properties of the red colouring matter, or hæmatine. The chemical properties of the red colouring matter of blood are as follows:—1. It readily combines with cold water, forming, if recent, a bright red solution. 2. The red colour of this solution is not changed to a crimson or a green tint by a few drops of a weak solution of ammonia. If the ammonia is concentrated, or added in large quantity, the red liquid will acquire a brownish tint. 3. The red liquid when boiled is coagulated—the colour is entirely destroyed, and a muddy brown flocculent precipitate is formed, the quantity of which will depend on the quantity of colouring matter and albumen present. The red colouring matter of blood is always more or less mixed with albumen, and it is this principle which gives to a dried blood-stain on linen or cloth a well-marked stiffness. Stains from cochineal and the red colours of wine, flowers, and fruit, do not cause any stiffening of the fibre of the stained stuff, nor any appearance under the microscope at all resembling a dried coagulum of blood. 4. A solution of the red colouring matter of blood in water produces, with freshly made tincture of guaiacum, a reddish-white precipitate of the resin. On adding to this an ethereal solution of peroxide of hydrogen, a beautiful blue colour is more or less rapidly brought out. If a sufficient quantity of alcohol is added, the precipitate will be dissolved and a deep sapphire blue solution will result. Cochineal and other red colouring matters when thus treated give a reddish colour to the resin of the tincture of guaiacum, and
STAINS OF BLOOD. THEIR AGE OR DATE. 235

thereby undergo no change on the addition of peroxide of hydrogen. They are well marked and distinguished from blood. Whether the blood is new or old, whether concentrated or exceedingly diluted, this test produces the blue colouration. It produces the change better in a diluted than in a concentrated state. A drop of blood diffused through six ounces of water may be thus detected in one or two drachms of the mixture. Such are the chemical properties of blood, whether taken from the human body or from that of any warm red-blooded animal (mammalia).

Of the various red colouring matters extracted from vegetable and animal substances, there are none which to the experienced eye present the peculiar crimson red tint of blood, especially when the substance is examined in a good light by a low power of the microscope. When solutions of these red colouring matters are treated with ammonia, some, such as cochineal, logwood, and the colours of roots and woods, acquire a deep crimson tint, while others, such as the colouring matter of the rose and red colours of flowers and fruits, are changed to a blue or green. The red colours are not destroyed by a boiling temperature, and even when mixed with albumen, this principle is coagulated, but the red colouring matter remains unchanged. In the case of blood, the effect of heat is to destroy the colour entirely.

When these vegetable colours are found upon linen and similar stuffs, they present under the microscope the appearance of a uniform stain or dye, unlike blood in colour. There is no coagulum to be seen, and the stained stuff is not stiffened as it is by the serum of dried blood.

Stains of Blood on Linen and other Stuffs. Their Age or Date.—Supposing the stuff to be white, or nearly colourless, the spot of blood, if recent, is of a red colour; but it sooner or later becomes of a reddish-brown, or of a deep red-brown colour. The change of colour to a reddish-brown I have found to take place in warm weather in less than twenty-four hours. After a period of five or six days, it is scarcely possible to determine, from the appearance, the date of a stain even conjecturally. In a large stain of blood on linen, no change took place during a period of five years:—it had a reddish-brown colour at the end of six weeks, which it retained for the long period mentioned. Indeed, it is extremely difficult in any case, after the lapse of a week, to give an opinion as to the actual date of a stain. Upon coloured stuffs or dirty clothes, it is, of course, impossible to trace these physical changes in stains of blood,—on red-dyed stuffs the stain appears simply darker from the first, and in all cases the fibre of the stuff is more or less stiffened, as a result of the drying of the albumen associated with the red colouring matter. In examining an article of clothing, attention should be paid to the side of the stuff which has first received the stain: sometimes both sides are stained. The evidence derived from an observation of this kind may be occasionally of importance. An important case, involving the date of
blood-stains on a towel, is reported by Dr. Hofmann. (Eulenberg's 'Vierteljahrsschrift,' 1873, v. 2, p. 89).

The suspected stain should be first examined in a strong light, with a low power of the microscope. If caused by blood, it will not be a mere colouring of the fibres, but it will have a shining glossy appearance, and each fibre will be observed to be invested with a portion of dried coagulum or clot. In other cases, minute coagula or clots, presenting the appearance of dried jelly, will be seen in the meshes of the stained article of clothing. In certain lights the clots may appear of a dark-red colour, but by changing the light, bright translucent portions of a peculiar crimson tint will come into view. The crimson stain of blood is unlike that of any other red colouring matter, and when the stained portion presents the character of a glossy dry coagulum, the stain cannot be easily mistaken by a practised eye for one caused by any other red colouring matter. In fact the microscope puts the observer of a small stain in the same position as a non-professional person, who unheavitatingly forms his judgment from a large quantity of dried blood. Portions of kino over a dress may present occasionally the appearance of coagulated blood, but kino differs in colour and in chemical properties from blood. The microscopical observation of a suspected stain on linen, cotton, or woollen, however small, is generally sufficient to enable an expert to form an opinion either in the affirmative or negative. The application of chemical tests may be resorted to for confirmatory evidence when there is any doubt in the mind of the observer.

If the quantity of blood is small, the stained substance may be cut up and macerated in a porcelain capsule, with just enough water to keep it well moistened. After an hour it may be pressed, and a red-coloured liquid, in a state for testing, will be thus obtained. It may be objected that red stains resembling blood are occasionally found on linen and other stuffs, and may give rise to error. All such stains are either entirely insoluble in water or they are soluble and yield red-coloured liquids. If insoluble, they cannot be mistaken for blood-stains: if soluble, no mistake can arise provided the red liquid so obtained is submitted to the chemical tests above described. Blood-stains rendered insoluble in water by heat or some other cause must be tested by another method. When the stain is old the solution in water is very slowly obtained, and does not present the bright red colour of blood. In some cases if the stain is of very old standing, and has been much exposed to the atmosphere, water will have scarcely any solvent effect upon it, and it may be found impossible to obtain a red-coloured liquid even after twenty-four hours' maceration. At the most the water may acquire a pale brown or yellowish colour, but wholly unlike that imparted by blood. In such a case it is useless to add ammonia. We may, however, generally form a correct judgment by the microscopical appearance of the stain before wetting it, and by the guaiacum process. Water may dissolve sufficient albumen (or serum) to be-
come opaline by heat, or by the addition of nitric acid, although we may fail to obtain any evidence of the presence of corpuscles. From the results obtained by spectral analysis (post p. 247), it appears probable that acid and other vapours in the atmosphere affect blood-stains and alter their chemical properties. Where much coal is burnt, sulphurous acid may operate in this manner. Under other circumstances, when the quantity of blood diffused is moderately large, it may be detected by the process above-mentioned, after the lapse of a considerable time. I have thus detected the blood of the human body, and of the bullock, on cotton, linen, and flannel, after a lapse of three years. If the stuff is dyed, we should proceed to examine the stains found upon it by a similar process. The dye is commonly fixed, and is not soluble in water. Thus, then, in testing for blood we rely upon:—1. The solubility of the red colouring matter in water. 2. The negative action of ammonia. 3. The positive effect of heat in entirely coagulating and destroying the red colouring matter, and 4. The blue colour produced by guaiacum in the presence of peroxide of hydrogen.

There are red stains bearing a resemblance to blood, which are insoluble in water. These may be identified by their special characters. Among them are:—1. Certain red dyes, as madder, which, when fixed by a mordant, is not readily affected by ammonia. 2. Iron-moulds. These are of a reddish-brown colour, sometimes of a bright or orange red,—they are quite insoluble in water, but are easily dissolved by diluted hydrochloric acid, and on adding ferrocyanide of potassium to the hydrochloric solution, the presence of iron will be at once apparent. Care should be taken that the acid used for this purpose contains no iron. Iron-moulds are generally distinguished by their brown colour, and by the absence of all stiffening of the fibre, on the stained spot. 3. Red paint. Stains made with red paint containing peroxide of iron have been mistaken for blood. They may be easily known by digesting them in diluted hydrochloric acid, and applying to the solution the tests for iron. Like those produced by iron-moulds, they are quite insoluble in water, and therefore cannot be confounded with blood-stains. The same may be said of spots of the ammonio-nitrate of silver changed by light, which I have known to be mistaken for old stains of blood. The stuff on which the spots of blood are found may be itself stained with a red dye or colour, or it may be dyed with iron: in this case it will be necessary to test by the same process a piece of the coloured or stained portion, in order to furnish negative evidence that the suspected stains are due to blood. 4. Among soluble stains resembling those of blood in colour, are the spots produced by the juices of the mulberry, currant, gooseberry, and other red fruits. They may be sometimes recognised chemically, by dropping on them a weak solution of ammonia,—when the spot is turned either of a bluish olive-green or green colour. The red of cochineal is changed to a crimson on the addition of weak ammonia; but a spot of blood thus treated undergoes no change of colour.
from the addition of the alkali. Diluted acids brighten the red colours of fruit-stains, but they do not alter the colour of blood. A strong solution of chlorine bleaches the red colours from fruit stains, but when applied to a stain of blood it turns the red colouring matter of a dark olive-green colour and does not bleach it. They are not coloured blue by tincture of guaiacum and peroxide of hydrogen.

These changes of colour are only well observed on white stuffs. If the stain is on black cloth, the colour may be extracted by water and tested, or the following plan may be adopted:—If the stain is on black cloth, it is wetted, and after a time several layers of white blotting paper are firmly pressed upon it. The red colour is thus transferred to the paper, and may be tested by fresh tincture of guaiacum and peroxide of hydrogen. If the guaiacum alone is blued by contact, some method of corroboration must be adopted, since the red colour of blood has no action on this resin until after the addition of peroxide of hydrogen. If no red or reddish-brown colour is transmitted to the paper, the stain cannot be owing to blood. If the substance examined is colourless, it is useless to apply tests for blood, and if the stain produces no change of colour with a mixture of guaiacum and peroxide, it cannot be owing to blood. With these precautions the guaiacum process may be safely used, and by the aid of it, stains which have been washed for the purpose of obliteration may be detected, so long as the slightest indication of red colour remains in the washed fabric. The great use of the guaiacum process is in enabling the operator to distinguish the red colouring matter of blood from all other red colouring matters.

Detection of Blood on Weapons.—When recent, and on a polished instrument, stains of blood are easily recognised; but when of old standing, or on a rusty piece of metal, it is a matter of some difficulty to distinguish them from the stains produced by rust or other causes. If the stain is large and dry, a portion may be scraped off, and placed in a watch-glass with some distilled water,—the solution filtered to separate any oxide of iron, and then tested. If the water by simple maceration does not acquire a red or red-brown colour, the stain is not due to blood. If it acquires a red colour, the solution may be tested by the methods above described. Sometimes the stain appears on a dagger or knife either in the form of a thin yellowish or reddish film, or in rusty streaks. The dry matter is scraped into a small porcelain dish and a little water poured on it. If a red-coloured solution is obtained, this may be poured off and tested for blood. The residue, brought to dryness, may be treated with guaiacum and peroxide of hydrogen. The particles of blood are thus distinguished from those of iron rust by the small zones of blue colour formed around them. The rust is not thus affected. There is a remarkable resemblance to the stains of blood on metal, produced by the oxide or certain vegetable salts of iron. If the juice or pulp of lemon or orange is spread upon a steel blade, and is exposed to the air for a few days, the resemblance to
blood produced by the formation of citrate of iron is occasionally so strong that I have known well-informed surgeons to be completely deceived; they have pronounced the spurious stain to be blood. These stains, which owe their colour to citrate of iron, may be thus distinguished:—The substance is soluble in water, forming, when filtered, a yellowish-brown solution, totally different from the red colour of blood under the same circumstances. The solution undergoes no change of colour on the addition of ammonia. It is unchanged in colour, but may be partially coagulated at a boiling temperature, and it is at once identified as a salt of iron by giving a blue colour with the ferrocyanide of potassium.

It is not always easy to distinguish by sight a stain of blood on a weapon from a mark produced by iron-rust. When suspicion exists, marks are pronounced to be due to blood, which, under other circumstances, would have passed unnoticed. One source of difficulty is this: the iron-rust on an old knife is often mixed with some article of food or even with blood itself. We must here pursue the mode of examination above described to distinguish the rust from blood.

From the foregoing remarks, we may justly infer that the chemical analysis of suspected spots or stains on weapons and clothing is by no means an unimportant duty. If we cannot always obtain from these experiments affirmative evidence, they often furnish good negative proof, and thus tend to remove unjust suspicions against accused persons.

Arterial and Venous Blood.—It is not possible to distinguish arterial from venous blood by any physical or chemical characters, when it has been for some days effused, and is in a dry state upon articles of dress or furniture; but this, in medico-legal practice, is not often a subject of much importance, since there are few cases of severe wounds, either in the throat or other parts of the body, in which the two kinds of blood do not escape simultaneously. The most striking and apparent difference between them, when recently effused, is the colour; the arterial being of a bright scarlet, while the venous is of a dark red hue; but it is well known that the latter, when exposed to air for a short time, acquires a florid red or arterial colour; and the kinds of blood, when dried, cannot be distinguished chemically by any known criterion. If the coat, or other stuff, stained with blood, were of a dark colour, the liquid would be absorbed, and speedily lose its physical characters. Arterial blood contains more fibrin than venous, and coagulates more firmly. The microscope shows no appreciable difference in the blood-corpuscles, and chemistry does not enable us to apply any test so as to make a satisfactory distinction between them. In this deficiency of microscopical and chemical evidence, an attempt has been made to establish a distinction by noticing the physical appearance of the blood-stains. Thus, it is alleged, the arterial blood will be indicated by its being sprinkled over surfaces upon which it has fallen, while the venous blood is always poured out in a full
stream. In most wounds which prove fatal by haemorrhage, the blood is poured out simultaneously from arteries and veins. The sprinkled appearance of the blood, when it exists, will, ceteris paribus, create a strong presumption that it was poured out from a living body—for after the heart has ceased to act, the arteries lose the power of throwing out the blood in jets. The sprinkling is usually observed when the wounded artery is small, and the blood is effused at a distance. This is a fact which a medical jurist should not overlook, although, for the reasons stated, too great a reliance must not be placed on it. The spots of blood, if thrown out from a living blood-vessel, speedily consolidate, and the fibrin, with the greater portion of the colouring matter, is found of a deep red colour at the lower part of the spot, the upper portion being of a pale red. The lower and thicker part has commonly a shining lustre, as if gummed, when the spot is recent, and when it has been effused upon a non-absorbent surface.

When blood falls upon porous articles of clothing, as linen or cotton, it is absorbed, and produces a dull stain. In dark-coloured articles of dress, it is sometimes difficult by daylight to perceive these stains. The part appears stiffened, and has a dull red-brown colour, which is sometimes more perceptible when seen by the reflection of the light of a candle. In trusting to the coagulation of the sprinkled blood as evidence of its escape from a living vessel, it must be remembered that three hours may elapse before it coagulates in the healthy body after death. Hence, blood which has escaped from a recently dead body, although it would not be found diffused as if by spurting, might, in so far as coagulation is concerned, assume the appearance of having been effused from a living body.

In spite of the great advances made in the construction and use of the microscope, there is no method known by which the blood of a man can be distinguished from that of a woman, or the blood of a child from that of an adult. The blood of a child at birth contains less fibrin, and forms a thinner and softer coagulum than that of the adult. A medico-legal question has arisen, on more than one occasion, whether there were any means of distinguishing menstrual blood from that of the body generally. This liquid contains fibrin although the proportion is less than in venous or arterial blood, red colouring matter, and the other constituents of blood. The only differences noticed are of an accidental kind: 1st, that it is acid, owing to its admixture with vaginal mucus; and 2nd, that under the microscope it is mixed with epithelial scales, which it has derived from the mucous membrane in its passage through the vagina. (Donné, 'Cours de Microscopie,' p. 139.) In the bodies of women who had died suddenly while menstruating, Dr. Webber found coagulated blood upon the uterine mucous membrane. If, therefore, menstrual blood does not coagulate, it is simply because it has already coagulated within the uterine cavity, and cannot do so again; it is more fluid than ordinary blood, because, during its trickling descent, it becomes mixed with watery uterine and vaginal mucus. ('Schmidt's
BLOOD-STAINS. MICROSCOPICAL EVIDENCE.

Jahrb. '1847, 7, 139.) A case occurred in France, which induced the Minister of Justice to refer the consideration of this question to the Academy of Medicine. The reporters, MM. Adelon, Moreau, and Le Canu, came to the conclusion that there were no means of distinguishing menstrual blood dried on clothing from that which might be met with in a case of infanticide or abortion. ('Ann. d'Hyg.' 1846, 1, 181.)

Microscopical Evidence. Blood-corpuscles.—Hitherto the microscope has been referred to as an aid to the examiner in drawing a distinction between the appearances presented by blood-stains in the dry state, and those caused by other substances. Its use, however, extends much beyond this. The spots or stains may be so small as not to admit of removal, for the purpose of applying chemical tests. If an examination of the dry stain with a low power (20 or 30 diameters) justifies further proceedings, we may then employ the microscope for the purpose of detecting those peculiar bodies on which the colour of red blood is known to depend. The red colouring matter of blood consists of minute coloured cells or corpuscles, floating in a clear liquid (serum). The engraving (Fig. 42) shows the form which the corpuscle presents in the class mammalia. A represents the circular form, when seen in front, the shaded portion being a depression which under a certain disposition of the light assumes the appearance of a solid and opaque nucleus; b represents the corpuscle seen edgewise, in which case it presents somewhat the outline of a biconcave lens. It owes this form to the central depression on each face. Other red colouring matters, such as madder, cochineal, or lac, do not owe their colour to independent cells or corpuscles. Hence, if corpuscles, of the form and size of those found in mammalian blood, are visible under the microscope there can be no doubt that the liquid is blood. Such evidence can, however, be safely received only from one who has been accustomed to the use of this instrument, and to the examination of blood. In order to examine the suspected substance for corpuscles, the best plan of proceeding, when the particles of coagulum are very small, is to breathe several times on a glass slide, then place the small fragments of coagulum on the slide, and again breathe over them. A slip of thin glass may then be laid upon them. If they consist of blood a red margin will soon appear, and in the fluid portion, by the aid of a magnifying power of from 300 to 500 diameters, some of the corpuscles of the blood may be recognised. They are seldom so perfectly spherical as in the fresh state, and they appear small, and frequently shrunk or corrugated. In some cases, only fragments of the envelopes can be seen. The condensed moisture of the breath may serve the purpose of water, in breaking up the small portions of dried blood, without destroying the corpuscles by too much dilution.
If the suspected clot is in larger quantity, it may be removed from the stuff and placed to macerate in one or two drops of water on a glass slide. It should be covered with thin glass, in order to prevent rapid evaporation. This method of extracting the corpuscles has frequently failed, owing to the quantity of water employed having been too large. Under these circumstances, the corpuscles are distended, become of a globular form, paler, and are finally destroyed, while the water simply becomes coloured. It is by no means easy in all cases to obtain from dry coagula clear and distinct evidence of the presence of these corpuscles, especially when the blood is old. In drying, the blood-cells lose their form, and they do not readily resume it when again moistened. Unless they are seen after a short maceration in a very small quantity of water, it is probable they will not be seen at all. To accelerate their separation various chemical liquids have been recommended. Thus strong solutions of sulphate of soda, chloride of sodium, and iodide of potassium, have been employed as fluid media for breaking up the dried clots of blood. There are disadvantages attending the use of these; and after many experiments, I have found that a mixture of glycerine and water may be employed in place of pure water. The proportions which are most convenient are, one part by measure of glycerine, to three parts by measure of distilled water. A solution of arsensious acid, in the proportion of four grains to an ounce of distilled water, as recommended by Dr. Kunze, is also a rapid solvent of the coagula. When this is used, the examination should take place as soon as the liquid begins to be coloured at the margin, or the corpuscles may be destroyed, and only fragments of their envelopes seen.

In reference to stains on clothing, if they present any appearance of dry coagula, these should be carefully scraped off, and treated in the manner above described. If no portions of solid coagula can be procured, there will be but little hope of obtaining evidence of the presence of corpuscles in the suspected stain. The stained portion may be cut out and macerated in a small quantity of water. Under these circumstances, the corpuscles may be sometimes seen aggregated, or in groups, in the fibres of the stuff, as in the subjoined engraving (Fig. 43) in which the stain of blood was on a shirt. (Briand’s ‘Manuel de Méd. Lég.’ p. 747, 1863.)

The annexed illustrations (Figs. 44 and 45) show the appearances presented by blood-corpuscles, when examined by a power of about 300 diameters, and under different methods of treatment. Fig. 44 represents the appearance of a drop of healthy human blood. The red blood-cells are partly detached, partly united in rolls, and partly in irregular clusters. In the vacant spaces between them there are delicate threads of fibrin. The outlines of the blood-cells are rendered, in some instances, indistinct, by reason of this web of fibrin above them.
In Fig. 45 the corpuscles are seen free from fibrin, and in groups as well as singly. Only a small portion of those which were in the field have been engraved. The shaded bodies are the white cor-

puscles of the blood; they are larger but less numerous, not so well defined in form, and they present an irregularity of surface, by which they may be distinguished from the coloured blood-cells.

Some practice in the use of the microscope is required to enable a medical man to arrive at a correct conclusion in these investigations. Granules of starch and the spores of vegetables might be mistaken for blood corpuscles. Erdmann states that in examining some articles of clothing in a case of suspected murder, he thought he had found blood-globules in the liquid which he procured, but he found on further inspection that they consisted of the red-coloured spores of an alga known as the *porphyridium cruentum.* (‘Ed. Med. Journal,’ Oct. 1862, p. 370.) The size of the bodies as well as their shape will sometimes aid the observer. The blood-corpuscles have a definite size:—the bodies seen under the microscope may be either too large or too small to fall within the exceptional range of size. Hence the micrometer is a necessary adjunct to the instrument. Granules of starch would be identified by the blue colour imparted by iodine.

Blood of Man and Animals.—When marks of blood have been detected on the dress of an accused person, it is by no means unusual to find these marks accounted for by his having been engaged in killing a pig, bullock, or sheep, or in handling fish or dead game. Of course every allowance must be made for a statement like this, which can be proved or disproved only by circumstances; but the question here arises whether we possess any certain means of distinguishing the blood of a human being from that of an animal.

There are no chemical differences between the blood of man and animals. The red colouring matter, the albumen and fibrin, are the
same, and chemical reagents produce on them precisely similar results. The microscopical differences refer to the shape and size of the corpuscles. 1. With respect to shape. In all animals with red blood, the globules have a disc-like or flattened form. In the mammalia, excepting the camel tribe, the outline of the disc is circular (Fig. 43 a, p. 241). In this tribe, and in birds, fishes, and reptiles, the corpuscles have the form of a lengthened ellipse or oval. In the three last-mentioned classes of animals they have a central nucleus, which gives to them an apparent prominence in the centre. The blood corpuscles of all the mammalia, including those of the camel tribe, have no central nucleus, and they appear depressed in the centre. The microscope therefore enables an observer to distinguish the blood of birds, fishes, and reptiles from that of a human being; and this may be of great importance as evidence.

In the case of Reg. v. Libbey, a case of child-murder tried at the Cornwall Summer Assizes, 1871, the prisoner, who was indicted for the murder of her child, alleged that some blood found on certain articles of clothing was fowl's blood: but Mr. Hudson, the medical witness, was able to prove that this statement was untrue. He examined the stains by the microscope, and found that the corpuscles had not the oval form of those in the blood of a bird; but he properly declined to say whether they were human or animal. This evidence tended to prove the falsehood of the defence.

The chief microscopical distinction between the blood of man and domestic animals, consist in a minute difference in the diameter of the corpuscles. This, however, is only an average difference; for the corpuscles are found of different sizes in the blood of the same animal. In making use of this criterion, it would be necessary to rely upon the size of the majority of the corpuscles seen in a given area, and under the same power of the microscope. It is a curious fact that their size bears no relation to the size of the animal. Thus, in the horse, ox, ass, cat, mouse, pig, and bat, they are, on an average, nearly of the same size; the difference is so slight as to be practically inappreciable. In these animals they are smaller than in man and in several of the mammalia. The corpuscles in man, the dog, the rabbit, and the hare, are of nearly the same size. In the blood of the sheep and goat, they are smaller than in other mammalia. The size of the corpuscles bears no proportion to the age of the animal: thus in the blood of the human fetus, they are to be found as large as in that of the adult.

The measured diameter of the corpuscles in human blood varies, according to Gulliver, from 1-2000th to 1-4000th of an inch, the average size in both sexes being 1-3200th of an inch. From an examination of numerous specimens of fresh human blood, I have found the average diameter of the globules to be the 1-3500th part of an inch, the maximum size being 1-3000th, and the minimum 1-5000th of an inch. The corpuscles of human blood are larger than those of domestic animals. The subjoined measurements, in fractions of an inch, are those given by Mr. Gulliver, excepting the figures in brackets, which are from my own micrometrical observations. The
AND RELATIVE SIZE IN MAN AND ANIMALS.

The average diameter is, in the dog, 1-3540th (max. 1-4000th, min. 1-6000th)—in the hare, 1-3607th (1-4000th; max. 1-2000th, min. 1-8000th), in the mouse, 1-3814th,—in the ass, 1-4000th—(rabbit, 1-4000th)—in the pig, 1-4230th (1-4250th),—in the ox, 1-4267th,—(in the cow, 1-4000th to 1-4200th),—in the cat, 1-4400th,—in the horse, 1-4600th (1-5000th),—in the sheep, 1-5300th (1-5333rd to 1-6000th),—in the goat, 1-6366th. These measurements apply to recent blood, which has not been allowed to become dry on animal and vegetable stuffs. In this case a distinction might be made between the blood of a human being and a sheep or goat. With respect to the dog, hare, and rabbit it would be, even under these favourable circumstances, a matter of some difficulty. When blood is dried on clothing, and it is necessary to extract the corpuscles by means of a liquid of a different nature from the serum, we cannot rely on slight fractional differences, since we cannot be sure that the corpuscles, after having been once dried, will ever reacquire in a foreign liquid, the exact size which they had in serum. Medical evidence must therefore be based, in such cases, on mere speculation. (See 'Guy's Hospital Reports,' vol. 7, pt. 2, 1851.)

In reference to this question, therefore, it must be regarded as still unsolved. There are no certain methods of distinguishing microscopically or chemically, the blood of a human being from that of an animal, when it has been once dried on an article of clothing. The extent to which a medical witness is justified in going on trials for murder, on which this important question arises, appears to me to be this:—the size and shape of the corpuscles may or may not be consistent with their being the corpuscles of human blood, but it is impossible, in the present state of science, to affirm that they are not those of some domestic animal, belonging to the class mammalia. For information on this subject, see Ritter's Prize Essay, 'Über die Ermittelung der Blutfechen in Kriminalfällen,' Wurzberg, 1854, and Friedberg's 'Histologie des Blutes,' Berlin, 1852. These authors affirm, from their observations, that it is not possible to distinguish by the microscope human from animal blood in criminal cases. Evidence based upon such varying averages as those above given, must be treated as speculative and unsafe.

This question has been more recently examined for judicial purposes by a committee appointed by the Russian Government ('Anleitung zur Untersuchung Verdächtiger Flecke für Ärzte und Juristen,' St. Petersburg, 1871), and the conclusion arrived at is the same as that here given, i.e., neither by the microscope, the spectroscope, nor any other known process, is it possible to make a clear distinction between the blood of man and animals, when the blood has once passed into a dry condition (Op. cit. p. 36).

Blood-crystals. Harmatin.—Another method for the microscopical detection of blood has been, of late years, suggested by some German medical jurists. It consists in procuring crystals from the red colouring matter of blood. Lehmann and Kunze ascertained that all red blood is capable of crystallisation, from whatever animal or organ it may have been taken. Lehmann thus describes his method
of procuring these haematin crystals. A drop of blood which has been kept a day, is allowed to evaporate on a glass slide; a drop of distilled water is then added, and the whole is covered with a slip of thin glass. After a time, when the water has to some extent evaporated, regular red-coloured crystals, of various sizes and forms, become visible under the microscope.

The following plan may be adopted for procuring these so-called haematin crystals:—Having removed a portion of the dried coagulum of blood, it should be powdered and boiled with glacial acetic acid in a small porcelain cup, until a quantity of colouring matter has obviously been dissolved. The acetic acid, under these circumstances, acquires a dark-redish, or reddish-brown colour. A few drops of the clear liquid, evaporated on a slide, will leave minute red-coloured crystalline-looking masses. They are plainly distinguishable from the cubic crystals of common salt, naturally contained in the blood, as well as from the phosphates. They vary much in size and shape, but generally assume the form of slender prisms with irregular rhombic terminations. (See Fig. 46.) Haematin crystals, as they were thus procured from human blood, were found to have an average length of 1-2250th of an inch, and a width of 1-9000th of an inch. Those obtained from sheep's blood were smaller than those obtained from the blood of man and of the bullock, but the resemblance is still so great, that it would be obviously impossible to base any distinction between human and animal blood upon such observations. The results, however, show that the colouring matter of blood thus treated, may be converted into quasi-crystalline forms, still preserving its red colour; and that microscopical evidence of blood may be thus obtained, in cases in which the blood-corpuscles have not been successfully extracted by liquids.

Similar experiments performed on the colouring matters of cochineal, logwood, and kino, gave the following results:—On treating the first with acetic acid, a pink-red colour, differing from that of blood, was produced, while the extracts of logwood and kino gave a yellowish-brown colour with this acid. In no case, on evaporating the acid solutions, were any crystals resembling those of haematine or chloride of sodium obtained.

Various opinions have been entertained respecting these blood crystals and the mode of producing them. Teichmann who first announced this crystallizable property, added chloride of sodium to the
acetic solution of the colouring matter. He thus imparted crystal-
lizable matter to the liquid itself, and destroyed the collateral proof
sometimes obtainable, namely, the detection of the cubic crystals of
chloride of sodium, which are naturally contained in the blood. The
results obtained by Teichmann's process are called by some haemin
crystals, the term haematin being applied to certain spicular crystals
obtained by agitating blood with ether. Haematoidin crystals are
of a rhomboidal shape, and have been chiefly found, it is said, in old

Spectral analysis. Spectral test.—In the previous edition of this
work the existence of a peculiar spectrum for blood was briefly re-
ferred to. Since that time many researches on this subject have been
made by Mr. Sorby of Sheffield and other observers, and spectral
analysis applied to blood, has been made the subject of evidence on
various trials for murder. The great advantage of this optical pro-
cess is that it admits of the examination of blood without in any way
interfering with the subsequent application of the chemical tests al-
ready described. We simply analyze the light as it traverses a solu-
tion of the red colouring matter, and with a proper spectral eye-piece
attached to a microscope, we notice whether the coloured spectrum
has undergone any change. If the red liquid owes its colour to re-
cent or oxidized blood, two dark absorption-bands will be seen break-
ing the continuity of the coloured spectrum. These are situated
respectively near the junction of the yellow with the green rays, and
in the middle of the green rays. If the blood is quite recent and of a
bright red colour (scarlet haematine, or crurorine) the two absorp-
tion-bands are distinct and well defined. A good light, either artificial or
daylight, is required; the coloured liquid should be clear and of suf-
ficient intensity, and the spectrum apparatus properly adjusted. The
blood may be placed in a reduction-tube, or in a glass cell contrived
for the purpose. The spectral eye-piece allows of two tubes being
examined at once, and it is desirable to have a specimen of blood
mounted, for comparing the actual spectrum of blood with that of the
suspected liquid.

In the course of an hour, in warm weather, and after a day or two
in cold weather, the blood in the tube undergoes a remarkable change.
It loses its scarlet and acquires a purple colour (purple haematine).
In this state the two bands appear blended, and one broad black
band only is seen. The blood appears to undergo deoxidation, for
on removing it and shaking it with air in the tube, it becomes again
bright, and the two black bands reappear. Blood which had been
kept one year sealed up gave one broad black band, covering partly
the orange, the whole of the yellow, and a portion of the green rays.
There was also a band crossing the red rays of the spectrum.

When the blood by long exposure to the air has undergone che-
maryal changes, it ceases to give any well-defined absorption-bands.
In a sample of sheep's blood which had been dried and kept in a
bottle about twelve years, the solution appeared to split the spectrum
into four nearly equal parts: red—one black absorption-band
(occu-
BLOOD-STAINS. SPECTRAL ANALYSIS.

pying the orange and yellow, as well as part of the green spaces),
green and blue—the violet rays, as in most of the blood spectra,
being absorbed.

There can be no doubt that in the hands of a competent person,
and one skilled in micro-spectral observations, this optical method
will enable him to discover the minutest trace of blood, provided any
red colouring matter remains. Thus Mr. Sorby states that a spot of
blood only one-tenth of an inch in diameter, or a quantity of the red
colouring matter amounting to no more than the 1,000th part of a
grain, is sufficient to give conclusive evidence of its presence by spec-
tral analysis: Mr. Sorby thus detected blood in the form of de-
oxidized haematin on the rusty blade of a knife with which the
murder of Mrs. Gardner was committed in 1862, after the lapse
of ten years. Blood-stains which have been washed in water, and
blood which has even been boiled or heated to 212°, may be thus
detected. In the latter case ammonia, with the aid of a gentle heat,
should be employed to dissolve the matters rendered insoluble by
boiling. Spectral analysis does not enable us to make any distinc-
tion beyond that of recent and old blood, and this distinction cannot
be so drawn as to enable us to fix a specific or even an approximate
date. Certain accidental conditions may rapidly produce on blood
the same effect as exposure to air for a long period of time. It in-
dicates no distinction in the blood of the sexes, of the fetus and
adult, or in the blood of man and animals. As a corroborative pro-
cess it furnishes most valuable and trustworthy evidence, and there
is no case in which blood admits of a chemical examination in which
spectral analysis does not admit of a safe application before the chem-
ical tests are applied.

In a case of alleged murder, which was the subject of investigation
in January 1866, some faint reddish-coloured stains on grey woollen
cloth, visible only in a strong light, were suspected to have been
caused by blood. Other stains on an overcoat worn by the accused
person were also attributed to blood. Mr. Sorby examined some of
the stains by his optical process, and he obtained a distinct spectrum
characteristic of blood. I examined microscopically and chemically
other stained portions of the grey woollen cloth, and came to the
same conclusion as Mr. Sorby, namely, that the faint reddish-coloured
stains had been caused by blood. Our processes, although widely
different, agreed in the results, and it may be mentioned that from
the fact of the blood-stains having been wetted and sponged, a more
difficult case for investigation could hardly have presented itself.
Our methods of examination also agreed in the result that some sus-
ppected stains or marks on the overcoat were not caused by blood.
The date of a blood-stain cannot however be determined with any
certainty by this process, unless the conditions under which it has
been kept are known, and it is not possible to distinguish by it ani-
mal from human blood. (The reader will find a full description of
this ingenious application of optics to legal medicine by Mr. Sorby,
in the 'Quarterly Journal of Science,' No. 6, April 1865, p. 205, and
in the 'Popular Science Review,' Jan. 1866, p. 66.) A report on
the comparative value of the modern methods of examining bloodstains has been recently given by MM. Mialhe, Mayet, Lefort, and Cornil (see ‘Ann. d’Hyg.’ 1873, 2, p. 191), and another issued by the Russian Government in 1871 (‘Anleitung zur Untersuchung Verdächtiger Flecke für Aerzte und Juristen.’ St. Petersburg, 1871). In the report of a case which recently occurred to Dr. Hofmann, the reader will find a full account of the application of the spectral, microscopical, and chemical processes for detecting blood. (Eulenberg’s ‘Vierteljahrs.’ 1873, 2, pp. 102-113.)

CHAPTER 27.

THE CAUSE OF DEATH FROM WOUNDS.—WOUNDS DIRECTLY OR INDIRECTLY FATAL.—DEATH FROM HEMORRHAGE.—INTERNAL BLEEDING.—DEATH FROM MECHANICAL INJURY.—FROM SHOCK.—DEATH FROM NUMEROUS PERSONAL INJURIES IRRESPECTIVE OF ANY MORTAL WOUND.

It is important for a medical witness to bear in mind that in all cases of wounds criminally inflicted, the cause of death must be certain. No man is ever convicted upon mere medical probability. In general, there is only one real cause of death, although other circumstances may have assisted in bringing about a fatal result. Thus, a person cannot die of disease in the bowels and a stab in the chest at the same time, nor of apoplexy from disease and compression of the spinal marrow at the same instant. Hence it is our duty, when several apparent causes for death exist, to determine which was the real cause; and in stating it to the Court, to be prepared to offer our reasons for this opinion. In most cases of local injury, when a person dies speedily, there will be no great trouble in settling whether disease or the injury was the cause. A difficulty may, however, exist when a person has recovered from the first effects of a wound, and has subsequently died. Besides, there may be cases in which the cause of death, in spite of the most careful deliberation, will be still obscure; or sometimes it may happen that the death of a person appears to be as much dependent on bodily disease as on an injury proved to have been received at the time he was labouring under disease. How is an opinion to be expressed in such a case? The course which I apprehend a medical witness ought to pursue, provided he has duly deliberated on the circumstances before he appears in Court, and his mind is equally balanced between the two causes, is to state at once his doubt to the jury without circumlocution, and not allow it to be extracted from him in cross-examination. It is the hesitation to assign a satisfactory cause, or the assigning of many causes for death, that gives such advantage to a prisoner’s case, even when the general evidence is entirely against him. Occasionally many causes of death are assigned by a medical witness, among which some have a tendency to exculpate, and others to inculpate
an accused person in a greater or less degree, and it is left to the
jury to select from the number, one upon which to found a verdict.
In a case of this kind an acquittal is commonly obtained.

Wounds directly or indirectly fatal.—A wound may cause death
either directly or indirectly. A wound operates as a direct cause of
death when the wounded person dies either immediately or very
soon after its infliction, and there is no other cause internally or
externally to account for death. In wounds which cause death in-
directly, it is assumed that the person survives for a certain period,
and that the wound is followed by inflammation, suppuration, py-
emia, gangrene, tetanus, erysipelas, or some other mortal disease
which is a direct, and not an unusual consequence of the injury.
Under this head may be also arranged all those cases which prove
fatal by reason of surgical operations rendered imperatively neces-
sary for the treatment of an injury—presuming that these operations
have been performed with ordinary skill and care. We shall for the
present consider only the direct causes of death in cases of wounds.
They are three in number:—1. Hemorrhage, or loss of blood. 2.
Great mechanical injury done to an organ important to life. 3. Shock,
or concussion, affecting the brain or spinal marrow, whereby the
functions of one or more vital organs are arrested, sometimes with
but slight injury to the part struck or wounded. From either of
these causes, a wounded person may die immediately or within a
few minutes.

1. Death from hemorrhage.—Loss of blood operates by producing
fetal syncope (p. 40). A quantity of blood escaping from a vessel,
although insufficient to cause death by affecting the heart and circu-
lation, may readily destroy life by disturbing the functions of the
organ or part into which it is effused. Thus, a small quantity effused
in or upon the substance of the brain, or at its base, may prove
fatal by inducing fatal compression; and again, if, in a case of
wounded throat, blood should flow into the windpipe, it may cause
death by asphyxia—i.e., by stopping the respiratory process (p. 40).
In these cases it is obvious that the blood acts mechanically; and
in respect to the last condition a medical man, unless circumspection
is used, may involve himself in a charge of malapraxis. If he allows
the wound to remain open, the wounded person may die through
hemorrhage—if he closes it too soon, he may die through suffoca-
tion; and, in either case, the counsel for a prisoner will not fail to
take advantage of a plausible objection of this kind. In wounds of
the chest, involving the heart and lungs, death is frequently due
not so much to the actual quantity of blood effused, as to the pres-
sure which it produces upon these organs. A few ounces effused
in the cavity of the membrane including the heart (pericardium),
will entirely arrest the action of this organ.

The absolute quantity of blood required to be lost in order to
prove fatal, will, of course, vary according to numerous circum-
cstances. The young, the aged, and those who are labouring under in-
sanity or disease, will perish sooner from loss of blood than others
who are healthy and vigorous. Women, ceteris paribus, are more speedily destroyed by bleeding than men. Infants are liable to die from this cause, as a result of slight wounds. An infant has been known to bleed to death from the bite of a single leech, or from the simple operation of lancing the gums. Even the healthy and vigorous, when their vital powers have been depressed by maltreatment or by brutal violence, will sink under the loss of a comparatively small quantity of blood. ('Watson on Homicide,' p. 90.) A medical jurist must not forget that some persons have a predisposition to excessive bleeding from slight injuries; and this condition is often hereditary. The slightest wound or puncture—the bite of a leech or the extraction of a tooth—will be attended with a loss of blood which cannot be arrested, and which will slowly lead to death by exhaustion. Cases have been frequently recorded in our medical journals of fatal haemorrhage following the extraction of teeth, when there had been previously nothing to indicate the probable occurrence of death from so trivial a cause. Such cases are without difficulty detected; since a surgeon may always infer, from the part injured and the extent of the injury, whether the bleeding is likely to be copious or not. When a person bleeds to death from what would, under common circumstances, be a simple wound, the admission of this fact may in certain cases lessen the responsibility of an accused party.

A sudden loss of blood has a much more serious consequence than the same quantity lost slowly. A person may fall into a fatal syncope from a quantity of blood lost in a few seconds, which he would have been able to bear without sinking had it escaped slowly. This is the reason why the wound of an artery proves so much more rapidly fatal than that of a vein. Death speedily follows the wound of a large artery like the carotid; but it takes place with equal certainty, although more slowly, from wounds of smaller arteries. In a case in which one of the intercostal arteries was wounded by a small shot, haemorrhage caused death in thirty-eight hours. The loss of blood which follows the division of the smaller branches of the external carotid artery, is often sufficient to destroy life, unless timely assistance be rendered. If a wound is in a vascular part, although no vessel of any importance be divided, the person may die from bleeding. It is difficult to say what quantity of blood should be lost, in order that a wound may prove fatal. The whole quantity contained in the body of an adult is calculated at about one-fifth of its weight—i.e., about thirty pounds; of this, one-fourth is considered to be arterial, and the remaining three-fourths are venous blood. Some physiologists have estimated the proportion as one-eighth of the weight of the body. (‘Med. Times and Gaz.’ Aug. 28, 1858, p. 232.) According to Mr. Watson, the loss of from five to eight pounds is sufficient to prove fatal to adults. But while this may be near the truth, many persons will die from a much smaller quantity; the rapidity with which the effusion takes place having a considerable influence, as well as the age, sex, and bodily condition.
232
WOUNDS. INTERNAL HEMORRHAGE.

of the wounded person. It has been found, by experiment, that a
dog cannot bear the loss of more blood than is equivalent to one-
twelfth part of the weight of its body.

Internal hemorrhage.—Hemorrhage may prove fatal, although
the blood does not visibly escape from the body. In incised wounds,
the flow externally is commonly abundant; but in contused, punc-
tured, and gunshot wounds, the effusion may take place internally
and rapidly cause death. In severe contusions, or contused wounds,
involving highly vascular parts, the effusion may go on to an extent
to prove fatal, either in the cavities of the body or throughout the
cellular membrane and parts adjacent; many pounds of blood may
thus be slowly or rapidly effused. The most fatal internal hemor-
rhages are those which follow ruptures of the organs from violence
or disease. Ruptures of the heart, lungs, liver, and kidneys, have
thus caused death. In November 1864, a man who had been run
over was brought to Guy's Hospital. He complained of pain in the
back, but there were no symptoms of severe injury, and no marks
of violence were seen on the skin of the back. He left the hospital
and walked with some assistance to his home. A few hours after-
wards he was found dead in bed. On inspection there was a large
quantity of blood effused in the abdomen. This had proceeded from
one kidney, which had been ruptured transversely through its whole
substance. In these cases the bleeding is not necessarily imme-
diate; but slight muscular exertion may increase it and accelerate
death. In death from severe flagellation, blood may be effused in
large quantity beneath the skin and among the muscles; this effusion
will operate as fatally as if it had flowed from an open wound.

The means of ascertaining whether a person has died from bleed-
ing by an open wound are these: Unless the wound is situated in a
vascular part we shall find the vessel or vessels from which the blood
has issued, divided; the neighbouring vessels empty, and the body
more or less pallid; although this last condition is of course liable
to be met with in certain cases of disease, as also under copious
venesection—points easily determined by an examination. The
blood will commonly be found more or less clotted or coagulated
on those surfaces on which it has fallen. If, with these signs, there
is an absence of disease likely to prove rapidly fatal, and no other
probable cause of death is apparent, it may be fairly referred to loss
of blood. This opinion may, however, be materially modified in
reference to open wounds, by the fact of the body not being seen
on the spot where the injury was actually inflicted—by the wound
having been sponged—the blood removed by washing, and all traces
of bleeding destroyed. Under these circumstances, the case must
in a great measure be made out by presumptive proof; and here a
medical witness may have the duty thrown upon him of examining
articles of dress, furniture, or weapons, for marks or stains of blood.
It must not be supposed that all the blood met with round a wounded
dead body, or in a cavity of the body, was actually effused during
life. As soon as the heart's action ceases, the arteries pour out no
more; but the blood, so long as it remains liquid, i.e., from four to eight or ten hours, and the warmth of the body is retained, continues to drain from the divided veins and smaller vessels. The quantity thus lost, however, is not considerable, unless the veins implicated are large, or the part is highly vascular, i.e., full of veins or small vessels.

2. Death from great mechanical injury done to a vital organ.—We have instances of this becoming a direct cause of death in the crushing of the heart, lungs, or brain, by any heavy body passing over or falling on the cavities, as in railway accidents. The severe mechanical injury is sometimes accompanied by a considerable effusion of blood, so that the person really dies from hemorrhage; but in other instances the quantity of blood lost is inconsiderable, and the fatal effects may be referred to shock to the nervous system. Sometimes a slight amount of violence may prove suddenly fatal. These are, however, to be regarded as exceptional instances.

3. Death from shock.—This is sometimes a direct cause of death under the infliction of external violence; and in this case life is destroyed without the injury being to all appearance sufficient to account for so speedily fatal a result. Mr. Savory has suggested that death from shock is nothing more than death from temporary exhaustion of nerve-force, the result of a violent, sudden, and excessive expenditure of it. (‘Lectures on Life and Death,’ p. 171.) Whatever theory may be adopted to explain it, there is no medical doubt that a person may die from what is termed shock, without any marks of severe injury being discovered on his body after death. We have examples of this mode of death in accidents from lightning, or from severe burns or scalds, in which the local injury is often far from sufficient to explain the rapidly fatal consequences. As instances of this form of death from violence, may be also cited those cases in which a person has been suddenly killed by a blow upon the upper part of the abdomen or on the pit of the stomach, which is supposed to operate by producing a fatal impression on the nerves and nerve-ganglia of the cardiac plexus. Whether this be or be not the true explanation, it is admitted by experienced surgeons that a person may die from so simple a cause without any mark of a bruise externally, or physical injury internally to account for death. On the skin there may be some abrasion or slight discolouration; but as it has been elsewhere stated these are neither constant nor necessary accompaniments of a blow. Concussion of the brain, unattended by visible mechanical injury, furnishes another example of this kind of death. A man receives a severe blow on the head; he falls dead on the spot, or becomes senseless and dies in a few hours. On an inspection, there may be merely the mark of a bruise on the scalp; in the brain there may be no rupture of vessels or laceration of substance, and all the other organs of the body may be found healthy. In certain railway accidents persons have died under somewhat similar circumstances. There has been no physical indication of a mortal injury, and no cause apparent to account for
death. This can be referred only to the shock or violent impression which the nervous system has sustained from the blow or violence—an impression which the vital powers were wholly unable to counteract or resist. A medical witness must give his evidence with caution in such cases; since it is the custom to rely in the defence upon the absence of any visible mortal wound or physical injury to account for death, as a proof that no injury was done—a principle which, if once unrestrictedly admitted, would leave a larger number of deaths, undoubtedly occurring from violence, wholly unexplained.

There is another form of shock, which is of some importance in medical jurisprudence. A person may have received many injuries as by blows or stripes, not one of which, taken alone, could, in medical language, be termed mortal; and yet he may die directly from the effects of the violence, either on the spot, or very soon afterwards. In the absence of any large effusion of blood beneath the skin, death is commonly referred to exhaustion, but this is only another mode of expression: the exhaustion is itself dependent on a fatal influence or impression produced on the nervous system. A prize-fighter, after having sustained during many rounds, numerous blows on the body, may either at or after the fight, sink and die exhausted. His body may present marks of bruises, or even lacerated wounds, but there may be no internal changes to account for death. In common language, there is not a single injury which can be termed mortal; and yet, supposing him to have had good health previously to the fight, and all marks of disease indicative of sudden death to be absent, it is impossible not to refer his death to the direct effect of the violence. It is a well-ascertained medical fact, that a number of injuries, each comparatively slight, are as capable of operating fatally, as any single wound whereby some blood-vessel or organ important to life is directly affected. Age, sex, constitution, and a previous state of health or disease, may accelerate or retard the fatal consequences.

From these considerations, it is obviously unreasonable to expect that in every case of death from violence or maltreatment there must be some specific and visible mortal injury to account for this event. When the circumstances accompanying death are unknown, a medical opinion should certainly be expressed with caution; but if we are informed that the deceased was in ordinary health and vigour previous to the infliction of the violence, and there is no morbid cause to account for his sudden illness and death, there is no reason why we should hesitate in referring death to the effects of a number of injuries. Among non-professional persons an unfounded prejudice exists that no person can die from violence unless there be some distinctly mortal wound actually inflicted on the body. By this we are to understand a visible mechanical injury to some organ or blood-vessel important to life; but this is obviously an erroneous notion, since death may take place from the disturbance of the functions of an organ important to life, without this being necessarily accompanied by a perceptible alteration of structure. The
prevalence of this popular error often leads to a severe cross-examination of medical witnesses. Among the questions put, we sometimes find the following:—Would you have said, from the wounds or bruises alone that they were likely to have occasioned death? Now, in answer to this, it may be observed, that we cannot always judge of the probability of death ensuing from the appearance of external violence alone. Because the appearances were slight, it would be wrong to infer that they were not sufficient to cause death by shock. Then it may be inquired, Were the wounds or bruises mortal? In the vulgar sense of the word, i.e., by producing great loss of blood, or a destruction of parts, they might not be so; but in a medical view, they may have acted mortally by producing a shock to the nervous system. Again it may be inquired, Which of the several wounds or bruises found on the body of the deceased was mortal? The answer to this question may be—Not one individually, but all contributed to occasion death by syncope or exhaustion. It must be remembered that in cases in which a person has sustained a number of injuries, the loss of a much smaller quantity of blood than in other instances will suffice to destroy life.

When there are several wounds, it is difficult to decide on their relative degree of mortality, and on the share which each may have had in causing death. By a wound being of itself mortal, we are to understand that it is capable of causing death directly or indirectly, in spite of the best medical assistance. It is presumed that the body is healthy, and that no cause has intervened to bring about or even accelerate a fatal result. The circumstance of a person labouring under disease when wounded in a vital part, will not, of course, throw any doubt upon the fact of such a wound being necessarily mortal, and of its having caused death. If there should be more wounds than one, it is easy to say from the nature of the parts involved, which was likely to have led to a fatal result. In order to determine, on medical grounds, whether a wound was or was not mortal, we may propose to ourselves this question: Would the deceased have been likely to die at the same time, and under the same circumstances, had he not received the wound? There can obviously be no general rule for determining the mortal nature of wounds. Each case must be judged by the circumstances which attend it.

In some Continental states, the law requires that a medical witness should draw a distinction between a wound which is absolutely and one which is conditionally mortal. An absolutely mortal wound is defined to be that in which the best medical assistance being at hand, being sent for, or actually rendered, the fatal event could not be averted. Wounds of the heart, aorta, and internal carotid arteries, are of this nature. A conditionally mortal wound is one in which, had medical assistance been at hand, been sent for, or timely rendered, the patient would, in all probability, have recovered. Wounds of the brachial, radial, and ulnar arteries may be taken as instances. The responsibility of an assailant is made to
WOUNDS. DEATH FROM NATURAL CAUSES.

vary according to the class of injuries to which the wound may be referred by the medical witnesses: and, as it is easy to suppose, there is seldom any agreement on this subject. Our criminal law is entirely free from such subtleties. The effect of the wound, and the intent with which it was inflicted, are looked to: its anatomical relations, which must depend on pure accident, are never interpreted in a prisoner’s favour. Some extenuation may, perhaps, be occasionally admitted when a wound proves mortal through an indirect cause, as inflammation or fever, and medical advice was obtainable, but not obtained until every hope of recovery had disappeared. It appears, however, from the case of the *Queen v. Thomas and others* (Gloucester Ass. 1841), that the mere neglect to call in medical assistance is not allowed in law to be a mitigatory circumstance in the event of death ensuing. The deceased died from the effects of a severe injury to the head, indicted by the prisoners, but had had no medical assistance. The judge said it was possible that if he had had medical advice, he might not have died: but whoever did a wrongful act must take the whole consequences of it. It never could make any difference whether the party injured had or had not the means or the mind to apply for medical advice. The prisoners were convicted. According to Lord Hale, if a man be wounded, and the wound, although not in itself mortal, turn to a gangrene or fever for want of proper applications, or from neglect, and the man die of gangrene or fever, this is homicide in the aggressor; for though the fever or gangrene be the immediate cause of death, yet the wound being the cause of the gangrene or fever is held the cause of death. These nice questions relative to the shades of responsibility for personal injuries, occasionally arise in cases in which persons have been wounded at sea on board of a ship in which there was no surgeon.

CHAPTER 28.

DEATH OF WOUNDED PERSONS FROM NATURAL CAUSES.—DISTINCTION BETWEEN REAL AND APPARENT CAUSE.—DEATH FROM WOUNDS OR LATENT DISEASE.—ACCELERATING CAUSE.—DEATH FROM WOUNDS AFTER LONG PERIODS.—AVOIDABLE CAUSES OF DEATH.—NEGLIGENCE.—IMPRUDENCE.—UNSKILFUL TREATMENT.—UNHEALTHY STATE OF BODY.

Death of wounded persons from natural causes.—It is by no means unusual for individuals who have received a wound, or sustained some personal injury, to die from latent natural causes: and as, in the minds of non-professional persons, death may appear to be a direct result of the injury, the case can only be cleared up by the assistance of a medical practitioner. Such a coincidence has been witnessed in many instances of attempted suicide. A man has inflicted a severe wound on himself while labouring under disease; or
some morbid change tending to destroy life has occurred subsequently to the infliction of a wound, and death has followed. Without a careful examination of the body, it is impossible to refer death to the real cause. The importance of an accurate discrimination in a case in which wounds or personal injuries have been caused by another, must be obvious on the least reflection. A hasty opinion may involve the accused in a charge of manslaughter; and although a barrister might be able to show on the trial that death was probably attributable not to the wound, but to co-existing disease, yet it must be remembered that the evidence of a surgeon before a coroner or magistrate, in remote parts of this country, may be the means of causing the person charged to be imprisoned for some months previously to the trial. This is in itself a punishment, independently of the loss of character to which he must be in the meantime exposed.

Death from wounds or latent disease.—A natural cause of death may be lurking within the body at the time that a wound is criminally inflicted, and a close attention to the symptoms preceding, and the appearances after death, can alone enable a surgeon to distinguish the real cause. A man may be severely wounded, and yet death may take place from rupture of the heart, the bursting of an aneurism, from apoplexy, phthisis or other morbid causes which it is here unnecessary to specify. (Cormack's Ed. Jour. May 1846, p. 343.) If death can be clearly traced to any of these diseases by an experienced surgeon, the prisoner cannot be charged with manslaughter; for the medical witness may give his opinion that death would have taken place about the same time and under the same circumstances whether the wound had been inflicted or not.

On these occasions one of the following questions may arise:—Was the death of the person accelerated by the wound, or was the disease under which he was labouring so aggravated by the wound as to produce a more speedily fatal termination? The answer to either of these questions must depend on the circumstances of each case, and the witness's ability to draw a proper conclusion from these circumstances. The maliciously accelerating of the death of another already labouring under disease is criminal; for in a legal sense that which accelerates, causes. In Reg. v. Timms (Oxford Lent Ass. 1870), it was proved that prisoner had struck deceased some blows on the head with a hatchet. In twelve days, under treatment, he had partly recovered from the effects, but in six weeks afterwards he was seized with inflammation of the brain with convulsions, and died. On inspection, disease of the kidneys was found, of which there had been no symptoms. Death was referred to this disease and to inflammation of the brain as the result of the blows. The learned judge directed the jury, that if they believed the blows conduced in part to the death of the deceased, it was manslaughter, notwithstanding that other causes had combined with the blows to account for death. The prisoner was convicted.

Lord Hale, in remarking upon the necessity of proving that the
act of a prisoner caused the death of a person, says:—'It is necessary that the death should have been occasioned by some corporal injury done to the party by force, or by poison, or by some mechanical means which occasion death; for although a person may, in foro conscientiae, be as guilty of murder by working on the passions or fears of another, and as certainly occasion death by such means, as if he had used a sword or pistol for the purpose, he is not the object of temporal punishment.' (I. 247.) Several acquittals have taken place of late years, in cases in which the deaths of persons have been occasioned by terror, or dread of impending danger, produced by acts of violence on the part of the prisoners, not, however, giving rise to bodily injury in the deceased. Under the 14 and 15 Vict. c. 100, the necessity for tracing death to some corporal injury appears to be practically abolished. According to the fourth section, in any further indictment for murder or manslaughter it shall not be necessary to set forth the manner or the means by which the death of the deceased was caused.

Which of two wounds caused death.—A man may receive two wounds on provocation, at different times, and from different persons, and die after receiving the second: in such a case, the course of justice may require that a medical witness should state which wound was the cause of death. Let us take the following illustration:—A man receives during a quarrel a gunshot wound in the shoulder. He is going on well, with a prospect of recovery, when in another quarrel he receives a severe penetrating wound in the chest or abdomen from another person, and after lingering under the effects of these wounds for a longer or shorter period, he dies. If the gunshot wound was clearly shown to have been the cause of death, the second prisoner could not be convicted of manslaughter; or if the stab was evidently the cause of death, the first prisoner would be acquitted on a similar charge. It might be possible for a surgeon to decide the question summarily, when, for instance, death speedily followed the second wound; and on inspection of the body, the heart or a large vessel is discovered to have been penetrated; or, on the other hand, extensive sloughing, sufficient to account for death, might take place from the gunshot wound, and on inspection, the stab might be found to be of a slight nature, not involving any vital parts. In either of these cases, all would depend upon the science, skill, and judgment of the medical practitioner: his evidence would be so important that no correct decision could be arrived at without it; he would be, in fact, called upon substantially to distinguish the guilty from the innocent. In Req. v. Foreman (C. C. C. Feb. 1873), this question arose. The prisoner, it was proved, had struck the deceased some severe blows on the head. A fortnight afterwards the deceased, who had partially recovered, had a fight with another man, during which he received some severe blows on the head with the fist. In another fortnight he had paralysis on the left side, and died in an hospital a few days afterwards. On inspection a large abscess in the brain was found, which was the cause of
the symptoms and death. The question was, whether this had arisen from the blows given by the prisoner, or from the violence sustained a fortnight afterwards. On this point there was no satisfactory medical evidence, and as deceased had had no serious symptoms for a fortnight after the assault by the prisoner, in fact not until after the second fight, the jury acquitted him.

On some occasions death may appear to be equally a consequence of either or both of the wounds; in which case probably both parties would be liable to a charge of manslaughter. (See 'Ann. d'Hyg.' 1836, vol. 2, p. 432.) The second wound, which is here supposed to have been the act of another, may be inflicted by a wounded person on himself, in an attempt at suicide, or it may have an accidental origin. The witness would then have to determine whether the wounded person died from the wound inflicted by himself or from that which he had previously received.

It may happen that the wounded person has taken poison, and has actually died from its effects, and not from the injuries or maltreatment. Again, a wounded person may have been the subject of subsequent ill-treatment, and the question will arise— to which of the two causes his death was really due. It is to be observed of these cases, that the supervening disease, the poison, or the subsequent ill-treatment, should be of such a nature as to account for sudden or rapid death; since it would be no answer to a charge of death from violence, to say that there were marks of chronic disease in the body, unless it was of such a nature as to account for the sudden destruction of life under the symptoms which actually preceded death. In the medical jurisprudence of wounds, there is probably no question which so frequently presents itself as this: it is admitted that the violence was inflicted, but it is asserted that death was due to some other cause, and the onus of proof lies on the medical evidence. Among numerous cases which have occurred in England during a period of twenty years, I find that the latent causes of death in wounded persons have been chiefly inflammation of the thoracic or abdominal viscera, apoplexy, diseases of the heart and large blood-vessels, phthisis, ruptures of the stomach and bowels from disease, internal strangulation, and the rupture of deep-seated abscesses. In some of these cases the person was in a good state of health up to the time of the violence, and in others there was a slight indisposition. The history is nearly the same in all: it was only by careful conduct on the part of the medical witnesses that the true cause of death was ascertained. It is obvious that questions of malapraxis and life-insurance, giving rise to civil actions, may have a close relation to the subject.

Death following slight personal injuries.—An imputation has occasionally been thrown on the master of a school, when a boy has died soon after he has been punished in an ordinary way, and when there has been no suggestion that an undue amount of violence was used. In such cases there has been commonly some unhealthy state of the body to explain the fatal result. When the disease which gives rise
to doubt is seated in a part which is remote from that which sustained the violence, all that is required is, that the examination of the body should be conducted with ordinary care. If the disease should happen to be in the part injured (the head or chest), the case is more perplexing. The difficulty can then be removed only by attentively considering the usual consequences of such injuries. The violence may have been too slight to account for the diseased appearance; and the disease itself, although situated in the part injured, may be regarded as an unusual consequence of such an injury. On the other hand, the presence of chronic disease will form no exculpation of acts of violence of this nature. In *Reg. v. Hopley* (Lewes Aut. Ass. 1860), there was chronic disease of long standing in the brain of deceased, but it was proved that he was quite well and suffered from no unusual symptoms up to the time that a violent flogging was inflicted, and that this was followed by death in less than three hours from the commencement of the violence. It was not here a question even of acceleration, for the deceased might have lived for years in spite of the existence of this chronic disease. In some cases slight blows have been followed by fatal consequences, even when no disease existed to account for the result. Mr. Annan describes a case in which a healthy girl of four received a slight blow on the shin, about three inches below the knee, from the shaft of a wheelbarrow. There was pain but no external mark of violence. The injury was considered to be so slight as to require no special treatment. On the following day there was increased pain. Severe constitutional symptoms set in, and the child died on the fourth day. ('Med. Times,' Aug. 1854.)

Death from wounds after long periods.—Certain kinds of injuries are not immediately followed by serious consequences, but a wounded person may die after a longer or shorter period of time, and his death may be as much a consequence of the injury as if it had taken place on the spot. The aggressor, however, is just as responsible as if the deceased had been directly killed by his violence, provided the fatal result can be traced to the usual and probable consequences of the injury. Wounds of the head are especially liable to cause death insidiously—the wounded person may in the first instance recover—he may appear to be going on well, when, without any obvious cause, he will suddenly expire. It is scarcely necessary to observe, that in general an examination of the body will suffice to determine whether death is to be ascribed to the wound or not. In severe injuries affecting the spinal marrow, death is not an immediate consequence, unless that part of the organ which is above the origin of the phrenic nerves (supplying the diaphragm) is wounded. Injuries affecting the lower portion of the spinal column do not commonly prove fatal until after some days or weeks; but the symptoms manifested by the patient during life, as well as the appearances observed in the body after death, will sufficiently connect the injury with that event. Death may follow a wound, and be a consequence of that wound, at almost any period after its infliction. It is neces-
DEATH WITHIN A YEAR AND A DAY.

Sary, however, in order to maintain a charge of homicide, that death should be strictly and clearly traceable to the injury, and not be dependent on any other cause. A doubt on this point must, of course, lead to an acquittal of the accused.

Many cases might be quoted in illustration of the length of time which may elapse before death takes place from certain kinds of injuries, the injured person having ultimately fallen a victim to their indirect consequences. A case is related by Sir A. Cooper, of a gentleman who died from the effects of an injury to the head received about two years previously. The connection of death with the wound was clearly made out by the continuance of the symptoms of cerebral disturbance during the long period which he survived. Another case is mentioned by Hoffbauer, in which a person died from the effects of concussion of the brain as the result of an injury received eleven years before. (*Ueber die Kopfverletzungen,* 1842, p. 57.)

There is a singular rule in our law relative to the period at which a person dies from a wound—namely, that the assailant shall not be adjudged guilty of murder, unless death takes place within a year and a day after the infliction of the wound. (Archbold, p. 345.) It is a general rule that to make the killing murder, the death must follow within a year and a day after the stroke or other cause of it. In practice, the existence of this rule is of little importance, but in principle it is erroneous. Most wounds leading to death generally destroy life within two or three months after their infliction: sometimes the person does not die for five or six months, and, in more rare instances, death does not ensue until after the lapse of twelve months, or even several years. (See cases supra.) These protracted cases occur especially in respect to injuries of the head and chest. In *Reg. v. Orew* (Shrewsbury Summer Ass. 1873), prisoner was charged with the murder of a policeman (Lloyd), by knocking him down and kicking him on the chest and abdomen, on June 20, 1872. Lloyd appeared to be much exhausted, but at first no serious injury was apprehended. The assailant was brought before the magistrates, and imprisoned for the assault. The day after the assault, Lloyd began to spit blood, but he continued to do duty until July 9 following. He then got gradually worse, and died on June 8, 1873, from the effects of the violence inflicted on him nearly a year previously. Had the deceased lived thirteen days longer, the prisoner could not have been indicted for murder, as a year and a day would have elapsed after the stroke causing death. As it was, the jury found the prisoner guilty of manslaughter.

Secondary causes of death.—A person who recovers from the immediate effects of a wound may die from fever, inflammation or its consequences, pyaemia, erysipelas, delirium tremens, tetanus or gangrene; or an operation required during the treatment of a wound may prove fatal. These are what may be called secondary causes of death, or secondary fatal consequences of a wound. The power of deciding on the responsibility of an accused person for an event which depends only in an indirect manner on an injury originally inflicted,
by him, rests of course with the authorities of the law. But it is impossible that they can decide so difficult and nice a question in the absence of satisfactory medical evidence; and on the other hand, it is right that a medical witness should understand the importance of the duty here required of him. Fever or erysipelas may follow many kinds of serious wounds, and in some few instances be distinctly traceable to them; but in others, the constitution of a person may be so broken up by dissipated habits as to render a wound fatal which in a healthy subject might have run through its course mildly, and have healed. When the fever or erysipelas can be traced to a wound, or there is no other apparent cause of aggravation to which either of these disordered states of the body can be attributed, they can scarcely be regarded by a medical practitioner as unexpected and unusual consequences, especially when the injury is extensive, and seated in certain parts of the body, as in the scalp. If death take place under these circumstances, the prisoner will be held as much responsible for the result as if the wound had proved directly mortal. This principle has been frequently admitted by our law, and, indeed, were it otherwise, many reckless offenders would escape, and many lives would be sacrificed with impunity. It is, however, difficult to lay down general rules upon a subject which is liable to vary in its relations in every case; but when a wound is not serious, and the secondary cause of death is evidently due to constitutional peculiarities from acquired habits of dissipation, the ends of justice are probably fully answered by an acquittal; in fact, such cases do not often pass beyond a coroner's inquest.

The secondary causes of death may be arranged under the following heads:

1. The cause is unavoidable.—Of this kind are tetanus, following laceration of tendinous and nervous structures, erysipelas following lacerated wounds of the scalp, peritoneal inflammation following blows on the abdomen with or without rupture of the bladder or intestines, and effusion of their contents, strangulation of the intestines (phrenic hernia), following rupture of the diaphragm, and others of a like nature. Here, supposing proper medical treatment and regimen to have been pursued, the secondary cause of death was unavoidable, and the fatal result certain.

2. The cause avoidable by good medical treatment.—There are, it is obvious, many kinds of wounds which, if properly treated in the first instance, may be healed and the patient recover, but when improperly treated they prove fatal. In the latter case it will be a question for a witness to determine how far the treatment aggravated the effects of the violence, and from his answer to this, the jury may have to decide on the degree of criminality which attaches to the accused. Let us suppose, for instance, that an ignorant person has removed a clot of blood, which sealed up the extremity of a blood-vessel, in consequence of which fatal bleeding has ensued—or that he has caused death by unnecessarily interfering with a penetrating wound of the chest or abdomen—it would scarcely be just to hold the
aggressor responsible, since, but for the gross ignorance and unskilfulness of his attendant, the wounded person might have recovered from the effects of the wound. When death is really traceable to the negligence or unskilfulness of a surgeon who is called to attend on a wounded person, this circumstance ought to be, and commonly is, admitted in mitigation, supposing that the wound was not originally of a mortal nature. Lord Hale observes:—'It is sufficient to constitute murder, that the party dies of the wound given by the prisoner, although the wound was not originally mortal, but became so in consequence of negligence or unskilful treatment; but it is otherwise where death arises, not from the wound, but from unskilful applications or operations used for the purpose of curing it.' (1, 428.) The medical jurist will perceive that a very nice distinction is here drawn by this great judge, between death as it results from a wound rendered mortal by improper treatment, and death as it results from improper treatment, irrespective of the wound. In the majority of cases such a distinction could scarcely be established, except upon speculative grounds, and in no case, probably, would there be any accordance in the opinions of medical witnesses. In slight and unimportant wounds, it might not be difficult to distinguish the effects resulting from bad treatment from those connected with the wound, but there can be few cases of severe injury to the person, wherein a distinction of this nature could be safely made; and the probability is, that no conviction for murder would now take place, if the medical evidence showed that the injury was not originally mortal, but only became so by unskilful or improper treatment. In such a case, it would be impossible to ascribe death to the wound, or to its usual or probable consequences; and without this it is not easy to perceive on what principle an aggressor could be made responsible for the result.

3. Comparative skill in treatment.—If death has been caused by a wound, the responsibility of an aggressor is not altered by the allegation that under more favourable circumstances and with more skillful treatment, a fatal result might have been averted. At the same time it is obvious that a serious responsibility is thrown on practitioners who undertake the management of cases of criminal wounding. Any deviation from ordinary practice should therefore be made with the greatest caution, since novelties in practice will, in the event of a fatal result, form one of the best grounds of defence in the hands of a prisoner's counsel. On these occasions every point connected with the surgical treatment will be the subject of rigorous inquiry and adverse professional criticism. In the case of a severe lacerated wound in the hand or foot followed by fatal tetanus, it may be said that the wounded person would not have died had amputation been at once performed. In this instance, however, a practitioner may justify himself by showing either that the injury was too slight to require amputation, or that the health or other circumstances connected with the deceased would not allow of its being performed with any reasonable hope of success. On the other hand, if the
practitioner performed amputation, and the patient died, then it would be urged that the operation was premature, or wholly unjustifyable, and that it had caused death. Here the surgeon is bound to show that the operation was necessary according to the ordinary rules of practice. The treatment of severe incised wounds of the throat, when the windpipe is involved, sometimes places the practitioner in an embarrassing position. If the wound is left open, death may take place from bleeding; if it be prematurely closed, blood may be effused into the windpipe and cause death by suffocation.

4. The cause avoidable but for imprudence or neglect on the part of the wounded person.—A man who has been severely wounded in a quarrel, may obstinately refuse medical assistance, or he may insist upon taking exercise, or using an improper diet, contrary to the advice of his medical attendant; or by other imprudent practices, he may thwart the best conceived plans for his recovery. Let us take a common case as an illustration. A man receives a blow on the head in a pugilistic combat, from the first effects of which he recovers, but after having received surgical assistance, he indulges in excessive drinking, and dies. The aggressor is tried on a charge of manslaughter, and found guilty. Death under these circumstances is commonly attributed by the medical witness to effusion of blood on the brain; but it cannot be denied that the excitement produced by intoxicating liquors, will sometimes satisfactorily account for the fatal symptoms. In the case which we are here supposing, such an admission might be made, and the prisoner receive the benefit of it; for the imprudence or negligence of a wounded person ought not, morally speaking, to be considered as adding weight to the offence of the aggressor. If the symptoms were from the first unfavourable, or the wound likely to prove mortal, circumstances of this kind could not be received in mitigation. Our judges have shown themselves at all times unwilling to admit them. The legal responsibility of the assailant is the same, whether the deceased died on the spot, or some days, weeks, or months afterwards, unless it can be distinctly proved that his death was immediately connected with the imprudence or excess of which he was guilty, and wholly independent of the wound. But, although a prisoner should be found guilty of manslaughter under these circumstances, the punishment is so adjusted by our law as to leave a considerable discretionary power in the hands of a judge. This is, indeed, tantamount to a direct legal provision, comprehending each different shade of guilt;—a man is held responsible for a wound rendered accidentally mortal by events over which he could have no control, but which in themselves ought to be regarded as in some degree exculpatory. The punishment attached to his offence may be severe or slight, according to the representation made by a medical witness of the circumstances which rendered the wound mortal; if he neglect to state the full influence of imprudence or excess on the part of the wounded person, where either has existed, over the progress of the wound, he may cause the prisoner to be punished with undue severity. The humanity of our
judges is such, that when medical evidence is clear and consistent on a point of this nature, and there are no circumstances in aggravation, they commonly pass a mild sentence. (See case by M. Ollivier, 'Ann. d'Hyg.' 1842, p. 128.) The neglect to call in a medical practitioner, or the refusal to receive medical advice, will not, however, according to the decision in Reg. v. Thomas (Gloucester Aut. Ass. 1841), be considered a mitigatory circumstance in favour of the prisoner, even although the wound was susceptible of being cured. A man may receive a lacerated wound of a limb, which is followed by tetanus or gangrene, and thus proves fatal; he may have declined receiving medical advice, or have obstinately refused amputation, although proposed by his medical attendant. This would not operate as a mitigatory circumstance on the part of an assailant, because a wounded person is not compelled to call for medical assistance, or to submit to an operation, while a medical witness could not always be in a condition to swear that the operation would have positively saved his life; he can merely affirm that it might have afforded him a better chance of recovery. Again, a person may receive a blow on the head producing fracture, with great depression of bone, and symptoms of compression of the brain: a surgeon may propose the operation of trephining to elevate the depressed bone, but the friends of the wounded man may not permit the operation to be performed. In such a case, his line of duty will be to state the facts to the Court, and it is probable that in the event of conviction there would be some mitigation of punishment; because such an injury, if left to itself, must in general prove mortal, and no doubt could exist in the mind of any surgeon, as to the absolute necessity for the operation. But the neglect or improper conduct of a person who receives a wound thus rendered fatal, does not exculpate the aggressor. The crime is either murder or manslaughter.

5. The cause avoidable but for an abnormal or unhealthy state of the body of the wounded person.—Wounds which are comparatively slight sometimes prove indirectly fatal, owing to the person being in an unhealthy condition at the time of their infliction. In bad constitutions, compound fractures or slight wounds, which in a healthy person would have a favourable termination, are followed by gangrene, fever, or erysipelas, proving fatal. Here the responsibility of an assailant for the death may become reduced, so that, although found guilty of manslaughter, a mild punishment might be inflicted. The consequence may be, medically speaking, unusual or unexpected, and but for circumstances wholly independent of the act of the accused, would not have been likely to destroy life. In general, in the absence of malice, this appears to be the point to which the law closely looks, in order to make out the responsibility of the accused—namely, that the fatal secondary cause must be something not unusual or unexpected as a consequence of the particular injury. The medico-legal question presents itself under this form:—Would the same amount of injury have been likely to cause death in a person of ordinary health and vigour? Men who have
suddenly changed their habits of living, and have passed from a full diet to abstemiousness, are sometimes unable to bear up against comparatively slight injuries, and often sink from the secondary consequences. So a man otherwise healthy labouring under rupture, may receive a blow on the groin, attended with laceration of the intestine, gangrene, and death; another with a calculus in the kidney may be struck in the loins and die, in consequence of the calculus perforating the blood-vessels and causing fatal bleeding or subsequent inflammation. In these cases the effects of the violence must be regarded as something unexpected: it would not have produced serious mischief in an ordinarily healthy person, and hence the responsibility of an assailant becomes much diminished. The crime is undoubtedly manslaughter, but the punishment may be of a lenient description. A defence of this kind will, however, be limited by circumstances. A case is reported, in which a Dr. Fabricius was tried at the Old Bailey for the murder of his female servant by striking her a blow behind the ear, whereby a large abscess, situated at that part, was ruptured, and this ultimately caused her death. The chief question on the trial was, whether the deceased had died from the effects of the violence, or from the disease under which she was at that time labouring. The doctor ingeniously urged in his defence that he had struck the blow merely for the purpose of opening the abscess! The jury, however, did not agree in taking this professional view of the matter, and they found him guilty of manslaughter.

It must be evident that there exist numerous internal diseases, such as aneurism, and various morbid affections of the heart and brain, which are liable to be rendered fatal by slight external violence. The law, as applied to these cases, is thus stated by Lord Hale: — 'It is sufficient to prove that the death of a person was accelerated by the malicious act of the prisoner, although the former laboured under a mortal disease at the time of the act.' (1, 428.) In those cases in which a slight degree of violence has been followed by fatal consequences, it is for a jury to decide, under all the circumstances, upon the actual and specific intention of the prisoner at the time of the act which occasioned death. According to Starkie, 'it seems that in general, notwithstanding any facts which tend to excuse or alleviate the act of the prisoner, if it be proved that he was actuated by prepense and deliberate malice, and that the particular occasion and circumstances upon which he relies were sought for and taken advantage of merely with a view to qualify actual malice, in pursuance of a preconceived scheme of destruction, the offence will amount to murder.' In most of these cases there is an absence of intention to destroy life, but the nature of the wound, as well as the means by which it was inflicted, will often suffice to develope the intention of the prisoner. An accurate description of the injury, if slight, may afford strong evidence in favour of the accused, since the law does not so much regard the means used by him to perpetrate the violence, as the actual intention to kill, or to do great bodily
WOUNDS. ABNORMAL CONDITIONS. 267

harm. Serious injury, causing death by secondary consequences, will admit of no exculpation when an assailant was aware, or ought to have been aware, of the condition of the person whom he struck. Thus, if a person notoriously ill, or a woman while pregnant, be maltreated, and death ensue from a secondary cause, the assailant will be held responsible; because he ought to know that violence of any kind to persons so situated, must be attended with dangerous consequences. So, if the person maltreated be an infant or a decrepit old man, or one labouring under a mortal disease, it is notorious that a comparatively slight degree of violence will destroy life in these cases, and the prisoner would properly be held responsible. A wound which accelerates death causes death, and may therefore render the aggressor responsible for murder or manslaughter, according to the circumstances. The Commissioners appointed to define the criminal law on the subject of homicide thus express themselves:—’Art. 3. It is homicide, although the effect of the injury be merely to accelerate the death of one labouring under some previous injury or infirmity, or although, if timely remedies or skilful treatment had been applied, death might have been prevented.’ This is conformable to the decisions of our judges. According to Lord Hale, if a man has a disease which in all likelihood would terminate his life in a short time, and another give him a wound or hurt which hastens his death, this is such a killing as constitutes murder. (Archbold, p. 345.)

6. Abnormal conditions.—When an assailant could not have been aware of the existence of a diseased or an abnormal condition of parts in the wounded person, the question is somewhat different. In many persons the skull is preternaturally thin, and in most persons it is so in those places corresponding to the glandulae Pacchioni. In a case of this kind a moderate blow on the head might cause fracture, accompanied by effusion of blood, depression of bone, or subsequent inflammation of the brain and its membranes, any of which causes might prove fatal. In some persons, all the bones of the body are unusually brittle, so that they are fractured by the slightest force. Inflammation, gangrene, and death may follow, when no considerable violence has been used; but these being unexpected consequences, and depending on an abnormal condition of parts unknown to the prisoner, his responsibility may not, ceteris paribus, be so great as under other circumstances. This condition of the bones can be determined only by a medical practitioner. Facts of this kind show that the degree of violence used in an assault cannot always be measured by the effects, unless a careful examination of the injured part is previously made.

7. Difficulty of proof in death from secondary causes.—When a person is charged with having caused the death of another through violence terminating in some fatal disease, the case often admits of a skilful defence, and this in proportion to the length of time after the violence, at which the deceased dies. The disease, it may be urged, is liable to appear in all persons, even the most healthy; or
it may arise from causes unconnected with the violence. In admitting these points, it must be remembered that death may be proved to have been indirectly a consequence of the wound by the facts: 1, that the supervention of the secondary cause, although not a common event, lay in the natural course of things; 2, that there did not exist any accidental circumstances which were likely to have given rise to this secondary cause independently of the wound. The proof of the first point amounts to nothing, unless the evidence on the second point is conclusive.

CHAPTER 29.

WOUNDS INDIRECTLY FATAL.—TETANUS FOLLOWING WOUNDS.—ERYSIPelas.—
DELIRIUM TREMBENS.—GANGRENE.—DEATH FROM SURGICAL OPERATIONS.—
PRIMARY AND SECONDARY CAUSES OF DEATH.—UNSKILFULNESS IN OPERA-
TIONS.—PYERMA.—MEDICAL RESPONSIBILITY IN REFERENCE TO OPERA-
TIONS.—ACTIONS FOR MALAPRAXIS.

Tetanus following wounds.—Tetanus frequently presents itself as a secondary fatal consequence of wounds, especially of those which are lacerated or contused, and affect nervous or tendinous structures. It has often occurred as a result of slight bruises or lacerations, when the injury was so superficial as to excite no alarm; and it is a disease which gives no warning of its appearance. Tetanus may come on spontaneously, i.e. independently of the existence of any wound on the body. Cases have been brought into the London hospitals, in which the only cause of this disease appeared to be exposure to cold or wet, or, in some instances, exposure to a current of air. (‘Lancet,’ Dec. 14, 1844, 351.) It is scarcely possible to distinguish, by the symptoms, tetanus from wounds (traumatic) from that which occurs spontaneously as a result of natural causes (idiopathic). In endeavouring to connect its appearance with a particular wound or personal injury, it will be proper to observe—
1, whether there were any symptoms indicative of it before the mal-
treatment; 2, whether any probable cause could have intervened to produce it, between the time of its appearance and the time at which the violence was inflicted; 3, whether the deceased ever rallied from the effects of the violence. The time at which tetanus usually makes its appearance when it is the result of a wound, is from the third to the sixth day; but it may not appear until three or four weeks after the injury, and the exciting cause may still be traced to the wound which may have healed. When resulting from a wound it is generally fatal.

A medical practitioner is bound to exercise great caution before he pronounces an opinion that a fatal attack of tetanus has arisen.
either from spontaneous causes, or from slight blows or personal injuries. A rigorous inquiry should be made into all the attendant circumstances. Slight punctured wounds, operating as a cause of tetanus, have been overlooked or only discovered by accident after death, and it is highly probable that many cases have been set down as idiopathic tetanus in which, by proper inquiry, the disease might have been traced to a wound or some personal injury. In one instance the tetanus was at first considered to be idiopathic: but shortly before death a small black mark was observed on the thumb-nail. On making inquiry, it was found that a few days previously to the attack a splinter of wood had accidentally penetrated the thumb. The patient attached so little importance to the accident that he did not mention the circumstance to his medical attendant. This was no doubt the sole cause of the disease. Two similar cases have been mentioned to me by Dr. G. Johnson. (See 'Brit. Med. Jour.' 1872, Nov. 23, p. 594.) Many trials for murder and manslaughter have occurred in this country in which tetanus was the immediate cause of death: and the defence has generally rested upon the probable origin of the disease from accidental causes.

Erysipelas, like tetanus, may be a fatal result of slight injuries. Wounds affecting the scalp are liable to be followed by this disease. Burns and scalds sometimes prove fatal through this secondary cause. Some constitutions are particularly prone to erysipelas from inflammation, and thus, wounds comparatively slight, may have a fatal termination. When a wounded person has died from this disease, an assailant cannot be made responsible for the fatal result, unless the erysipelas is clearly traced to the injury. The medical facts that the person assaulted has never recovered from the effects of the violence, and that the inflammation set up has suddenly assumed an erysipelas character, are sufficient to establish this connection. If there has been recovery, and an interval of some days has elapsed, a doubt may arise respecting the connection of the erysipelas with the violence inflicted. This disease is occasionally idiopathic, i.e., it appears like tetanus without any assignable cause. In Reg. v. Jones (Monmouth Lent Ass. 1873) the prisoner, a collier, was convicted of manslaughter under the following circumstances:—Prisoner was fighting with another man, and the deceased, a woman, endeavoured to part them. Prisoner fixed his teeth savagely on her thumb and bit her severely. The wound was pistolced. It was not until the fourth day that she had medical advice. Erysipelas had then commenced and had caused great swelling of the limb up to the shoulder. She died in three weeks. The medical evidence was to the effect that she had died of erysipelas from the wound, but the fatal result was in a great measure due to an impaired state of health from excessive drinking. The prisoner was notwithstanding found guilty.

It is sometimes difficult to establish the connection of erysipelas with a wound, especially when the disease occurs some time after its infliction and in a remote part of the body not implicated in the
WOUNDS FATAL FROM DELIRIUM TREMENS.

wound. When this connection cannot be distinctly made out, there will be an acquittal.

Delirium tremens is a disease which frequently presents itself as a secondary consequence of injuries to persons of intemperate habits. Whether the injury be slight or severe, this disease may equally supervene and prove fatal. It is observed occasionally as a consequence of operations required for the treatment of wounded persons. The remarks made at p. 265 upon the influence of unhealthy constitutions on wounds, apply with especial force to cases of this description.

Death from surgical operations.—In the treatment of wounds, surgical operations are frequently resorted to, and a wounded person may die either during the performance of an operation, or from its consequences. A question will thence arise, whether the person who inflicted the wound should be held responsible for the fatal result. The law regards a surgical operation as part of the treatment, and if undertaken bona fide, and performed with reasonable care and skill, the aggressor will be held responsible, whatever may be the result. The necessity for the operation, and the mode of performing it, will be left to the operator’s judgment. As the defence may turn upon the operation having been performed unnecessarily, and in a bungling and unskilful manner, it will be right for a practitioner, if possible, to defer it until he has had the advice and assistance of other practitioners. According to Lord Hale, if death takes place from an unskilful operation, performed for the cure of a wound, and not from the wound, the responsibility of the prisoner ceases; but this eminent lawyer does not appear to have considered that death may take place as a consequence of the most skilful operation required for the treatment of a wound, and yet be wholly independent of the wound itself.

If the operation has been performed by the medical witness himself, and the necessity for its performance is questioned by counsel for the prisoner, it is open to the witness to give the requisite explanation in his evidence. It would appear from a case tried before the late Mr. Justice Shee, that the necessity for an operation will not be assumed; but if called in question, it must be proved by witnesses for the prosecution. In Reg. v. Moviedad (C.C.C. Sept. 30, 1865), the prisoner threw deceased on the ground and fractured his leg. The limb was amputated at the London Hospital, and the man subsequently died. Counsel for the prisoner asked the surgeon from the hospital who spoke to the death of the deceased, whether an operation was really necessary. The witness said he could not tell, as he had not had charge of the case previous to the operation. Counsel then raised the question whether prisoner or the doctors had caused the man’s death. The counsel for the prosecution suggested that the Court might accept as a fact that amputation would not have been performed had it not been necessary; but the learned judge said that would not do. They must deal with the case on the evidence before them. He then observed to the jury that although un-
DEATH FROM SURGICAL OPERATIONS.

doubtedly amputation would not be adopted at such a place as the London Hospital without the necessity for it, yet evidence to that effect must be before them on oath. They could not act on what they had every reason to believe; therefore they must acquit the prisoner. The failure of justice in this case rested with those who were concerned for the prosecution. The operator, who could probably have satisfied the Court that he had not cut off the wrong leg, and that there were good reasons for performing the operation, was not called as a witness; but in his place a gentleman was summoned who could not answer these necessary questions.

Death is by no means an unusual result of severe operations, the secondary consequences under which the patient may die being very numerous even when the case is most skilfully managed. Sometimes the patient will die on the table, although but little blood may have been lost. Fear, pain, and sudden shock to the nervous system, have caused death under these circumstances. The most common indirect causes of death after severe operations are secondary haemorrhage, erysipelas, tetanus, delirium tremens, pyemia, and hectic fever with gangrene of the stump. Mr. Travers observes, that 'a pre-existing disease of the liver, kidney, or testicles, though chronic, and in itself not alarming to the constitution, becomes a drag upon its elasticity, and stands in the way of recovery. Inspection of the body after death frequently explains the unfavourable result of operations that promise well, by discovering one or more organs in a state of chronic disease, which had not previously deranged the health in a degree sufficient to give notice of its existence; and which might, therefore, have remained quiet for years to come, had no extraordinary call been made upon the powers of the system.' ('On Constitutional Irritation,' p. 46, 121, et seq.)

Should an operation be unnecessarily or unskilfully performed, the responsibility of an aggressor would, it is presumed, cease, if the death of a wounded party could be clearly traced to it. Thus, if in carelessly bleeding a wounded person, the brachial artery should be laid open ('Ann. d’Hyg.' 1834, t. 2, p. 445), or if, in performing amputation, a large artery be improperly secured, so that the patient in either case dies from loss of blood, the prisoner could not be equitably held responsible; because it would be punishing him for an event depending on the unskilfulness of a medical practitioner. According to Platt B., a prisoner will be held responsible, if the original wound were likely to produce death, although unskilfully treated. Supposing the bleeding or amputation to be performed with ordinary care and skill—and yet, in the one case, inflammation of the veins, and in the other erysipelas, tetanus, gangrene, or fever should destroy life, the prisoner will be liable for the consequences. The practice of the law is strictly consistent with justice. Should the operation be considered to be absolutely required for the treatment of a wound, which, according to all probability, would prove mortal without it,—should it be performed with ordinary skill, and still death ensue as a direct or indirect
consequence, it is only just that the person who inflicted the injury should be held responsible for the result. It is presumed in these cases, that were the patient left to himself he would, in all probability, die from the effects of the wound. If, therefore, a surgeon, knowing that an operation would give a chance of saving life on such an occasion, did not perform it, it might be contended in the defence, that the deceased had died, not from the wound, but from the incompetency and neglect of his medical attendant. Hence it follows that if, during this necessary treatment, unforeseen though not unusual causes cut short life, no exculpation should be admitted, if it went to attack the best-directed efforts made for the preservation of life. (See 'Ann. d'Hyg.' 1835, t. 1, p. 231.) If an operation is rendered necessary by reason of the improper treatment of the wound, the responsibility of an assailant for a fatal result ceases.

In another part of this work (p. 32 ante), I have referred to the case of Kelly, who was tried for the murder of Police-constable Talbot. (Reg. v. Kelly, Dublin Commission Court, November 1871.) The facts of this case, although made a subject of the most violent contention in a medical, legal, and political view, were really of a very simple kind. On July 12 deceased received a pistol-shot wound at the back of his neck, and died from the effects on July 16. The bullet fractured and splintered the atlas, wounding and crushing the soft parts of the neck, and leading to the formation of an abscess in this part. The actual cause of death was inflammation of the spinal cord and its membranes. Mr. Stokes, who attended the deceased, considered it necessary to enlarge the wound for the purpose of removing the bullet, which was then supposed to be lying within reach. In this operation a small artery (the occipital) was divided, but the quantity of blood lost was small; the bleeding was stopped by compression, and this bleeding had no influence in causing death. The defence was that the wound would not have proved fatal but for the bad surgical treatment; that the probing of the wound was unnecessary, and that it was unskilfully performed. There was the evidence of experts on both sides; but the facts proved, apart from the opinions expressed, could leave no reasonable doubt that Mr. Stokes had treated the case with bona fides and with competent skill. The prisoner was positively identified by deceased and others, and upon this evidence the jury returned a verdict of not guilty! (See 'Brit. Med. Jour.' Dec. 23, 1871, p. 716.)

The failure of justice in this case appears to have been chiefly owing to the fact that the jury were allowed to form their opinions on the surgical treatment pursued, whereas the rule of law is clear as to responsibility; and the only question which should have been submitted to them was, whether the prisoner was or was not the man who fired the pistol-shot. The English practice, as already quoted above, is, that if a man unlawfully inflicts a dangerous wound on another, and the wounded person, after being treated by qualified practitioners, acting with bona fides, and applying them-
selves with the best of their ability to the case, dies of the wound, the man inflicting it is really guilty of murder, even although an erroneous treatment of the case by the practitioner may have been the cause of death. In fact, under no other rule would a medical man be safe in dealing with a case of criminal wounding. If Kelly's case were taken as a precedent, no surgical treatment should be adopted under these circumstances. The wound should be allowed to take its mortal course!

Death from chloroform in surgical operations.—In a large number of operations it is now the general practice among surgeons to administer chloroform vapour, not only to allay pain but to prevent that exhaustion to the patient which is likely to arise from protracted surgical proceedings. In spite of care on the part of the operator, this vapour is liable to destroy life in an unexpected manner, and the patient may die either before the operation is commenced or during its performance. The facts may leave no doubt that the wounded person died from chloroform, and not from the wound or the operation. On inspection of the body, the heart may be found in an unhealthy state, a fact which is usually considered sufficient to account for the fatal effects of chloroform vapour. In a case of this kind—What becomes of the responsibility of the person who inflicted the original wound? No decision, so far as I know, has ever been given on this point. Was the use of chloroform vapour in a professional view a necessary part of the treatment? Was it skilfully and properly administered? Could the diseased condition of the heart which rendered the effects of the vapour more fatal than usual have been detected by the operator, so as to show the impropriety of administering it in this case? These questions should receive satisfactory answers before the aggressor is rendered responsible for death under such peculiar circumstances.

In Absalom v. Statham (Q.B. November 1867), an action was brought against a medical man for forcibly administering chloroform to the plaintiff against her will, and extracting six of her teeth; also for careless and unskilful treatment, whereby her health was injured. The medical evidence showed that the woman had consented to the operation, and that it had been properly performed; also that her health had sustained no injury by the chloroform or the operation, and that most of her symptoms were due to hysteria. Cockburn C.J., in summing up the case, said that the two charges or complaints were entirely distinct and different—one being for an assault, and the other for malpractice. The law was clear as to both. No surgeon had a right to perform any operation against the will of the patient, _so long as the patient preserved consciousness and will_; and if, therefore, the jury believed the plaintiff's story, then she was entitled to a verdict, although the amount of the damages would depend upon their impression as to the extent of the injury. Then, as to the other ground of complaint, the law was equally clear, that every medical practitioner was bound to bring a reasonable amount of skill and care to the performance of the duty
he undertook. The jury found for the defendant on both grounds. This shows the present state of the law in reference to the responsibility of medical men who undertake operations under chloroform.

But there is another form in which a question of medical responsibility may present itself. This is illustrated in the case of Lambe v. Barton (Wicklow Summer Ass., 1873). This was an action by a widow to recover damages for the death of her husband under chloroform by reason of the negligence and unskillfulness of the defendant, a surgeon, in administering it. Anaesthesia was rendered necessary by an accident; chloroform was administered; the man died in five minutes; before the operation could be performed. The proof of negligence failed, and a verdict was returned for the defendant. (Brit. Med. Jour., July 20, 1873.)

By an operation being absolutely necessary, I say, we are to understand that it is necessary to preserve life, i.e., that the wound will probably prove fatal without it. Bleeding and currying may be necessary as part of the treatment of a wounded person, but unless it could be sworn that this treatment was required in the judgment of the surgeon, for the preservation of life in the injury inflicted, it is doubtful whether, in the event of death occurring from these simple operations, the assistant would be held responsible for the fatal result. From cases hitherto decided, it does not appear that the law regards three circumstances in death following surgical operations—i.e., the necessity of the operation itself, the competency of the operator; and third, whether the wound would be likely to prove fatal without it.

(operations under a mistaken view.)—It may happen that the wound is not of a mortal nature, and that, although an operation was sufficiently performed, it was not necessary to save life. In other words, the wounded person may die from the immediate results of a serious operation performed under a mistaken view of the case. It is well known to surgeons that haemorrhage uncontrolled has been occasionally mistaken for aneurism, an artery has been secured, and death has followed. A case occurred in Dublin in 1844, in which the carotid artery was tied; and another in London in 1845, in which the operation was performed on the common iliac artery for supposed aneurismal; in both of these instances, the patient sank, and after death the tumours were proved not to have been aneurismal. The operations were not necessary, they proved fatal, and they had been performed under a mistake. In a case reported by Mr. Synge the carotid artery was tied, and the patient lived a few days from loss of blood. After death it was found that the tumour was not an aneurism, but a cyst containing a thin fluid. (Ibid. Med. Press, Dec. 22, 1847, p. 290.)

Let us assume that a man labouring under a slight aneurismal dilatation of a large artery receives a blow on the part,—the pain gradually increases, and is mistaken for an abscess; by three of the surgeons, whose professional standing would prevent their general competency from being questioned. Under a wrong diagnosis, it is
opened, and the patient dies on the spot: in such a case it would be unjust to make the aggressor liable; for, even admitting that the aneurism resulted from the blow, and that a competent surgeon acted with bona fide, the treatment would be unskilful, and the case would fall under the rule laid down by Lord Hale (ante, p. 258). The real facts, however, may not transpire until after the death of the wounded person; and it may then be alleged by a prisoner's counsel that the operation was not necessary to save life, and that the wounded man might have recovered without it. From the ruling of our judges on various occasions in which this question has arisen, it would appear that the relative degree of skill possessed by medical men is not a question for a jury in a criminal case; although in a civil case, as in an action for malapraxis, the whole of the medical facts are invariably submitted to their judgment. This difference can only be justified by the assumption, that a man who inflicts a wound must take all the consequences—good or bad. No operation would have been required but for the injury, and the prisoner ought not to escape on account of want of skill in a surgeon, or of a mistake made by a skilful operator. It was decided in the cases of Rex v. Quain and Reg. v. Pym, that although the indictment alleged that the deceased died of the wound, while in fact he died from the results of an operation, yet it was good in point of law.

When a wounded person is taken to an hospital in which gangrene or erysipelas is diffusing itself by infectious propagation, and he is attacked by one of these diseases, before or after the performance of an operation, and dies, a prisoner may be held responsible for the fatal result. It might be contended that the transportation of the wounded man to such a locality was not absolutely necessary for his treatment or for the preservation of his life, and that he would not have died but for the accidental presence of an infectious disease. Cases of this kind cannot be easily determined by any general rules.

Pyæmia.—In addition to erysipelas and tetanus, there is another cause of death which is liable to follow personal injuries and operations, namely pyæmia, or the introduction of pus into the blood by absorption or by the mouths of divided blood-vessels. The purulent matter appears to act as a poison, and one of its marked effects is to coagulate the blood either in the large vessels or in the capillaries. According to Dr. Wilks's observations, pyæmia is seldom observed after superficial injuries during the process of healing, or after wounds resulting from simple operations, but it occurs frequently when a bone is involved, either from the injury or as the result of an operation. Inflammation of the cellular membrane surrounding bone is a condition highly favourable to its occurrence. It has been stated that the cause of death in one half of the cases of amputation is pyæmia. (See a paper on this subject by Dr. Wilks, 'Guy's Hospital Reports,' 1861, p. 119.) The medical witness must remember that pyæmia, like tetanus and erysipelas, may arise
from causes totally irrespective of wounds or personal injuries. (Cases by Dr. Habershon, 'Guy's Hospital Reports,' 1850, p. 179.) Questions relative to responsibility in death following operations would come more frequently before Courts of law, were it not that the cases are stopped in the Coroners' courts by verdicts of accidental death. (See 'Med. Gaz.' vol. 19, p. 157.) It unfortunately happens that on these occasions there is a great difference of opinion among medical witnesses respecting the connection of the disease with the death, and indeed the necessity for the operation itself. The evidence of opinion in favour of the prosecution is sometimes exactly balanced by that urged in the defence, and under these circumstances, the only course open to the Court is to direct an acquittal. Differences of opinion upon these subjects among members of the profession tend to convey to the public the impression that there are no fixed principles upon which medical opinions are based, and, consequently, that it would be dangerous to act upon them. Thus it is that we are accustomed to hear of a medical prosecution and a medical defence, as if the whole duty of a medical jurist consisted in his making the best of a case, on the side for which he happens to be engaged,—adopting the legal rule for suppressing those points which are against him, and giving an undue prominence to others which may be in his favour. This is an unfortunate condition of things, for which at present there appears to be no other remedy than that of appointing a Medical Board of competent persons to act as assessors to the learned judge, to whom such questions should be referred, in the same manner as questions relative to navigation are referred by the Admiralty Court to a Board formed of members of the Trinity House,—professionally acquainted with the matters in dispute.

Medical responsibility for operations. Malaprazia.—This is a very wide subject, but it can here be only glanced at in a few of its leading features. It was held by Lord Ellenborough, that if a person acting in a medical capacity be guilty of misconduct arising either from gross ignorance or criminal inattention, by which a patient dies, he is guilty of manslaughter. Faults, such as omissions, or errors in judgment, to which all are liable, are not visited with this amount of criminality. The same rule applies to the licensed as to the unlicensed practitioner; but it would appear, from the charge of Williams J. (Winchester Spring Ass. 1847), that a degree of unskilfulness which might lead to the conviction of a licensed, would justify the acquittal of an unlicensed person. This was in the case of a midwife, aged 72, alleged to have caused the death of a woman on whom she had been called to attend. 'The charge,' said the learned judge, 'appeared to be that by want of skill or attention to her duties, she had caused the death of the woman upon whom she was attending. In order to constitute this offence, it must be shown that the party was guilty of criminal misconduct, either arising from gross ignorance or want of skill, or gross inattention. With respect to the degree of want of skill, he must say, that it was not to be
expected that a midwife, who was called in to attend a person in the humble class of the deceased, a soldier’s wife, should exhibit what a regular medical practitioner would call competent skill. It was enough if she applied that humble skill which, in ordinary cases, would lead to a safe delivery. She was not bound to have skill sufficient to meet peculiar and extraordinary exigencies, although in the case of a regular medical man, such skill might be required. The class of this humble practitioner was absolutely necessary for the poorer classes, and, although on the one hand it was fit the law should protect a patient by punishing a person for gross want of skill, yet he thought there would be much to be lamented if it was applied with such severity as to render a party not possessing skill of this kind liable to punishment for manslaughter!'

Charges of manslaughter have frequently been brought against medical practitioners in cases of midwifery. In some instances gross mismanagement has been proved; the uterus, and even parts of the viscera, have been torn away, and in such cases convictions have very properly followed. It is well known, however, that much difference of opinion exists among the most eminent practitioners of midwifery respecting the treatment to be pursued in certain cases of difficulty, as where the after-birth presents (placenta previa). There are eminent accoucheurs who advise in this case entirely opposite modes of practice, and who look upon that pursued by the other as of the most dangerous kind.

When death is not a result of medical treatment, an action for damages may be brought against the practitioner for malapraxis. From the evidence given on some of these occasions, it appears that an action of this kind is occasionally resorted to as a very convenient way of settling a long account.

It has been a question whether slight deviations from the ordinary mode of performing operations should involve a practitioner in a charge of malapraxis. I am not aware that this question has been raised in England; but a remarkable instance occurred in the United States a few years since, in which an action was brought and damages were recovered against a medical man for alleged negligence in vaccinating a young woman (case of H. L. Landon). Some inflammation of the skin followed the operation, which, it was alleged, was performed nearer to the elbow-joint than was usual. The plaintiff soon recovered from the effects. The most singular feature of this case was the ruling of the judge: he is reported to have said—'In performing the operation of vaccination or inoculation, the physician is liable for all consequences if he neglects the usual precautions, or fails to insert the virus in that part of the arm usually selected for the purpose; notwithstanding many other parts of the body might be proved to be equally proper and even more suitable locations!' If this be law, it is a very singular specimen of transatlantic jurisprudence. It might as well be ruled that legs should always be amputated at the same spot; and in case of neglect of this rule, that the operator should be made responsible for the result.'
When on these occasions there is a division of opinion among men of equal experience respecting the necessity for an operation or the proper performance of it, a practitioner who is made defendant has a right to expect that a verdict will be returned in his favour; since it is not to be supposed that, in order to recover payment for a bill, or to answer a charge of unskilfulness, a man's practice should receive the unanimous approval of the whole of his professional brethren, especially in cases in which there is an acknowledged difference of opinion respecting the treatment. On this showing, a man would never be able to recover his charges for the treatment of a case of severe burn or scald; since some practitioners consider it malappraxis to adopt the stimulating, while others equally regard it as malappraxis to adopt the cooling plan of treatment! All that appears to be expected is a reasonable accordance in treatment with received professional doctrines.

CHAPTER 30.

CICATRIZATION OF WOUNDS.—EVIDENCE FROM CICATRICES.—CHANGES IN AN INCISED WOUND.—IS A CICATRIX ALWAYS A CONSEQUENCE OF A WOUND?—ARE CICATRICES WHEN ONCE FORMED INDELIBLE?—CHARACTERS OF CICATRICES.—THEIR AGE OR DATE.—CICATRICES FROM BLEEDING, CUPPING, SETONS AND ISSUES.—CICATRICES FROM BURNS.—CICATRICES FROM DISEASE DISTINGUISHED FROM THOSE OF WOUNDS.

Cicatization of wounds.—The time at which a particular wound was inflicted may become a medico-legal question, both in relation to the living and the dead. The identity of a person, and the correctness of a statement made by an accused party, may be sometimes determined by an examination of a wound or its cicatrix. So, if a dead body be found with marks of violence upon it, and evidence adduced that the deceased was maltreated at some particular period before his death, it will be necessary for a practitioner to state whether, from the appearance of the injuries, they could or could not have been inflicted at or about the time assigned. A case was tried at the Taunton Spring Assizes, 1841 (Reg. v. Raymon), wherein evidence of this kind served to disprove the statement made by the accused. The prisoner was charged with maliciously cutting and wounding the prosecutrix. There was a cut upon his thumb, which he accounted for by saying it was from an accident that had occurred three weeks before. The medical witness declared, on examining it, that it could not have been done more than two or three days, which brought the period of its infliction to about the time of the murderous assault. This with other circumstances led to a conviction.

An incised wound inflicted on the living body gradually heals by adhesion, when no circumstances interfere to prevent the union of
the edges. For eight or ten hours the edges remain bloody—they then begin to swell, showing the access of inflammation. If the parts are not kept well in contact, a secretion of a serous liquid is poured out for about thirty-six or forty-eight hours. On the third day this secretion acquires a purulent character. On the fourth and fifth days, suppuration is fully established, and it lasts five, six, or eight days. A fibrous layer, which is at first soft and easily broken down, then makes its appearance between the edges of the wound: this causes them gradually to unite, and thus is produced what is termed a cicatrix. Cicatrization is complete about the twelfth or fifteenth day if the wound is simple, of little depth and width, and affecting only parts endowed with great vitality. The length of time required for these changes to ensue will depend—1. On the situation of the wound; wounds on the legs are longer in healing than those on the upper part of the body. If a wound is situated near a joint, so that the edges are continually separated by the motion of the parts, cicatrization is retarded. 2. On the extent; a deep or wide wound is long in undergoing cicatrization. Wounds involving many and different structures are also longer in healing than those simply affecting skin and muscles. 3. On the age and health of the wounded person; the process of cicatrization is slow in old persons as well as in those who are diseased and infirm. In an incised wound the cicatrix is generally straight and regular; but it is semilunar if the cut is oblique. It has been said that the cicatrices of incised wounds are rectilinear, but this is not always the case; in general, they are more or less elliptical, being wider in the centre than at the two ends—this appears to be due principally to the elasticity of the skin and the convexity of the subjacent parts; thus it is well known that in every wound on the living body the edges are more separated in the centre than at the ends, and this physical condition influences the process of cicatrization. When the wound is in a hollow surface, or over a part where the skin is not stretched, as in the armpit or groin, then the cicatrix may be rectilinear, or of equal width throughout. If there were any loss of substance in an incised wound, or if the wound were lacerated or contused, the cicatrix would be irregular, and the healing would proceed by granulation. The process might then occupy five, six, or eight weeks, according to circumstances. When healed, the cicatrix would be white, and if there had been a loss of substance it would be depressed and present a puckered appearance; the surface of the skin would be uneven. (See an essay on this subject by Dr. Krügelstein, Henke’s ‘Zeitschrift der S.A.’ 1844, b. 2, s. 75.)

Is a cicatrix always a consequence of a wound?—Assuming that the term wound implies a breach of continuity affecting the layers of the true skin (cutis), a cicatrix is always produced in the process of healing. Slight punctures or incisions with a lancet, and even leech-bites, affecting only the surface of the cutis, may leave no trace after a few weeks or months. In an even cut made by a very sharp instrument, especially if it is in the direction of the fibres of
subjacent muscles and the parts are kept in close contact, the cicatricis is even, linear, and sometimes so small as to be scarcely perceptible; and if the skin is white, it may be easily overlooked. Wounds of this kind are not, however, commonly the subject of medico-legal inquiry. If, on examining a part, where at some previous time a stab, cut, or burn involving the cutis is alleged to have been inflicted, we find no mark or cicatrix, it is fair to assume that the allegation is false, and that no wound has been inflicted, making due allowance for the fact that mere abrasions of the cuticle, or very slight punctures and incisions, often heal without leaving any well-marked cicatrices.

A trial took place at the Old Bailey in 1834, in which the late Mr. Carpus was able to rescue a man who was wrongly charged with being a convict, and with having unlawfully returned from transportation. The chief clerk of Bow Street produced a certificate, dated in 1817, of the conviction of a person, alleged to be the prisoner, under the name of Stuart. The governor of the gaol in which Stuart was confined believed the prisoner to be the person who was then in his custody. The guard of the hulks to which Stuart was consigned from the gaol, swore most positively that the prisoner was the man. On the cross-examination of this witness, he admitted that the prisoner Stuart, who was in his custody in 1817, had a wen on his left hand; and so well marked was this, that it formed a part of his description in the books of the convict-hulk. The prisoner said his name was Stipler; he denied that he was the person named Stuart, but from the lapse of years he was unable to bring forward any evidence. The Recorder was proceeding to charge the jury, when the counsel for the defence requested to be permitted to put a question to an eminent surgeon, Mr. Carpus, who happened accidentally to be present in court. He deposed that it was impossible to remove such a wen as had been described without leaving a mark or cicatrix. Both hands of the prisoner were examined, but no wen, nor any mark of a wen having been removed, was found. Upon this the jury acquitted the prisoner. It is highly probable, however, that but for the accidental presence of Mr. Carpus, the prisoner would have been convicted and transported for life, from the unfortunate resemblance which he was supposed to bear to the real convict, Stuart.

The cicatrices resulting from wounds after the performance of surgical operations, are commonly well indicated by their regular form and their situation. They may present the characters of punctured or incised wounds, or a mere division of parts for the excision of tumours. As the healing process is assisted by art, the cicatrices are commonly marked by great regularity. The identity of a living person, or of a dead body, may be proved by the existence of a cicatrix which has been the result of a surgical operation. There can be no pretence for saying that such cicatrices, when they have involved the true skin, disappear. Whether the arm is wrinkled or unusually fat, the cicatrix may be found if it has ever existed.
FROM THE PRESENCE OR ABSENCE OF CICATRICES. 281

A case in which this question respecting the permanency of cica-
trices from wounds was raised, was referred to me under the follow-
ing circumstances. (Reg. v. Henry Reed and Elizabeth Donelan,
Chelmsford Spring Ass. 1842.) The medical evidence was to the
effect that 'there was a wound on the nose of the prosecutrix,
apparently inflicted by some sharp instrument, and the bridge of
the nose was broken down. The weapon had entered half an inch,
and had caused profuse bleeding. The wound was so deep that if
it had entered a little higher up, in the eye, it might have caused
death.' In the defence it was urged that no weapon had been used;
and that although the male prisoner had struck the prosecutrix a
blow, the female prisoner had taken no share in the assault. It
does not appear that any medical evidence was called to show in
what state the prosecutrix was at the time of the trial. It was as-
sumed that a weapon must have been used, and the prisoners were
convicted, the one of stabbing, and the other of aiding and abetting.
About six months after the alleged stabbing, and some weeks after
the prisoners had been convicted and sentenced to punishment, the
face of the prosecutrix was examined by two surgeons (one of them
a practitioner of twenty-eight years' standing), and they both de-
posed that there was no mark of a cicatrix from a stab, of fracture
of the nose, or of any personal injury whatever. Other surgeons
were requested to examine the face of the prosecutrix, but this she
declined permitting; and as there was no power to compel her, the
medical facts of 'the case were referred' to Professor Quain, Mr.
Guthrie, Mr. Key, and myself. The evidence of the surgeons at
the trial was laid before us, with the statements of the two surgeons
who subsequently examined the prosecutrix. We all agreed that
if such a wound as that described in the medical evidence had been
inflicted, there would have been a visible cicatrix and a ridge or pro-
minence indicative of the situation where the bridge of the nose
was stated to have been broken; and as no such marks could be
perceived by two well-informed surgeons, we considered it im-
probable either that such a wound as that described could have
been inflicted, or that a weapon could have been used in the
assault. The question really to be decided was—Could all traces
of such a wound as that above described, be effaced in a period
of six months or even during the life of a person? Either the
wound must have been misdescribed, or some marks of its past ex-
istence in the form of a cicatrix, would unquestionably have been
found. In Barnett v. Roberts (Court of Exchequer, Nov. 1867), an
action was brought by plaintiff, a surgeon, for injury resulting from
an assault by the defendant. It appeared from the evidence that
the defendant struck the plaintiff two violent blows on the head
with the handle of his umbrella. It was alleged that this had caused
a fracture of the skull, and had produced a long and painful illness.
Mr. Erichsen and Dr. F. Winslow gave evidence for the plaintiff to
the effect that in their judgment the skull was fractured, the brain
organically injured, and the plaintiff's recovery rendered practically
hopeless. On the other hand, for the defence, the late Mr. Partridge and Mr. Wood, with other witnesses, deposed that the skull was not fractured, and that the depression supposed to indicate the fracture, was congenital and not the result of a blow or accident. A skull with a natural depression in it was produced and shown to the jury. The plaintiff's head was examined in court by Mr. Partridge. He could feel no cicatrix in the alleged seat of injury, but there was a thickening over the depression. On this evidence the jury could not agree. There would be no difficulty in such a case if a careful examination was made soon after the assault; but when surgical opinions are taken some weeks or months afterwards, the witnesses are not likely to agree. Even if there had been a cicatrix on this occasion, this would not have proved that the skull had been fractured. The injury to the brain might well have been a result of the violence, although there had been no fracture.

Characters of cicatrices. Their age or date.—In an early stage a cicatrix is softer and redder than the surrounding skin, but after some months or years, it becomes white, hard, smooth, and shining. The fibrous substance of which it is formed receives less blood than the uninjured skin; hence on compressing the skin around an old cicatrix, its situation and form are well marked by reason of the blood not readily entering into it on removal of the pressure. As the age of a cicatrix increases, it becomes smaller, thicker, whiter, more shining and less sensitive. It is fibrous in structure, dense, without sebaceous follicles, adipose cells or hairs, and it contains but few absorbents and exhalants. The time required for these changes to take place cannot be defined. In one person they may be observed in a few months, and in another only after some years. The tissue of which an old cicatrix is formed, is different from that of the skin; it is harder, contains less blood, and is destitute of any coloured pigment, so that its whiteness, which is remarkable on the cicatized skin of a negro, is retained through life. If any cicatrices were easily obliterated, it would be those which are even and regular—the results of incised wounds by sharp instruments; but I have observed that cicatrices of this kind have certainly retained their characters unchanged in one instance for twenty, and in another for twenty-five years. According to the observations of Dupuytren and Delpuch, the substance of a cicatrix is not converted into true skin—it never acquires a rete mucosum, i.e., the membrane which gives colour to the skin. Although this is generally true of incised and punctured wounds, yet contused and lacerated wounds on the legs of persons advanced in life, frequently present a brown discoloration from the deposit of a brown pigment. In the cicatrices of lacerated and contused wounds, the form of the weapon with which the wound was inflicted is sometimes indicated. It is not, however, easy to distinguish the cicatrix of a stab of old date from that produced by a pistol-bullet fired from a distance. In both cases the edges may be rounded and irregular, and the cicatrix puckered, unless the stab has been produced by a broad-bladed weapon. If
no mark of cutting can be perceived within a few months of the period at which a severe wound is alleged to have been inflicted, it is reasonable to infer that there has been some mistake, or that the circumstances have been greatly exaggerated.

It is important to observe that all cicatrices are of smaller size than the original wound, for there is a contraction of the skin during the process of healing. This is especially noticed with regard to the cicatrix of a stab, which is frequently of a triangular form. A recent stab, owing to the elasticity of the skin, is smaller than the weapon; and the resulting cicatrix is always smaller than the wound. Hence it is difficult to judge of the size of the stabbing instrument from an examination of an old cicatrix. Cicatrices arising from a loss of substance in the cutis, or true skin, are usually indicated by a depression. In gunshot wounds, if the projectile has been fired from a distance, the cicatrix is of smaller dimensions than the ball. It represents a disk depressed in the centre, and attached to the parts beneath, while the skin is in a state of tension from the centre to the circumference. The amount of depression is great in proportion to the quantity of cellular membrane beneath. If the bullet has been fired near to the body, the cicatrix is large, deep, and very irregular. In this case there may be the bluish marks of tattooing from the gunpowder carried into the skin. If the projectile has made two apertures, the aperture of exit is known by the greater size and irregularity of the cicatrix. (See ‘Ed. Monthly Jour.’ 1854, 10, 370.)

There are no appearances in a cicatrix which will allow us to fix the date at which the wound leading to its production was inflicted, and it is often most difficult to say how or by what means it was inflicted. If the person is living, he may give a description of the injury and the date of its production, which may be consistent or inconsistent with the appearances presented. As Casper justly remarks (‘Ger. Med.’ 1, 115), it requires more than two, three, or four weeks to produce the hard white shining appearance of an old cicatrix; but when it has once acquired these characters, there are no medical data for enabling us to determine whether the injury was inflicted two, three, or even ten years before. A proper attention to the number, situation, and appearances presented by cicatrices on the living or dead body, will, however, sometimes enable a medical witness to establish or disprove the identity of persons.

Cicatrices from wounds or disease. Imputed.—As there are imputed wounds, so there may be imputed cicatrices. It is rare to hear of frauds of this description: the wound must be made in anticipation at a long date in order to give the appearance of an old cicatrix—the part wounded must be selected in order to carry out the fraud, and the person producing the wound may carry the incision or puncture too deeply or too superficially, and thus lead to detection. It is more likely that an impostor may seek to gain his object either by attributing the cicatrices of wounds accidentally received to other causes, or by ascribing cicatrices which have resulted.
from disease, to some particular cause occurring in early life. Thus a vulgar impostor with old scars upon his person, may make use of them as proofs of identity. Such scars may really exist: they may be clearly proved to be of old date, and they may be assigned to causes which cannot be disproved except by a close medical examination. The scars or cicatrices may have arisen from scrofulous ulcers or abscesses, in which case it would not be difficult to distinguish them from the cicatrices of wounds. In the case of Smyth v. Smyth (Gloucester Summer Ass. 1853), the plaintiff claimed to be the rightful heir to certain estates occupied by the defendants. He based his claim upon some deeds (alleged by the defendants to have been forged), in which it was stated that the lost heir to these estates would be known by certain marks on his right hand and wrist, suggested to have been received at the time of his birth in 1797, by reason of his having been brought into the world with instruments! It was one of the curious features of this extraordinary case of imposture that no medical opinion was taken or required by the claimant, on the probable nature and origin of these marks. When requested at the trial to show his hand to the jury, the mark had the appearance of a puckered cicatrix from a scrofulous ulcer near the wrist. Similar marks from scrofulous sores were seen upon his neck. His statements regarding himself, and the circumstances on which he based his claim, were so improbable and contradictory that the case speedily broke down. A question of this kind may occasionally present some difficulty, but a close examination of the cicatrix, with a consideration of the statement of the person on its mode of production, will enable a practitioner to arrive at a satisfactory conclusion respecting its origin. Scrofulous ulcers are generally observed to leave irregular and deeply-furrowed cicatrices, with smooth depressions, surrounded by hard and uneven margins. According to Schneider, the scorbutic cicatrix is at first dark, bluish-red in colour, soft to the touch, somewhat raised and rather painful; in the course of time it becomes flatter, of a reddish-brown colour, approaching to green (!) in the centre, very thin and easily injured. Syphilitic cicatrices are characterized by great loss of substance: they approximate the margins of the deep ulcers before their granulations have had time to reach the surface. Glandular cicatrices are irregularly tumefied, generally deep, hardened, and of a reddish-brown colour. These varieties cannot easily be mistaken for the cicatrices of wounds; but it is not so easy to distinguish them from each other. M. Malle remarks that the form and shape of the cicatrix depend less on the cause producing it than on its anatomical position. The elasticity of the skin, the looseness or density of the cellular tissue beneath, the depression or convexity of the surface and the tension of the muscles, are circumstances which will modify the form of the ulcer and the cicatrix proceeding from it. (‘Ann. d’Hyg.’ 1840, 1, 430.) An expert can seldom do more than distinguish the cicatrices of ulcers arising from morbid causes, from those which have resulted
from violence. Cicatrices in the inguinal regions raise a presumption that they are of syphilitic origin, but it is impossible to say that they may not have been derived from simple abscesses. The cicatrices of scrofulous ulcers have some resemblance to those produced by fire-arms, but it may be presumed that they are of a scrofulous origin when they are situated in the region of the neck, below the jaw, or in the course of the parotid gland, especially when there is any enlargement of the neighbouring glands. A puckered and folded state of the skin around the cicatrix would confirm this opinion.

Is a cicatrix, when once formed, ever removed or so altered by time as to be no longer recognizable?—This is a question which sometimes presents itself to a medical jurist both in civil and criminal proceedings. When a cicatrix has been produced by the healing of a wound involving a loss of substance in the cutis or true skin, it is permanent. In wounds involving the whole substance of the skin, the cicatrix which is once formed does not disappear, although it may undergo some changes and become less distinct in after life. Wounds which heal by suppuration and granulation, generally leave behind them cicatrices which remain for life. The marks arising from the pustules of vaccination, small-pox, herpes zoster, and those produced by setons and issues, leave cicatrices easily recognizable at any period.

A man may allege, in proof of his identity, that at a former period of his life he was bled in the arm, or foot, or in the temporal artery, that he had undergone cupping, or that he had had a seton or issue in his arm. The simple questions for a medical witness will then be—Are the marks left by these operations present? Are they visible in the situations in which such operations are usually performed? Do they present such cicatrices as would be likely to result from the alleged operations? If not visible at the time of examination, is it or is it not probable that they may have spontaneously disappeared by lapse of time? These simple questions may carry with them momentous issues, either in a civil or criminal case.

With regard to cupping, when the operation is properly performed, the numerous small and slightly elliptical cicatrices are well indicated by their whiteness and symmetrical position. The cicatrix left by the use of the lancet in bleeding from a vein in the arm or foot, is similar to that of cupping—white, linear, slightly elliptical, with its length in the direction of the vessel, and not across it. Between forty and fifty years ago, bleeding was a frequent operation, the same person requiring to be bled at spring and fall. The cicatrices that resulted were always perceptible; in some instances, when the person had been bled in or near the same part of the vein, a hard or knotted white cicatrix was produced, raised above the level of the skin. There is no reason to believe that such a mark, involving as it does the whole cutis, ever disappears, Dr. Beck quotes the case of a child, which had been bled in the right arm.
when sixteen months old. When nearly four years old the child was lost, and two years subsequently, the godmother, seeing two boys pass, was struck with the voice of one of them; she called him to her, and was convinced that it was her lost godson. The identity was also considered to be proved by the discovery of a cicatrix from bleeding in the right arm, and a cicatrix from an abscess in the left knee, both of which were present in the lost child, and also in the one that was found. The latter, however, had upon his body, marks of the small-pox, while no marks of this kind were on the body of the former. The child was claimed by a widow (Labrie), and many witnesses deposed that it was really her son. The Court decided in her favour, chiefly on the ground that the lost child was not marked with the small-pox. ('Med. Jur.' vol. i. p. 655.)

It was admitted that this child had in the arm and knee, cicatrices similar to those which were known to exist in the one that was missing, and had the medical witnesses agreed about the causes of them, it is probable that the decision would have been different. The cicatrix at the knee was ascribed to the use of caustics by some of the surgeons, and to a slight abrasion by others. The widow Labrie admitted that her child had never been bled in the arm, while the missing child had certainly undergone this operation; but on so simple a question as the presence of a cicatrix from bleeding, there was a conflict of medical opinion! Three surgeons examined the cicatrix, and declared that it had been made with a sharp instrument. Others deposed that it was not a cicatrix from bleeding, but from the opening of an abscess. As the child had been missing two years, it might have had small-pox in the meantime. If a proper examination of the two cicatrices had been made by medical assessors appointed by the Court, this conflict of medical opinion would not have arisen, and the decision might have been different.

According to Casper, the cicatrix left by venesection may sometimes disappear, although he adduces no fact in proof of it ('Gericht. Med.' vol. i. p. 113), while all surgical experience is, I believe, decidedly against it. Devergie correctly states that every wound which involves the thickness of the skin, leaves a cicatrix which is indelible. ('Médecine Légale,' vol. ii. p. 217.) According to him, it may become less distinct by time, but it never entirely disappears.

In all contested cases of this kind, where there is ample room for a difference of opinion, it would be more satisfactory to take the evidence of skilled medical assessors appointed by the Court, than to receive that of medical men specially selected by solicitors to uphold their different views of the case. This would be giving its true value to medical testimony, in aiding, by a proper interpretation of physical signs, to clear away the doubts which necessarily arise by trusting to a supposed remembrance of features, voice, and gesture, after the lapse of many years.

By a remarkable coincidence two persons may have cicatrices on or about the same part of the body, produced by cuts, punctures, or abscesses in early life; and serious mistakes may be made under
CICATRICES FROM SETONS ISSUES AND PUSTULES.

these circumstances. A case is reported to have occurred in France in 1794, in which a man named Lesurgues was tried, convicted, and executed for robbery and murder. There were some doubts at the time as to his identity, and strong exertions were made to save his life. Soon after his execution the real murderer was discovered, between whom and Lesurgues, who had had no hand or part in the crime, there existed a wonderful resemblance in stature, complexion, and features. But the most extraordinary part of the case was that Lesurgues, like the real criminal, had a cicatrix or scar on the forehead, and another on the hand; and there is no doubt that these points of resemblance, which upon a proper scientific examination might have been proved to be really different, became the turning-point of the case, and led to the conviction of an innocent person.

The parts selected for setons or issues are generally about the shoulder or the nape of the neck. The situation of the cicatrices might thus serve to throw some light on their origin. The cicatrices left by an issue cannot be mistaken for the cicatrix caused by a seton. In the first place, it is single, depressed below the level of the skin, and rounded in its margin, and, as in all cases in which the cutis is destroyed, it remains as an indelible mark. It is impossible by any process to restore to the skin its uniformity of surface. M. Malle has pointed out that the double cicatrix which is left by the application of a seton may present an appearance which might be mistaken for the entrance and exit-apertures of a bullet, since in both cases a band of hardened lymph may be felt between the two cicatrices. When a hard band of connection cannot be felt between them, the marks cannot be owing either to a bullet or a seton, but they may be due to a bite, or to separate wounds produced in the skin at or about the same time.

With respect to blisters, they produce only a superficial and temporary injection of the cutis. They do not commonly leave a scar, unless their irritant action has extended to the substance of the cutis, and has led to ulceration and suppuration; the ulcerated being separated from the non-ulcerated portions of skin, and indicated, according to Dupuytren, by an indelible brown mark.

The cicatrices left as a result of the application of the true vaccine lymph have a peculiar irregular honeycombed appearance, with white streaks slightly depressed below the level of the surrounding skin. The spurious vaccine mark is of a reddish colour, not depressed, and not presenting the honeycombed appearance and white streaks of the cicatrix of the true pustule.

The scars produced by small-pox are in the form of deep depressions, showing a complete destruction of the cutis.

Independently of cicatrices from local injury, these cases of identity may present other physical signs, such as moles, nevi materni, and other congenital defects to which ordinary witnesses may be able to testify. There can be no fallacy of memory touching the form, size, and position of such marks, and they differ from cicatrices in this—they cannot be artificially imitated. They may, it is
true, be removed, but only by actual cautery or caustic applications. If thus removed a cicatrix is left in the skin, which is indelible. A case is reported by Dr. Beck in which a girl, Salome Müller, had been sold as a slave, but her identity as the child of German parents was proved after fifteen years by two marks resembling moles about the size of coffee-grains, on the inside of the thighs. They were proved to have existed in the child, and they were proved to exist in the same parts of the body of the girl eighteen years afterwards. After much litigation she was, upon this evidence, pronounced to be a free woman. ('Med. Jur.' vol. i. p. 662.)

Cicatrices from burns.—This subject has been fully investigated by M. Malle, of Strasburg. ('Ann. d’Hyg.' 1840, 1, 422.) A superficial burn in healing produces a broad irregular cicatrix, varying with the form of the burning body. If the burn has extended to some depth below the cutis, the cicatrix is deep and has a rounded margin; but in the depression it is irregular and contracted in proportion to its depth. Caustic solids produce cicatrices with regular edges, as the corrosive substance easily penetrates uniformly through the deep layers of the skin. Caustic liquids produce only superficial marks unless they have been allowed to penetrate deeply, when by the destruction of parts they may give rise to deep and irregular cicatrices. When the cutis is destroyed, an indelible cicatrix remains, whether it is the result of a burn from a heated solid or from the chemical action of a highly corrosive liquid. In a case in which the strongest nitric acid was applied to the skin for the removal of a mole, the cicatrix produced was visible after twenty-five years, and will no doubt continue for life.

The subject of cicatrices as they are found in the neck, whether arising from wounds, scrofulous disease, or burns, has been fully examined by Dr. Gütterbock, of Berlin, in an elaborate paper published in Eulenberg's 'Vierteljahrschrift' for 1873, 2, p. 84.

CHAPTER 31.

MEDICAL EVIDENCE OF IDENTITFY FROM COLOURED CICATRICES OR TATTOO-MARKS.—MODES AND DATE OF PRODUCTION.—DURABILITY OF THESE MARKS.—THEIR ALLEGED SPONTANEOUS DISAPPEARANCE.—CASES OF IDENTITY FROM TATTOOING.—SIMULATED MARKS.—TATTOO-MARKS ON THE DEAD.—MEDICAL RESPONSIBILITY.

The subject of tattooing has been noticed by medical jurists. Several trials have occurred of late years in France and Germany, which show the great importance of this subject in cases of contested personal identity; and the Law Courts of England have, during the last two years, been occupied with a case in which some of the issues turn upon a similar question. (See papers by Dr. Tardieu, 'Ann. d'Hyg.' 1855, 1, 171; also by Dr. Horteloup, in the same journal, 1870, vol. 2, p. 440; and Casper's 'Gerichtliche
The presence of tattooed or coloured marks on the skin of a person, verified by a competent observer, may become the strongest possible proof of identity, and their proved absence, if not accounted for or explained, may furnish the most convincing evidence of non-identity. An escaped convict may allege that he never was tattooed. There may be no coloured marks on his skin, but a medical expert may be able to demonstrate that there have been such marks, and that traces of them still exist. A man who is found to be tattooed may, in order to escape punishment, pass himself off as another person also tattooed. In this case medical evidence must be derived from a comparison of the colour, form, and situation of the marks in the two. A tattooed man may claim an estate, and adduce the tattoo-marks as a proof of his identity. It would be difficult for an imposter setting up a false claim to simulate marks of this kind. The operation would require time and an accurate imitation of the colour and design, as well as of the part of the body selected. Members of the family would be able to say whether there were or were not such marks as those which had existed on their missing relative. There may be satisfactory proof that the missing person was tattooed, while an imposter may allege that he had not been tattooed. The fact, however, may be that at some former period of his life a man had undergone this operation, and to prevent a discovery of his identity, he had removed the marks by cautery or other means.

As the presence of tattoo-marks, and their correspondence in situation, colour, and design with those on a missing person would furnish the strongest possible evidence of identity, so their absence in a given case, unless clearly explained, must be considered as the best proof of non-identity.

Coloured cicatrices. Mode and date of production.—These marks arise from small punctured wounds made into the true skin with three or four sharp needles closely bound together. The needles are dipped in colouring matter at each time that the punctures are made. When the substance of the cutis is penetrated as it ought to be, in order to leave a permanent mark, there is in a few hours much swelling of the skin, with general inflammation.

The colours commonly employed in tattooing are charcoal (gunpowder), China ink, vermilion, and indigo. Other vegetable colouring matters of a fugitive kind are sometimes used. China ink and charcoal, although black, produce designs on a white skin which have a bluish tint. The colouring matter thus deposited mechanically in these minute punctured wounds, after the first attack of inflammation has passed off, remains permanently encysted in the substance of the cutis or true skin and in the cellular membrane below it. It has been there found after death.

According to M. Bercheon, the local symptoms of irritation and inflammation last about a fortnight. At the end of the first month the lines of colour appear wider than they will be ultimately. About the sixth week the cuticle begins to scale off, and at the end of about
two months or a somewhat longer period, the skin acquires its normal condition. The designs in vermillion are at this early time much more intense than those in China ink. When the local symptoms have subsided, the tattoo-marks are fixed, and it is impossible to assign a date to them.

Durability of the marks. Alleged spontaneous disappearance.—In imperfect cases of tattooing, when soluble and fugitive colours are used and the surface of the cutis only is penetrated, the marks may disappear or be removed by artificial means. Not so when the colouring matter is carried completely into the substance of the cutis or true skin. It there forms an intimate combination with the fibrous structure of the skin, and remains permanently fixed. M. Rayer has shown by the maceration of tattooed skin that the cuticle may be removed and it is colourless as in ordinary skin. This, therefore, proves that the colouring matter is firmly imbedded in the cutis and cellular tissue below it. ('Ann. d'Hyg.' 1866, 1, p. 194.) A maceration of the skin in water for two months did not affect the colour of the tattoo-marks, and M. Tardieu found that no solvent could remove the colouring matter without at the same time destroying the texture of the skin (Op. cit. p. 200).

In most anatomical museums, preparations of tattooed skin may be seen. In Guy's Hospital Museum there are five. The designs have been produced with gunpowder and some small portions with vermilion. In one of them which has been preserved in spirit for forty years, the marks on the skin of the leg represent an animal like a goat; they are of a bluish-black colour. In the part from which the cuticle has been removed the colour appears much more intense. There is nothing to indicate that this preparation has undergone the slightest change of colour during its long maceration in spirit. This and the other preparations also show that no colour is removed by removing the cuticle; on the contrary, the colour becomes brighter and more intense by contrast with the white surface of the cutis. Another preparation of the skin of the arm represents in blue-black (carbon) and red (vermillion) the crucifixion, with the date—Nantes, 1808. In this also the cuticle has been removed in part, with the effect of bringing out the colours more strongly. Sixty-five years have passed since these marks were produced, but neither while living nor in undergoing maceration in water and spirits after death, is there any appearance of change in the depth of colour or in the outlines of the design. In a third, the skin was taken from the arm of a sailor who died in Guy's Hospital in 1867. The designs represent the arms of England, and Adam and Eve with the tree of life and the serpent. It has been noticed with regard to this preparation that the red or vermilion colour has become less marked during the sixteen years that it has been in the museum. Another preparation of the skin from over the scapula has simply a large letter D, the brand of a deserter. This was removed from a dead body in 1860. The fifth, of the **date of about ten years**, represents, in a very perfect manner, a ship.
ALLEGED DISAPPEARANCE OF THESE MARKS.

in full sail with the figure of a woman. This has a date of ten years; the skin was taken from the body of a sailor.

These facts show how durable the carbonaceous colours are when the substance has once penetrated the cutis. No amount of maceration appears in any way to affect or alter them.

A surveyor accidentally punctured the skin of the back of his hands with a sharp steel pen charged with China ink. A bluish-black spot was formed after the healing of the wound; this was quite visible and unchanged when I saw the hand after six years, and it would no doubt continue for life. A near relative of my own was tattooed with China ink on the inside of the arm. The designs, which were of a bluish colour, remained within my observation unchanged up to his death, i.e. for the long period of twenty-eight years. It has been rather hastily assumed that in a certain percentage of cases, tattoo-marks spontaneously disappear in the course of time. Thus, M. Hutin examined 506 cases of tattooing. Relying upon the statements made by the soldiers, sailors, convicts, and others, his conclusion was that in 47 the marks were completely obliterated after a period of from 28 to 60 years; in 117 the marks were partially obliterated after a period of from 10 to 64 years; but in 342 the marks were quite distinct after a space of from 4 to 65 years! With the exception of two cases of tattooing in vermilion which disappeared after 30 years, M. Tardieu found that the disappearance of tattoo-marks did not take place until after 30 to 40 years, and of the only two tattooings with China ink which were obliterated, one disappeared after 45 and the other only after 60 years.

These and similar facts show that in a few cases these marks may fade or become less visible, but this change requires a period of ten years at the least. The fading of the marks most probably arises, not from a removal of the colouring matter by the absorbents, but from the fact that in some cases the tattooing has been superficially performed on a thin skin. If the absorbents can remove from the tattoo-marks such insoluble colours as carbon and vermilion, it would scarcely require a period of from ten to twenty-eight years for their removal, and on this theory it would be impossible to explain why tattoo-marks remain permanent in any case. This subject has been considered by Dr. Horteloup. (‘Ann. d’Hyg.’1870, 2, p. 453, and 1872, 1, p. 423.) It is said that the vermilion colour has been seen in substance in the neighbouring absorbent glands, but it does not appear that mercury has ever been detected in these glands (Casper, ‘Gericht. Med.’ vol. 1, p. 118), the crucial test of its presence!

The nature of the colouring material appears to have some influence on the durability of the tattoo-marks. Thus M. Hutin found that out of 78 persons who had been tattooed with vermilion alone, the tattoo-marks had disappeared in eleven, and that out of 104 tattooed with black pigment, such as carbon, China ink, &c., not one had become obliterated. This permanency of the black pigment has also been noticed by other observers.
The general conclusion from these observations is that tattoo-marks once properly made in the cutis are practically indelible, but that when the operation is imperfectly performed, the marks may, in the course of many years, become lighter and disappear. This is observed more commonly with red colouring matter than with the black or carbonaceous colours. As accurate information can seldom be obtained respecting the tattooing in early life, it may be inferred in a contested case in which the marks are proved to have disappeared that the tattooing was imperfectly performed. This point, however, admits of refutation when it can be proved that the marks are still visible on the arm of another tattooed at the same time, by the same person, and with similar materials.

Removal of tattoo-marks by art.—Many absurd statements have been made by convicts respecting the removal of tattoo-marks from their skins. The only methods by which such marks admit of removal are by excision of the cutis or the application of the actual cauterity or escharotics to destroy the skin. In such cases cicatrices remain, which, under a proper examination, may lead to detection.

A case occurred to M. Tardieu in which the fact of obliteration was the main question for solution. ('Ann d'Hyg.' 1855, 1, 201.) A man named Aubert was charged with having committed a robbery in 1843. His defence was that he was at that date confined in a certain prison under the assumed name of Solignon. On searching the prison-register it was found that a man named Solignon was there confined at the date assigned, and the description of the prisoner showed that he was tattooed on both arms,—on the left there were two hearts, a dog, and other emblems; on the right a man, a woman, a dog, and two hearts. On examining the prisoner, Aubert, no marks of tattooing were seen upon his arms, but he affirmed that he had been tattooed by a friend in 1840, and again in 1846, with a blue vegetable ink, but that he had some months previously removed the marks by a chemical process. He also described the marks: those on the right arm representing the bust of a woman and the letters J. S., and on the left a tomb, with foliage, &c. In 1846 a hunting scene had been added, but this was the faintest of all.

By close examination of the skin with a lens in a strong light, M. Tardieu was able to detect faint white marks like cicatrices representing the outline of a tomb, with two hearts; and the marks indicative of two letters were also detected on the skin of the other arm by the same means. By these observations the non-identity of the accused Aubert with the former prisoner Solignon was clearly proved. Both were tattooed, but the tattoo-designs were quite different, and under less skilful hands than those of M. Tardieu, Aubert might have escaped the punishment which he merited.

The prisoner Aubert communicated to M. Tardieu the plan which he had adopted for removing the tattoo-marks. He first applied an ointment of strong acetic acid. He then applied a weak solution of potash, and afterwards hydrochloric acid. The skin which had been removed by these caustics was gradually reproduced; but although the colouring material was removed, linear cicatrices were left in
the skin in every part to which the tattooing needles had been applied. M. Tardieu subsequently tried this process on some tattoo-marks, and found that the colouring matter might be thus removed, but that traces indicative of the original designs were still left in the skin. Simple friction of the skin will sometimes suffice to bring out obliterated tattoo-marks. An escaped convict was on trial before a French Court, and the question turned upon his identity with a prisoner known to have been tattooed. There was no appearance of coloured marks upon his arm, and the question submitted to M. Leroy, who was consulted by the President of the Court, was—Whether the man had ever been tattooed? M. Leroy applied strong friction to the skin of the arm. This had the effect of bringing out white lines as cicatrices with a slight bluish tint. By this means the word 'Sophie' was plainly legible in white marks on the reddened skin. This fixed the identity of the convict, who thereupon was disposed to knock down the witness. ('Ann. d'Hyg.' 1870, 2, 460.)

As perfect tattooing cannot take place without deeply wounding the cutis and causing a cicatrix, we must not trust to the absence of colour only when an opinion is required whether the person has or has not been tattooed.

The observations above made, equally apply to the destruction of these marks by fire. Dr. Horteloup examined the arm of a man, sect. 42, who at the age of 18 had been tattooed with China ink. At the age of 30 a bar of iron, at a white heat, accidentally dropped on the tattooed portion of his arm. Twelve years after this accident Dr. Horteloup found a white cicatrix on the arm which had obliterated part of the design (a ship). When the obliterated portion was minutely examined with a lens, faint white lines were seen which filled up and completed the figure of a ship. ('Ann. d'Hyg.' 1870, 2, p. 459.)

M. Bois de Loury met with an instance which proves that it is very difficult to eradicate the tattoo-marks without leaving distinct cicatrices of them. In this case a man had a number of initials of names spread over the skin of his chest and arms, and in many parts he had obliterated the letters by a red-hot iron applied to the skin,—but in every instance there was a well-defined cicatrix, and it was still possible to make out traces of the letters. ('Ann. d'Hyg.' 1872, 1, 423.)

Tattoo-marks on the Dead.—When we are required to examine a dead body for marks of tattooing, great caution is required if no coloured marks are apparent on the skin. Putrefaction, unless very far advanced, does not interfere with their appearance. M. Tardieu states that in examining the partially decomposed body of a man who had been a carpenter, the tattoo-marks on his arm clearly represented the instruments of his trade. When the question is whether the marks have been on the arm and subsequently removed, there will be some difficulty. An examination of the skin with a lens in a strong light may show the presence of lines corresponding to cicatrices: but the evidence derivable from friction of the skin
is here lost. Dr. Horteloup recommends the examination of the neighboring absorbent glands for the colouring matter; but if the marks are of many years standing colouring matter is not likely to be found in them. In this respect a case which occurred to the late Prof. Casper of Berlin is eminently instructive. In 1849 the body of a man, decapitated, was found in the neighbourhood of Berlin. It was supposed to be that of one Gottlieb Ebermann, who was missing. It was stated that the body of Ebermann could be identified by marks of cupping on the wrists, an operation performed on him eight or nine years before his death, and also by tattoo-marks of a heart and the letters G E on the left arm. On examination of the body no marks of any kind could be perceived, and Ebermann's wife, who had been married to him two years, and his three sisters, affirmed that they had never seen any tattoo-marks on him. The body was exhumed after five months, but owing to putrefaction no further evidence could be obtained from it. A man of the name of Schall had been in the meantime charged with the murder, and the circumstantial evidence was so strong against him that nothing more was required than to prove that the body found was that of Ebermann. Of two medical experts who were called to give evidence, one disposed that the marks of cupping could always be distinguished, and those of tattooing were indelible—the other stated that the marks of cupping might spontaneously disappear, but with regard to the tattooing he could give no opinion. As this medical evidence failed to establish the identity of the body, the opinion of Prof. Casper as assessor was required by the Court.

In his report, taken from the observations made in a large asylum for aged and invalid soldiers, a class among whom tattoo-marks are common, he stated that out of 36 examples, in three the tattooing had become faint with time; in two, the marks were partially effaced; in four, they were completely obliterated; hence M. Casper came to the conclusion that the marks of tattooing may disappear. A witness came forward and declared, during the investigation, that at fifteen he had tattooed himself on the arm with cinnabar, and that the marks had become entirely effaced. The conclusion of the trial was, that Schall was condemned. (‘Med. Times and Gazette,’ Dec. 11, 1852; also Casper’s ‘Ger. Medicin,’ 1, p. 116; and ‘Vierteljahrschrift,’ 1852, 1, p. 274, and 1853, 1, p. 338.)

The singular part of this case is, that there was a want of proof that the deceased had really been tattooed: for neither the wife who had cohabited with the deceased for two years, nor his three married sisters, had ever seen them. Dr. Chereau, in ‘L’Union Médicale,’ Nov. 16, 1852, justly observes, respecting Casper’s report, that it is not one which should influence a judicial decision, for it is not stated at what age, with what substances, and in what manner, the marks were produced in the four instances where there was complete obliteration. Were the men to be trusted? How many years had really elapsed before the marks had become effaced? What was the nature of the colouring matter used? Was it mineral
MEDICAL RESPONSIBILITY.

-or vegetable, and was it carried deeply into the cutis or only disposed on the surface? These questions should have received satisfactory answers before comparisons were made, and important medical conclusions were based upon them. Casper's unqualified opinion that such marks, assuming them to have existed, might have spontaneously disappeared, led to the conviction and execution of Schall. The accused confessed his crime before execution, but the position assumed by Casper on this occasion is certainly not a precedent to be followed by medical jurists. In all cases in which an opinion is required of a medical man,—whether tattoo-marks have been effaced from the skin or not,—there should be no doubt whatever touching their previous existence.

A question may arise in contested identity, whether any accidental or temporary marks made on the skin can be mistaken for tattooing? This does not seem at all probable. The colour and the design might be imitated by water-colour pigments, but this would be only superficial, i.e. on the cuticle, and they would be readily removed by water. No professional man could be deceived by such an attempt at imposture.

It may be suggested that marks of tattooing said to have been seen by witnesses on the skin of a missing person, were caused by the application of coloured chalk or pencil. Such an objection to evidence hardly needs serious refutation. Coloured marks could only be produced by very soft chalk, and would never have the depth, intensity, or appearance of tattooing. They would be removed and obliterated by the slightest friction. The most superficial observer could not be deceived by them. Again, it may be alleged of a missing person, by one set of witnesses, that he was tattooed, and by another set that they had had casual opportunities of seeing his skin and did not observe any tattoo-marks. In such a case, the evidence given by near relatives, whose opportunities of observation are much more frequent, is more reliable than that of persons who could have had only an opportunity of seeing the bare skin on some rare occasions, and could have had no particular reason at the time for observing its condition. This, of course, becomes simply a question of credibility and accuracy of observation.

Medical responsibility.—The process of tattooing is not unattended with danger. Cases are recorded in which syphilis has been thus transmitted by inoculation. (‘Ann. d’Hyg.’ 1866, 1, p. 175.) M. Berchon has collected four cases in which the operation proved fatal by reason of the after-consequences. (‘Ann. d’Hyg.’ 1870, 2, p. 464.) This author advises that the practice should be stopped by legislation. He holds that tattooing should be treated as unlawful wounding! As the operation is not usually performed by medical men, no responsibility can be incurred by them. The act is voluntary on the part of the person tattooed, and there is nothing in the results, at least in this country, to justify legal interference.

A medical man may be consulted about the removal of these marks, and when he has tried experiments on this subject he will be able
to appreciate the view generally entertained of their indelibility, at
least so far as the carbon marks are concerned. A few years since,
I was consulted in the following case:—By an accidental discharge
of gunpowder a portion was blown into the face of a young man.
After recovery from the first effects, a bluish-black tint was left on
the lower part of the forehead, the nose, and the upper part of the
cheeks and eyelids. He had consulted several physicians and sur
geons, and under their advice had employed various local applica
tions for the removal of the marks, but without result. I saw him a
year after the accident. On examining the discoloured parts with a
magnifying glass, it was obvious that the small particles of carbon
were deeply and firmly imbedded in the cutis. Local applications
to promote absorption were tried, but it was quite evident that
nothing but the destruction of the cutis would remove the marks.
Blistering would have no effect, as this would only remove the
cuticle.

Medico-legal questions connected with the presence or absence of
tattoo-marks on the skin, have been hitherto confined to proof or
disproof of the identity of persons charged with crime. If it is
alleged that they have existed and disappeared by time or artificial
means, medical evidence may be required to show how far this is
probable. In the Tichborne case now pending (Tichborne v. Lush
ington, C.P. 1871–2, and Reg. v. Castro or Tichborne, August 1873),
some of the medico-legal questions in reference to cicatrices,
their mode of production, date, &c., are involved. The evidence
of identity derivable from tattoo-marks in the skin, and the possi
bility of removing such marks by the actual cautery, or by chemical
substances, are also points raised by this inquiry. As the case is
still sub judice, I refrain from making any comments on the medical
evidence which has been already given for and against the claimant.

CHAPTER 32.

WOUNDS OF THE HEAD.—CONCUSSION.—HOW DISTINGUISHED FROM INTOXICA
TION.—EFFUSION OF BLOOD AS A RESULT OF VIOLENCE DISEASE OR MENTAL
EXCITEMENT.—WOUNDS OF THE FACE.—DEFORMITY AS A CONSEQUENCE OF
WOUNDS OF THE FACE.—INJURIES TO THE SPINE AND SPINAL MARROW.—
FRACTURES OF THE VERTEBRAE.

The danger of wounds, and their influence in causing death, are the
two principal points to which the attention of a medical jurist must
be directed.

WOUNDS OF THE HEAD.

Incised wounds, affecting the scalp, unless of great extent, rarely
produce any serious effects. When the wound is contused, or
accompanied by much laceration of the skin, it is highly dangerous
in consequence of the tendency which the inflammatory process
WOUNDS OF THE SCALP: CONCUSSION.

has to assume an erysipelas character. The results of these wounds are, however, such as to set all general rules of prognosis at defiance. Slight punctured wounds will sometimes terminate fatally in consequence of inflammation, followed by extensive suppuration; while, on the other hand, a man may recover from a lacerated wound by which the greater part of the skin may have been stripped from the bone. There are two sources of danger in wounds of the scalp:—1. The access of erysipelas inflammation. 2. Inflammation of the tendinous structures, followed or not by a process of suppuration. Either of these secondary effects may be a consequence of slight or severe wounds and prove fatal. Neither can be regarded as an unusual result of a severe wound of the scalp, but when one or the other follows a slight injury, there is reason to suspect that the patient may have been constitutionally predisposed to the attack. Bad treatment may likewise lead to a fatal result from a wound not serious in the first instance, but the question,—how far the responsibility of an aggressor would be affected by a circumstance of this nature has been considered in another place (ante, p. 263). Wounds of the head are dangerous in proportion as they affect the brain; and it is rare that a severe contused wound is unaccompanied by some injury to this organ. There is, however, a difficulty which a practitioner has here to contend with—namely, that it is scarcely possible to predict from external appearances, the degree of mischief which has been produced within. These injuries, as it is well known, are capricious in their aftereffects,—the slightest contusions may be attended with fatal consequences, while fractures, accompanied by great depression of bone, and an absolute loss of substance of the brain, are sometimes followed by perfect recovery. Another difficulty in the way of forming a correct opinion consists in the fact, that a person may recover from the first effects of an injury, but after some days or weeks he will suddenly die; and on examination of the body, the greater part of the brain will be found destroyed by suppuration, although no symptoms of mischief may have manifested themselves until within a few hours of death.

Concussion.—The common effect of a violent blow on the head is to produce concussion or effusion of blood, or both. Concussion is usually indicated by fainting, insensibility, or sudden death occurring immediately after the application of external violence. In concussion the symptoms come on at once, and the patient sometimes dies without any tendency to reaction manifesting itself. In the most severe form, the person drops at the very moment when struck and dies on the spot. (Chelius's 'Surgery,' vol. 1, p. 408.) In other cases, he may linger in a state of insensibility for several days or weeks and then die. In concussion there is generally more or less vomiting. It is important to remember that neither compression nor physical injury to the brain is necessary to render concussion fatal. This may be entirely dependent on shock to the nervous system. After death, no particular morbid
change may be discovered in the body, or there may be merely the mark of a slight bruise on the head. The state of insensibility observed in concussion may be only apparent; a slight degree of consciousness may be retained.

A blow on the skull may cause death by leading to abscess in the brain, although there may be no fracture or other physical injury. A case of this kind proving fatal in about a week is reported by Mr. Lloyd. (‘Lancet,’ May 1873, p. 697.)

Inflammation may follow the primary shock from concussion—suppuration may take place, and the patient die after the lapse of several weeks, or even months. It is necessary in a medico-legal point of view to notice that a person may move about and occupy himself, while apparently convalescent, for a week or ten days after recovery from the first shock, and then suddenly be seized with fatal symptoms, and die. This apparent recovery leads to the common supposition, that death must have been produced by some intervening cause, and not by the original violence to the head, a point generally urged in the defence of such cases. When the inflammation that follows concussion is of a chronic character, the person may suffer from pain in the head and vomiting, and die after the lapse of weeks, months, or even years. Concussion may sometimes take place as a consequence of a violent fall on the feet, in which case the head receives a shock through the medium of the spinal column. The skull may be thereby extensively fractured at the base, and the brain may be even shattered by such a fall. This was the cause of death in the case of the Duke of Orleans, the son of Louis Philippe.

In Allen v. the Chester Railway Company (Court of Common Pleas, Feb. 1857), the plaintiff claimed damages for an injury caused by a railway collision. The evidence showed that the plaintiff received a blow on the head. There were no immediate effects; but in two days he suffered from lightness of the head and other symptoms, attributed by his medical attendant to concussion of the brain, as a result of the accident. Subsequently there were symptoms of injury to the spine. There was pain in the course of the spine, partial paralysis of the bladder, rectum, and legs, with loss of memory. The medical witnesses for the plaintiff attributed these symptoms to a blow received by him at the base of the skull. The defendants contended that if these were the results of concussion of the brain, they ought to have manifested themselves immediately on the occurrence of the accident; and this view was to some extent supported by the evidence of experienced surgeons. In substance, however, the medical evidence on the two sides was not conflicting. Concussion of the brain, as it is ordinarily known to surgeons, is generally attended with some immediate symptoms; but the witnesses for the defence properly admitted that 'a concussion of the brain (and spine?), attended with apparently slight symptoms at first, might, under peculiar circumstances, be followed by serious symptoms.' As no
other cause could be assigned for the symptoms, this was practically admitting that the plaintiff had suffered from the injury, the degree being simply a question for the jury. They returned a verdict for the plaintiff.

Concussion distinguished from intoxication.—The symptoms under which a wounded person is labouring may be sometimes attributed to intoxication, and a medical witness may be asked what difference exists between this state and that of concussion. The history of the case will, in general, suffice to establish a distinction, but this cannot always be obtained. It is commonly said that the odour of the breath will enable a surgeon to detect intoxication; but it is obvious that a man may meet with concussion after having drunk liquor insufficient to cause intoxication, or concussion may take place while he is intoxicated,—a combination which frequently occurs. Under such circumstances we must wait for time to develop the real nature of the case. Concussion may be so slight as sometimes closely to resemble intoxication, and from the absence of all marks of violence to the head and the existence of a spirituous odour in the breath, the medical examiner might be easily deceived. If there be no perceptible odour in the breath, the presumption is that the symptoms are not due to intoxication. On the other hand, intoxication may be so great as to give rise to the apprehension of fatal consequences, and the co-existence of a mark of violence on the head might lead to error in the formation of an opinion. What is the line of conduct to be pursued on such occasions? The examiner should weigh all the circumstances, and if there be one cause for the symptoms more probable than another, he should adopt it;—if there be any doubt, this should be stated to the Court.

There is nothing in the state of the brain in a dead body, which will enable a practitioner to distinguish whether concussion or intoxication had existed and had been the cause of the symptoms. The vessels may be congested in both cases. The discovery of an alcoholic liquid in the stomach might lead to a presumption that deceased had been intoxicated, while marks of violence on the head might favour the view that he had suffered from concussion. When both conditions are found, the examination of the body cannot lead to a solution of the question. The answer must then depend on the special circumstances proved, and, if procurable, on the nature of the symptoms preceding death. It is to be feared that medical witnesses are not sufficiently careful, on these occasions, to determine whether there are signs of intoxication about an injured person. Subsequent proceedings may render this a material part of the inquiry.

The distinction of apoplexy from drunkenness involves greater difficulties. In these cases we have to deal with the true diagnosis of alcoholic or narcotic poisoning (p. 164, ante). Dr. Jackson has directed attention to this medical question in a case reported in the 'Med. Times and Gaz.' 1871, 1, 360. Some instructive cases,
in reference to this complication of wounds, have been published

Extravasation or effusion of blood.—A blow on the head may
destroy life by causing an effusion of blood either on the surface or
in the substance of the brain. In pugilistic combats, when a person
is thus struck, he commonly falls, and death may take place in a
few minutes. On inspection, blood may be found effused either at
the base or in the ventricles of the brain, and the question will
present itself—Did the injury which caused death arise from a blow
or a fall? A heavy blow on the head may cause fatal effusion of
blood, but on these occasions the effusion commonly arises from the
violent concussion which the injured person sustains by the fall.
A medical witness will therefore in general be compelled to admit
that the fatal effusion might have taken place either from a blow
or a fall. If the fall has resulted from accident and not from a
blow, this will, of course, absolve the accused from responsibility
for the fatal results. This subject has important applications in
legal medicine, for this is one of the most common causes of death
from injuries to the head, and there are generally many cases of
this description tried at the Assizes. Effusion may occur from
violence with or without fracture, and it may take place without
being accompanied by any external marks of injury.

In case of injuries to the head proving fatal by effusion of blood
on the brain, a person may recover from the first effects of the
violence and apparently be going on well, when he will suddenly
become worse and die. Effusion takes place slowly at first,—it
may be arrested by the effects of stupor from concussion, by a
portion of the blood coagulating around the ruptured orifices of the
vessels, or by some other mechanical impediment to its escape; but
after a longer or shorter period, especially if the person be excited
or disturbed, the bleeding will recur and destroy life by producing
compression of the brain. How many hours or days are required
in order that such an increased effusion should take place after an
accident, it is impossible to say; but in severe cases, it is generally
observed to follow the injury within a short time. Sir Astley
Cooper has related the case of a gentleman who was thrown out of
a chaise, and fell upon his head with such violence as to stun him
in the first instance. After a short time he recovered his senses,
and felt so much better that he entered the chaise again, and was
driven to his father’s house by a companion. He attempted to
pass off the accident as of a trivial nature, but he soon began to
feel heavy and drowsy, so that he was obliged to go to bed. His
symptoms became more alarming, and he died in about an hour, as
it afterwards appeared, from effusion of blood on the brain. When
the brain has sustained laceration from violence, in addition to
insensibility, convulsions are frequently observed.

Effusion of blood from disease or violence.—Blood may be found
effused in various situations within the interior of the skull; and
the cause of the effusion may be either disease or violence. The
skill of a medical jurist is often required to determine which of these causes is the more probable, as where, for instance, a pugilist has died, after having received severe injuries to the head, and his adversary is tried on a charge of manslaughter. On these occasions it is often urged in the defence, that the bleeding might have arisen either from the diseased state of the vessels of the brain, or, if the evidence render it probable that the blow was the cause,—that the effects of the blow were aggravated by a diseased condition of the vessels, or by the excitement into which the deceased was thrown, either from the effects of intoxication or passion. When the brain is not lacerated by violence, the blood is effused either on the surface of the hemispheres, between the membranes, or at the base. When the effusion is caused by violence, the effused blood is not always found under the spot where the blow was inflicted, but occasionally, by counter-stroke on the surface of the brain, directly opposite to it:—a case which a medical witness has frequently been required to explain on trials, and which depends on the same cause as fracture by counter-stroke, i.e., on a separation of parts (laceration of the brain, effusion of blood, or even fracture of the bones) at the point of the skull directly opposite to that which sustains the violence. Thus, fracture of the base of the skull is frequently the result of severe violence applied to the top of the head (vertex). Effusions of blood from a diseased state of the vessels more commonly take place in the substance of the brain, but they sometimes occur on the surface of the organ as a result of mere excitement or over-exertion of the muscular powers. A diseased condition of the vessels, and probably a softening of the substance of the brain, will, on these occasions, be apparent on inspection.

If the effusion depend on disease, the arteries around may be found in a diseased condition, or the brain itself may be found softened and disorganized. The state of the brain and its vessels should be closely examined in all cases of alleged violence, since hemorrhage may take place either from excitement or slight blows, whenever this diseased condition exists. It has occasionally happened, especially in old persons, that the person has dropped down dead without a blow being struck, and that death has been wrongly imputed to violence. Cerebral hemorrhage from disease rarely occurs in persons under forty years of age. Frequent intemperance and violent passion may, however, easily create a tendency to it in younger persons. As an effect of violence it may take place in persons of all ages, but when the marks of violence are slight, a witness must exercise great caution before he alleges that the effusion was produced by a blow, especially when it is found that the deceased was of intemperate habits.

Another condition besides intoxication and passion has been said to favour a rupture of vessels and an effusion of blood on the brain—namely, a thickened state of the substance of the left ventricle of the heart. According to some pathologists, this morbid condition
favours the occurrence of cerebral hemorrhage by the force with which the ventricle propels the blood to the brain. Unless the brain is softened and the vessels are diseased, it is, however, doubtful whether this condition of the heart would have much influence.

As a summary of these remarks, we may say that in effusions of blood from violence, the blood generally issues from a vessel which is plainly seen to be torn, as the middle artery of the brain or the lateral sinus. The effused blood is commonly found on the surface of the brain, and not in its substance, unless the organ is lacerated. When situate between the dura mater (outer membrane) and the skull, but especially when immediately below the seat of violence or directly opposite to it by counter-stroke, this is strong evidence, ceteris paribus, that it has proceeded from a blow. When there is a fracture of the skull, the presumption of the extravasation being due to violence is great; because this is not only a sufficient, but an obvious cause, while the idea of its having proceeded from disease only is remote and speculative. When, besides these conditions, there is no remarkable congestion of the brain in other spots, when the substance of the brain is firm, and the vessels are to all appearance free from disease, we have the strongest reason to believe that the effusion must have been due to violence, and to no other cause whatever.

The evidence given on some trials, when the main question has turned upon the cause of an effusion of blood on the brain, in the case of a person who has sustained violent injuries to the head, has rather tended to reflect disgrace on medical science. It has been made to appear from the mouth of the medical witness, either directly or by implication, that no sort of mechanical violence applied to the head of a man in a state of drunkenness or passion,—of one whose cerebral vessels were probably diseased,—or the substance of whose heart might be thickened,—could have had any effect in producing a fatal extravasation found in the head after death! In spite of an individual having received a violent blow with a bludgeon, sufficient to have killed a stout and vigorous man, or of his having been thrown with considerable force with his head against a stone floor, an unqualified admission is often made, that excitement alone, or drunkenness alone, would account for the effusion without reference to the blow! In putting the most favourable construction upon these cases, when we have clear evidence of great violence having been used to the head, with the presence of the usual post-mortem appearances, our opinion should be that the excitement or drunkenness might have predisposed to, but was not the immediate cause of, the cerebral hemorrhage. There seems to be no good reason for assuming that apoplexy from natural causes always occurs by a peculiar coincidence, just at the time that the person receives a violent blow with a bludgeon on the head, or for giving to the assailant the benefit of this hypothetical explanation! A mere inspection of the body does not always lead
to the discovery of the cause of an effusion on the brain. The violence producing an effusion of blood may have been slight, and unless attention is particularly directed to the subject, it may be overlooked. The condition of the effused blood should be accurately noticed, in order to determine whether it presents any marks indicative of its being recent or of old standing.

Spontaneous effusions or effusions from disease are not easily distinguished from those which are the result of violence to the head. Dr. Wilks has pointed out that in most instances of severe injury attended with effusion of blood, the structure of the brain is found bruised. In meningeal apoplexy (apoplexy of the membranes) the source of the blood is a vein of the pia mater or inner membrane, and sometimes a large arterial trunk. The difficulty chiefly arises in those cases in which effusion is found after slight violence, and there is, at the same time, disease of the blood-vessels of the brain. Dr. Wilks gives the results of several inspections in which effusion was owing to disease—to violence, and to a mixed condition. (See 'Guy's Hospital Reports,' 1859, p. 120.)

Effusion of blood from excitement.—When engaged in the investigation of these cases, it is always a fair matter of inquiry whether the violence, upon the evidence, was not of itself sufficiently great to account for the effusion without the supposition of coexisting disease or excitement. Admitting that the rupture of a blood-vessel, and the extensive effusion of blood on the brain, may take place from simple excitement and passion, yet this is an event comparatively rare, at least in the young and healthy, while nothing is more common than that these results should follow violent injuries to the head, whatever the age or condition of the person. A medical witness should remember that on these occasions, if he is unable to say positively whether the effusion was due to the excitement or the blows, he will satisfy the Court if he only states clearly that which is, in his own mind, the more probable cause of death; and by weighing all the circumstances of the case beforehand, he will rarely fail to find that one cause was more probable than the other. Thus, if a man, excited by passion and intoxication, is struck on the head, and the blow is slight—such as an unaffected person would probably have sustained without injury—yet in this case insensibility and death follow, and, on examination, a quantity of blood is found effused in the substance of the brain, can it be a matter of doubt with the practitioner that the effusion was chiefly due to the excitement under which the deceased was labouring? To take a converse instance—a man engaged in a personal conflict with another, is struck most violently on the head, or falls with great force on this part of his body: on an inspection it is found that death has arisen from effusion of blood on the surface of the brain, and it would be no unexpected consequence of the violence inflicted, that a similar appearance should be met with in an individual calm and unexcited:—Can the practitioner hesitate to say, under these circumstances, that the blow would satisfactorily
account for the effusion, without reference to any co-existing causes of excitement? These may be allowed to have their influence, in giving an increased tendency to cerebral hemorrhage, or in aggravating the consequences of the blow, but no further.

In these criminal investigations, when a witness is examined in chief, he asserts, perhaps, that the effusion of blood was owing to a blow inflicted on the head. The counsel who cross-examines him, then puts the leading question, whether vessels may not be ruptured by excitement: he answers, without any qualification, in the affirmative, and thus produces an impression on the minds of the jury that excitement may have caused the rupture of the vessel in the particular case on which he is being examined. This is, of course, the sort of answer which a prisoner's counsel wishes to extract from a witness; and the effect produced by it on the Court is not always removed, even by a careful re-examination. The counsel for the defence is well aware that in a case of this description, his only chance of obtaining an acquittal is to throw a degree of doubt on the medical evidence, and to render it probable to a jury that the death of the deceased person was due to some other cause than the blow inflicted by the prisoner. As leading questions are allowed to be put to any extent in a cross-examination, the answer in the monosyllable 'yes' or 'no,' generally carries with it much more than a medical witness intends. It may be very proper that a skilful barrister should exercise his talents in this way, but a medical witness has to remember that he is sworn to state the whole truth. A qualified answer should be given to what is really a general question; and, supposing his opinion to be already formed on the subject on which his evidence is required, he should not, unless it be strictly consistent with his own views, allow his answer to a general question to be made applicable to a particular case. If then asked, in cross-examination, whether vessels might not be ruptured, and blood extravasated by mere excitement, he should answer that such an effect might undoubtedly follow; but that it was his opinion,—and I am here supposing that his opinion has been founded upon a deliberate examination of all the medical facts,—that excitement was not the cause of rupture and extravasation in the case in question. A witness has, it appears to me, a right to insist that his evidence shall pass to the jury without having any designed ambiguity attached to it. It may be said that the remedy for an evil of this kind is the re-examination of the witness; but I am satisfied from the reports of many cases before me, that the point is overlooked. Besides, one cannot understand why a piece of sophistry and equivocation is to be left to a chance exposure:—the case would then rest, not upon sound medical evidence, but upon the relative degree of ingenuity and ability displayed by the counsel for the prosecution and defence.

Date of effusions.—Recent effusions of blood are recognized by their red colour, and the consistency and appearance of the clot or coagulum. After some days the clots acquire a chocolate or brown
DATE OF EFFUSIONS OF BLOOD.

colour, and this passes gradually into an ochreous tint, which may be met with from twelve to twenty-five days after the violence (Cases by Dr. Wilks, Guy's Hosp. Rep., 1859, 5, 122). Coaguls of effused blood also undergo changes in structure and consistency; when old, they are firmer, and there is much lymph, which is sometimes disposed in membranous layers of a fibrous structure, and these are adherent to the dura mater and the brain. The surface of this organ sometimes presents a mark indicative of pressure. When a medical man is required to give an opinion of the date of an effusion found on the brain, great caution is required. A surgeon may not be able to fix the precise date, but it may be in his power to say whether the blood has been effused for a few days, weeks, or months.

When a blow on the head is of a heavy bruising kind, the whole substance of the skull may be fractured without a division of the skin. There is one remarkable circumstance connected with fractures accompanied by depression of bone, which here requires to be mentioned—namely, that the person has been sensible so long as the foreign substance which produced the fracture and depression remained wedged in the brain, and that insensibility and other fatal symptoms began to manifest themselves only after its removal. This being admitted, it may be urged in defence, that death was really caused by medical interference. But it is a sufficient answer to state, that the wounded person must have died from inflammation of the brain if the foreign body had been allowed to remain; and that it is consistent with the soundest principles of practice to remove all such foreign substances without delay. In fractures of the skull with depression, it may become a question whether the surgeon raised the depressed portion of bone so soon as he ought to have done.

In the description of injuries of the head, it is impossible to avoid the use of terms with which members of the legal profession are not likely to be acquainted. In giving evidence upon the situation of wounds, of the effusion of blood, and the effects of fractures, medical witnesses are often compelled to make use of anatomical terms, and are not always successful in explaining them. With the view of removing this difficulty, and supplying, to some extent, the means of following the evidence of a witness in his description of injuries to the head and its contents, an engraving, representing the relative position of the membranes of the brain, is annexed.

Fig. 47 represents a section of the bones of the skull, with the three membranes which cover the brain. (a) Section of the skull-bones, with the outer and inner tables, and the intermediate cellular structure or diploe, indicated by the dark shading; the scalp, or skin of the skull, which covers

![Fig. 47]

The skull, with its outer and inner table, and the three coverings of the brain (membranes), seen in section.
the outer table, is not represented. (b) The dura mater, or outer membrane of the brain; it is thick and fibrous, closely adherent to the inside of the inner table of the skull, but smooth on the side towards the brain. (c) The tunica arachnoides, so named from its delicate web-like structure, smooth towards the dura mater, but closely covering the pia mater beneath. (d) The pia mater—the membrane which immediately invests the substance of the brain and dips into all the convolutions. It contains the blood-vessels which nourish the hemisphere of the brain. These membranes are, for distinctness, represented as being separated from each other, but they are naturally in close proximity, and the rough side of the dura mater is closely adherent to the inside of the skull (calvarium). The ordinary seats of the effusion of blood from violence, are between the dura mater and inner table of the skull, and between the pia mater and the surface, or in the substance of the brain.

In reference to persons found dead with severe injuries to the head attended with fracture and effusion of blood on the brain, a medical man may be required to say whether such an amount of violence is or is not consistent with the retention of muscular exertion, and power of locomotion by the deceased. For instance, a man may fall from a height, and produce a severe compound fracture of the skull. He may, nevertheless, be able to rise and walk some distance before he falls dead. Under these circumstances there might be a strong disposition to assert that the deceased must have been murdered,—the injuries being such that they could not have been produced by himself, there being at the same time no weapon near, and no elevated spot from which he could have fallen. The discovery, after death, of severe injury to the head, with great effusion of blood on the brain, must not, however, lead a surgeon to suppose that the person who sustained the violence had been immediately incapacitated. There are various cases recorded which show that a power to move has been retained under conditions which might be supposed to render a person incapable of moving from the spot. Full allowance must be made on these occasions for the possible exercise of locomotion by the deceased. Although a large quantity of blood may be found after death pressing on the substance of the brain, it does not follow that this effusion and pressure were the immediate results of the violence.

The importance of these observations will be further seen by the following medico-legal case, reported by Dr. Wallace. A man was found dead in a stable with a severe fracture of the temporal bone, which had caused a rupture of the middle artery of the brain. A companion was accused of having murdered him, but he alleged that the deceased had fallen from his horse the day before, and had thus met with the accident. It appeared, however, that after the fall, the deceased had gone into a public-house before he returned to the stables, and had remained there some time drinking. The question respecting the guilt of the accused party rested upon the fact whether, after such an extensive fracture of the skull with extravasation of blood, it was possible for a man to do what the
prisoner had represented the deceased to have done. Dr. Wallace
gave, very properly, a qualified opinion; he said it was improbable,
but not impossible that, after receiving such an injury, the deceased
could have walked into, and drunk at a public-house. The extra-
vassation was here the immediate cause of death, and probably this
did not take place to the full extent, except as a consequence of
the excitement from drinking.

Wounds of the brain.—Wounds of the brain sometimes prove
instantaneously mortal, even when slight, while in other cases
recoveries take place from contused or punctured wounds of this
organ, contrary to all expectation. When a person survives the
first effects of the injury, there are two sources of danger which
await him:—1. The production of fungus from the exposed por-
tion of the brain; and 2. Inflammation and its consequences. The
process of inflammation, it must be remembered, is very slowly
established in this organ; it may not manifest itself until from
three to ten weeks after the injury. In one remarkable case, where
a child was accidentally shot through the brain, the ball having
traversed both hemispheres, no symptoms of cerebral inflammation
manifested themselves for twenty-six days. The child died on the

Wounds of the face.—When wounds of the face are of any
extent they are usually followed by great deformity; and when
they penetrate the cavities in which the organs of the senses are
situated, they often prove fatal, either by involving the brain and
its membranes, or by giving rise to inflammation of this organ.
Wounds of the eyebrows are not of so simple a nature as might at
first sight be supposed. Besides being attended with deformity when
they heal, they are liable to cause during the process of healing,
serious disorders of the neighbouring parts. Amaurosis and neu-
ralgia are recorded among the secondary and not unusual conse-
quences of such wounds, when the supra-orbital nerve has become
implicated. Under certain conditions of the body, there may be
inflammation of the parts within the orbit, extending by contiguity
to the membranes of the brain, and proving fatal by leading to the
formation of matter within that organ. Amaurosis in the right eye
has been known to occur from a contused wound, not of a violent
nature, on the right eyebrow. Wounds apparently confined to the
external parts of the face frequently conceal deep-seated mischief.
A sharp instrument penetrating the eyelid, and passing upwards
with any force, will produce fracture of the orbital plate of the
frontal bone, which is known to be extremely thin, and even injure
the brain beyond.

Deformity as a consequence of wounds of the face.—Wounds of the
face when at all extensive, are always followed, in healing, by
greater or less deformity. A medical witness may, perhaps, find
these questions put to him in relation to them: Is the wound likely
to be attended with deformity? Could such a wound of the face
heal without deformity?—or, Could the deformity, if it exist, have

x 2
been produced by any other cause than the wound? These ques-
tions are of some importance. A person may allege that he was
severely wounded in the face, when the medical witness, on examina-
tion, may find no trace of such a wound as that described. Again,
a person may seek damages from another in a civil action, by alleg-
ing that a particular deformity was produced by a wound, when
the medical witness may be able to trace its origin to disease, or to
some accidental cause.

INJURIES TO THE SPINE.

Injuries to the spine and spinal marrow seldom require medico-
legal investigation; but this organ is liable to concussion from
blows, to compression from fracture of the vertebrae or the effusion
of blood, with all the secondary consequences attending such ac-
cidents. Concussion of the spinal marrow commonly produces
paralysis, affecting the bladder, rectum, or lower limbs. These
symptoms may not appear at once, but come on after some hours
or days. After death no traces of mechanical injury may be dis-
covered. Blows on the spine, unattended with fracture or disloca-
tion, may, according to the observation of Sir B. Brodie, be followed
by inflammation and softening of the spinal marrow. A slight
injury has thus been known to cause death, by giving rise to
inflammation of the spinal marrow. This organ is also liable to
compression from slight causes, and death may occur from para-
lysis of the nerves of respiration.

Fractures of the vertebrae.—These fractures are generally attended
with displacement, and thus produce compression of the spinal
marrow. They are the more rapidly fatal, in proportion as the
injury is high up in the vertebral column. The whole of the body
becomes paralyzed below the seat of injury, as a result of the com-
pression of the spinal marrow. If the seat of compression is above
the fourth cervical vertebra, death is commonly immediate: asphyxia
then results from paralysis of the nerves which supply the diaphragm,
and which are necessary to respiration. In falls on the summit of
the head from a height, it sometimes happens, not only that the skull
is extensively fractured, but that the dentiform process of the second vertebra is broken off, owing to the head being doubled
under the body. This injury to the second vertebra may be the
cause of death. From a case related by the late Mr. Phillips, it
would appear that this accident is not always attended with fatal
compression of the spinal marrow. (‘Ed. M. and S. J.’ Jan. 1838.)
In one instance the person survived fifteen months (ib. Oct. 1845,
p. 527); and in another, in which the fracture was caused by the
patient turning in bed while his head was pressed on the pillow,
death did not take place for sixteen months. (Copland, ‘Dict. Pr.
Med.;’ Paralysis.) On several criminal trials, this injury was
proved to have been the cause of death: and in a case tried at
Glasgow (the King against Reid, 1835), it became a material ques-
WOUNDS OF THE SPINAL MARROW.

tion, how far such a fracture might result from disease. It may happen that caries of the bone, or disease of the transverse ligament, will cause a separation of the dentiform process from the second cervical vertebra. The state of the bone in these alleged fatal accidents should, therefore, be closely examined. A slight cause may sometimes produce severe and fatal injury to the neck. A lunatic in a private asylum suddenly threw her head back, in order to avoid taking some food that was offered to her; and she died evidently from the compression produced by a displacement of the dentiform process of the second vertebra. A woman died suddenly a month after her confinement; she had been suckling her child at one o'clock in the morning, and at four she was found dead. The viscera of the abdomen, chest, and head were carefully examined, without the discovery of any morbid appearance to account for her death—when, as the brain was being returned into the skull, one of the inspectors noticed a projection at the foramen magnum. On further examination, the dentiform process of the second vertebra was found to have been displaced, and this had so injured the spinal marrow as to destroy life. (‘Med. Gaz.’ vol. 3, p. 592.) It is not stated whether the bone was in a healthy or diseased condition. In fractures of the vertebrae, a person is generally so disabled, whatever may be the situation of the fracture, that he cannot walk or exert himself.

Injuries to the spine and its contents are generally the result of falls or blows, either on the head or the lower part of the column. The secondary consequences of these injuries are sometimes so insidious as to disarm suspicion, and death may take place quite unexpectedly some weeks after the accident. Spicula of bone, separated by fractures, may remain adherent for some time; and, by a sudden turn of the head, be forced off, and destroy life by penetrating the spinal marrow, at a long period after the infliction of the injury. This has been known to happen in fractures involving the margin of the foramen magnum, and in such cases death is immediate. The spinal marrow has been in some instances wounded in its upper part by sharp-pointed instruments introduced between the vertebrae. Death is an instantaneous result when the wound is above the third cervical vertebra:—there is no part of the spine where a weapon can so easily penetrate as this, especially if the neck be slightly bent forward. The external wound thus made may be very small, and if produced with any obliquity by drawing aside the integuments, it might be easily overlooked, or it might be set down as superficial.
CHAPTER 33.

Wounds of the chest.—Wounds of the chest have been divided into those which are confined to the parietes or walls and those which penetrate the cavity. Incised or punctured wounds of the parietes of the chest are rarely followed by dangerous consequences. The bleeding is not considerable, and is generally arrested without much difficulty. They heal either by adhesion or suppuration, and unless their effects are aggravated by incidental circumstances, the person recovers. Contusions or confused wounds of the chest are, however, far more dangerous, and the danger is always in a ratio to the degree of violence used. Such injuries, when severe, are ordinarily accompanied by fractures of the ribs or sternum,—by a rupture of the viscera within the cavity, including the diaphragm,—by profuse bleeding,—or, as an after-effect, by inflammation of the lungs, with or without suppuration. Fractures of the ribs are dangerous for several reasons: the bones may be splintered and driven inwards, thereby wounding the lungs and causing hemorrhage, or leading to inflammation of the pleura or lungs. In fractures of the upper ribs, the prognosis is less favourable than in those of the lower, because commonly a much greater degree of violence is required to produce the fracture. A simple fracture of the sternum or chest-bone without displacement of the bone, is rarely attended with danger, unless the concussion has at the same time produced mischief internally, which will be known by the symptoms. When, however, the bone is depressed as well as fractured, the viscera behind may be mortally injured. In a case of depressed fracture of the sternum, recorded by M. Sanson, the person died after the lapse of thirteen days; and on inspection, it was found that the fractured portion of bone had produced a transverse wound of the heart about an inch in length. The cavities of the organ had not been penetrated, but the piece of bone was exactly adapted to the depression produced by it on the parietes. (Devergie, 'Méd. Lég.' vol. 2, p. 243.) A witness will frequently be required to take into consideration the effects of contusions on the thorax, with or without fracture, in cases of death from pugilistic combats, which formerly gave rise to numerous trials on charges of manslaughter. Wounds penetrating into the cavity of the chest are generally dangerous, even when slight, in consequence of the numerous accidents with which they are liable to be-
complicated. In these wounds, the lungs are most commonly injured; but, according to the direction of the weapon, the heart, or the great vessels connected with it, as well as the oesophagus (gullet) or thoracic duct, may share in the mischief.

Wounds of the lungs.—The immediate cause of danger from wounds of these organs is the consequent hemorrhage, which is profuse in proportion to the depth of the wound and the size of the vessels wounded. Should the weapon divide any of the trunks of the pulmonary veins, the individual may speedily sink. The degree of hemorrhage cannot be determined by the quantity of blood which escapes from the wound; for it may flow internally, and collect within the cavity of the pleura, impeding respiration. This is especially to be apprehended when the external orifice of the wound is small and oblique, and one of the intercostal arteries has been touched by the weapon. A wound of the lung is generally known, among other symptoms, by the frothiness and florid colour of the blood which issues from the orifice, as well as by the expectoration of blood. The lungs may sustain serious injury from a blow or fall, and yet there may be no external marks of violence or symptoms indicative of danger for some hours. During the convalescence of a person who has survived the first effects of a penetrating wound of the chest, the surgeon should observe whether death, when it occurs, may not have been caused either by imprudence on the part of the patient, or by abuse of regimen or other misconduct; for circumstances of this nature may be occasionally treated as mitigatory on the trial of an assailant. It is properly recommended, that in all cases where a person is progressing to recovery, a relaxation of the antiphlogistic regimen should be made with great circumspection. Too much nourishment, too frequent talking, or any exertion, are circumstances that may cause a renewal of the bleeding and extravasation.

Wounds of the heart.—Wounds of the heart are among the most fatal of penetrating wounds of the chest. It was formerly considered that all wounds of this organ were necessarily and instantly mortal. Undoubtedly, when either of the cavities is laid open to a large extent, the bleeding is so profuse on the withdrawal of the weapon, that death must be immediate. But when the wound is small, and penetrates into the cavities of the heart obliquely, life may be prolonged for a considerable period; and cases are on record in which it is probable that such wounds would have healed, and the patients have finally recovered, but for the supervision of other diseases which destroy life.

It was the opinion of Dupuytren, that these injuries were not necessarily fatal, although I believe, with one exception, there is no case on record in which a person has recovered from a penetrating wound of the cavities of the heart. ('Ed. M. and S. J.' Oct. 1844, 557; also 'Ann. d'Hyg.' 1840, t. 1, p. 212.) There are few, probably, who will be inclined to consider them curable; a remote possibility of simple wounds healing, and of the patient
recovering, may be admitted, but until some clear instances of recovery from penetrating wounds of the cavities are reported, the majority of practitioners will continue to look upon them as fatal. From a series of cases collected by MM. Ollivier and Sanson, it appears that out of twenty-nine instances of penetrating wounds of the heart, only two proved fatal within forty-eight hours. In the others death took place at the varying periods of from four to twenty-eight days after the infliction of the wound. (Devergie, 'Méd. Lég.' vol. 2, p. 253.) These differences in the time at which death occurs, as well as the fact that wounds of the heart do not instantly destroy life, have been ascribed to the peculiar disposition of the muscular fibres of the organ, and to the manner in which they are penetrated by a weapon. It appears from the observations of M. Ollivier and others, that the right cavities of the heart are more frequently wounded than the left, and of these the right ventricle is most commonly the seat of injury. Out of sixty-four cases of wounds of this organ, twenty-nine were situated in the right ventricle, twelve in the left ventricle, nine in the two ventricles, three in the right auricle, and one in the left auricle. These differences are readily accounted for by the relative situation of the cavities. It appears also that wounds of the right ventricle are not only the most frequent, but of all others they are the most rapidly fatal. It is considered that the suddenness of death in severe wounds of the cavities of this organ is to be ascribed not merely to the loss of blood, but to the degree of compression which the heart experiences from that which escapes into the bag of the pericardium. In reference to the direction of penetrating wounds of the chest, it may be proper to state that the base of the heart corresponds to the upper margin of the third rib on the left side; and the apex to the lower margin of the fifth rib on the same side.

A penetrating wound of the heart was formerly considered to be instantaneously mortal, and the usual medical opinion at coroners' inquests was, that a person so wounded must have dropped down dead on the spot. More accurate observations have, however, shown that this is an erroneous, and in medico-legal practice, a highly dangerous doctrine. The Duc de Berri, who was murdered in Paris in 1820, survived eight hours after having received a wound of the left ventricle. Other and more remarkable instances of survivorship have been recorded; and it may be stated, that, although, in a surgical view, a question of this kind is of little importance, the case is very different in legal medicine. Upon it may depend the decision of questions relative to suicide, murder, or justifiable homicide. Mr. Watson met with a case in which a man who had been stabbed in the right ventricle ran eighteen yards after having received the wound. He then fell, but was not again able to rise; he died in six hours. On dissection, it was found that a punctured wound had extended into the right ventricle in an obliquely transverse direction, dividing in its course the coronary artery. The pericardium was nearly filled with blood. When the
RUPTURES OF THE HEART.

Cavities of the heart, especially the auricles, are extensively laid open, death is likely to be an immediate result; but persons who have sustained wounds of this organ have frequently lived sufficiently long to exercise a power of volition and locomotion. In reference to penetrating wounds (stabs) little or no blood probably escapes from the heart in the first instance, but it may afterwards ooze gently, or suddenly burst out in fatal quantity. It must not, therefore, be supposed, when a person is found dead with a wound of the heart, attended with abundant hemorrhage, either that the flow of blood took place in an instant, or that the person died immediately and was utterly incapable of exercising any voluntary power.

The heart is liable to be ruptured either from disease or accident. In the latter case, the organ generally gives way towards the base, and through one of its cavities on the right side. Dr. Hope asserts that in ruptures from natural causes, it is the left side of the heart, and particularly the left ventricle, in which a rupture is most frequently found. The symptoms are sudden pain, collapse, cramps, cold extremities, and rapid death. According to the circumstances under which they occur, cases of rupture from disease may excite a suspicion of death from violence. Sometimes the substance of the heart may be found to have undergone fatty degeneration. As a medico-legal subject, it is worthy of note that when this alarming accident proceeds from blows or falls, it is not always accompanied by marks of external violence—or any fracture or other injury the exterior of the chest. A girl, aged 5, was knocked down and run over by a cart. When brought to the hospital she was quite dead, and there was no mark of injury upon any part of the body. On inspection, the pericardium was found to be full of blood, which had issued from a transverse rent across the apex of the heart. Both ventricles were laid open; the muscular substance was torn to a greater extent than the pericardium. The ribs were not fractured. The natural causes of rupture of the heart are violent mental emotions, such as anger, fright, terror, paroxysms of passion, sudden or excessive muscular efforts, or violent physical exertions in constrained positions. The heart, like any other muscle, may also give way from its own powerful contraction. When the heart is in a diseased condition, any slight causes of excitement are sufficient to produce rupture and sudden death. The mere exercise of walking may thus give rise to fatal consequences, but death may take place quite suddenly while the person is at rest. A man, aged 36, who had had no previous symptoms of illness, died suddenly during the night. On inspection, a rent, half an inch in length, was found in the right ventricle of the heart. The walls of the ventricle were soft and thin. There was a large effusion of blood, which accounted for death. (‘Lancet,’ 1872, vol. 2, p. 41.) Another case of sudden death from rupture of the left ventricle is recorded in the same journal (1872, 2, p. 524.) In both cases sickness was an early symptom.
WOUNDS OF ARTERIES AND VEINS.

Wounds of arteries and veins.—Wounds of the large arterial and venous trunks around the heart must be considered as mortal; death is generally instantaneous from the sudden and profuse bleeding which attends them. With regard to these fatal effusions of blood within the chest, as well as in the other great cavities, it may be proper to mention that, from whatever vessel or vessels the blood may have issued, it is not commonly found coagulated to any extent. The greater part of it generally preserves the liquid state, and it is rare that so much as one-half of the quantity effused is met with in the form of coagulum. These effusions of blood in the chest may be sometimes traced to wounds of the intercostal and the internal mammary arteries, or of the vena asygos.

Wounds of the carotid arteries have been considered elsewhere in reference to wounds of the throat. Questions relative to the power of locomotion perhaps more frequently occur with respect to wounds of these blood-vessels of the neck than of the heart—suicide and murder being more commonly perpetrated by the infliction of such wounds. Wounds of the carotid arteries are often pronounced instantaneously mortal. A witness may deliberately state that the person could not possibly have survived an instant. This is a very hazardous opinion, for it occasionally comes out, on inquiry, that if such a wound had been instantaneously mortal, then, in defiance of rational probability, or of the strongest presumptive evidence to the contrary, the deceased must have been murdered! A medical opinion of this kind has not only been refuted by circumstances, but by the evidence of eye-witnesses. A medical witness is then compelled to admit that his rules for judging of the mortality of wounds are erroneous, and that the person may have survived for a longer or shorter period. There are several cases on record which show that wounds involving the common carotid artery and its branches, as well as the internal jugular vein, do not prevent a person from exercising voluntary power, and even running a certain distance. There is another circumstance which requires notice in relation to severe wounds in the throat—namely, that although a person may have the power of locomotion, he may not be able to use his voice so as to call for assistance. It sometimes excites surprise at an inquest, how a murder may, in this way, be quietly committed without persons in an adjoining room hearing any noise; but the fact is well known medically, that when the windpipe is divided, as it generally is on these occasions, the voice is lost.

In reference to severe wounds involving blood-vessels, while we may allow that persons may survive for a sufficient time to perform various acts of volition and locomotion, yet the presence of a mortal wound, especially when of a nature to be accompanied by a great loss of blood, must prevent all struggling or violent exertion on the part of the wounded person; such exertion we must consider to be quite incompatible with his condition. A medical jurist may thus have it in his power to determine whether a mortal wound found
on the deceased has or has not been inflicted for the purpose of murder. On wounds of other blood-vessels, whether arteries or veins, it is unnecessary to make any further remark. Death is generally owing to loss of blood, and the bleeding from a comparatively small vessel may prove fatal, according to its size, situation, and the state of the wounded person.

Death from the entrance of air into wounded veins.—In wounds of veins there is an occasional and a peculiar cause of death which requires a remark, namely, the entrance of air by the open mouth of the divided vessel. It has been long known that air injected into the jugular vein would destroy life by interfering with the functions of the heart; but the exact nature of this accident, as it occurs in operations, is not well understood. (Ferguson’s ‘Surgery,’ p. 444.) According to some, the air rushes into the cavity of the vessel owing to atmospheric pressure during the expansion of the heart, while others believe it to be dependent on aspiration in the act of breathing; but in some alleged cases of this kind, death has been probably caused by loss of blood. When the bleeding is slight, and the hissing sound is heard at the time of the incision, it may fairly be ascribed to the entrance of air. This opinion would be confirmed by the discovery of a frothy state of the blood in the right cavities of the heart.

From the experiments of M. Tilliaux, it appears that the injection of air into the proximal or distal end of the femoral artery of dogs produces complete paralysis of the hind legs. A post-mortem examination showed haemorrhage and softening limited to a single point in the spinal cord. To explain the production of this effect by the injection of air into the distal end of the artery, he supposes that the air cannot pass through the capillaries into the veins, but finds its way by anastomosing arteries into the aorta, and thence into the arteries supplying the cord. After an injection of air into the carotids, patches of red softening are found in the different parts of the brain, but especially in the medulla oblongata and pons Varolii. The death of the animal is often very rapid. (‘Medical Record,’ 1873.)

According to some, death has arisen from want of power in the right ventricle, occasioned by its distension with air; this may, no doubt, assist in producing the result, as over-distension of either cavity of the heart will cause paralysis of its walls. But according to Dr. Pavy the more immediate cause is the fact that air will not circulate through the capillaries like blood; the air, therefore, entering the capillaries of the lungs, blocks them up, and puts an end to the free circulation of the blood.

Wounds and ruptures of the diaphragm.—The diaphragm, or muscular partition between the chest and abdomen, is liable to be wounded either by weapons which penetrate the cavity of the chest or abdomen, or by the ribs when fractured by violent blows or falls; but, under any circumstances, wounds of this muscle are not likely to occur without implicating other important organs that are
in contact with it. It is scarcely possible, therefore, to estimate the danger of these injuries abstractedly, as a medical opinion must materially depend on the concomitant mischief to the adjoining viscera. Slight penetrating wounds of the diaphragm may heal like those of other muscular parts: and cases of this kind are on record. There is, however, especially when the wound is of a lacerated kind, a consecutive source of mischief which no remedial means can avert,—namely, that after the wound has, to all appearance, healed, the life of a person may be cut short by the strangulation of a portion of the stomach or bowels in the half-cicatrizied aperture. In a case of this description, when death occurs at a long period after the infliction of a wound, the witness may probably be required to say—Whether the wound was the cause of death? or whether there were any other circumstances which would have caused or facilitated the production of a hernia. The degree of culpability of an aggressor may materially depend upon the answers returned to these questions. *Phrenic hernia,* as this form of internal rupture is termed, is not by any means an unusual or unexpected fatal consequence of a wound of the diaphragm; and therefore it would appear at first sight that death, at whatever period this event may occur, should be referred to the original wound. But the case may present some difficulties, as it is possible that a slight blow on the stomach, received subsequently to the wound, or even any violent exertion on the part of the deceased, might have produced the fatal strangulation. A person may survive with a large phrenic hernia for a considerable period, and die from some other cause. It has been stated that a person is completely incapacitated and rendered incapable of exertion or locomotion by a rupture of the diaphragm. This statement, however, has been based on limited observation. The general effect of such an injury is to incapacitate a person, but cases are recorded in which, in spite of the rupture, a person has possessed the power of moving and walking to a considerable distance.

The most serious injuries to the diaphragm are unquestionably those which are produced by violent contusions or falls on the abdomen, at a time when the stomach and intestines are distended. In these cases the muscular fibres may be ruptured to a greater or less extent: but the bleeding is not considerable, rarely exceeding two, three, or four ounces. A uniform result of these *ruptures,* when extensive, is a protrusion of the stomach into the chest, with sometimes a rupture of the coats of this organ and extravasation of its contents. Severe lacerations of the diaphragm are more readily produced during the act of inspiration than during expiration—the fibres of the muscle being then stretched, and receiving, while in this state of tension, the whole of the force. According to Devergic, the rupture most frequently takes place in the central tendinous structure, where it is united with the left muscular portion above the crura. He has remarked that it occurs more commonly on the left side than on the right. (Op. cit. vol. 2, p. 260.) It has been
supposed that death would be an immediate consequence of this accident; but this view is not supported by facts. In a case of extensive rupture of the diaphragm, related by Devergie, in which the stomach and colon were found in the chest, the person lived nine months after the only accident which could have produced it, and then died from another cause. Besides the stomach, it sometimes happens that the liver, spleen, or intestines pass through the opening, and, like it, these organs are liable to become strangulated: the lungs are at the same time so compressed that respiration is stopped, and asphyxia or suffocation may be an immediate result.

Direction of wounds in the chest.—In judging of the direction taken by wounds which traverse the chest from front to back, it is necessary to remember the great difference that exists in the level of the same rib anteriorly and posteriorly. This must be especially attended to when we are called upon to state the direction of a traversing wound from the description of it given by another. The point here referred to had an important bearing in the case of a fatal gunshot wound, which was the subject of a criminal charge some years since. (Henke's *Zeitschrift,* 1836.) It must not be forgotten that a wound immediately below the chest bone, will in its fore part involve the viscera of the abdomen,—in the back part those of the chest, and in its central part it will traverse the diaphragm; owing to the great obliquity of the ribs, a straight line touching the upper edge of the sixth rib behind would be on a level with the upper edge of the third rib in front.

Wounds of the parietes of the abdomen.—*Incised and punctured* wounds, which affect the parietes or coverings of the abdomen, without penetrating the cavity, are not quite so simple a nature as might at first sight be imagined. The danger is immediate if the epigastric artery be wounded; for a fatal haemorrhage will, in some instances, take place from a wound of this small vessel. Among the sources of danger from superficial wounds, is inflammation, followed by suppuration beneath the tendinous membrane which covers the abdominal muscles. The matter formed is very liable to accumulate within the sheath of the muscles, and this may prove fatal unless proper treatment be adopted. The inflammation will sometimes extend to the peritoneum, and thus rapidly destroy life. As improper medical treatment may, in either of these cases, cause a superficial wound of the abdomen to take a fatal termination,—so when a person stands charged with having inflicted such a wound, it will be necessary for a medical witness to consider how far the consequences of the act of the prisoner have been aggravated by wilful neglect or unskilfulness. But when these wounds take a favourable course and heal, there is an after effect to be dreaded, namely, a protrusion of the viscera at the cicatrized spot, constituting ventral hernia. When the wound has involved the muscular fibres transversely to their course, the cicatrix which follows is commonly far less capable of resisting the pressure of the viscera within, than other parts of the parietes. A hernia may take place,
and this, like other hernias, if neglected, is liable to become strangulated, and lead to the destruction of life. The walls of the abdomen, owing to the protrusion of this cavity, are easily penetrated by pointed instruments, and it requires but a slight force to traverse them completely and wound the intestines. A slight wound may thus prove fatal by causing peritoneal inflammation.

Contusions are attended generally with far more serious effects on the cavity of the abdomen than on the chest. This arises from the coverings of the abdomen having less power to resist external shocks. In the first place, death may be the immediate result of a blow in the upper and central portions; no particular morbid changes may be apparent on inspection, and the violence may have been so slight as not to have produced any ecchymosed mark on the skin. Death has been ascribed in these cases to a fatal shock transmitted to the system through a violent impression produced on the nerve-centre—called the solar plexus. Some remarks have already been made on sudden death from blows on this part of the abdomen. (Ante, p. 253.) Travers, Alison, Watson, Cooper, and other writers on surgical injuries, have referred to cases of this kind as of not unfrequent occurrence. They are of considerable importance in a medico-legal point of view, as, in the absence of marks of physical injury in the part struck, a jury might be led to doubt whether the blow could have been the cause of death. Some surgeons have thought that these cases have not been accurately observed, and that in those which terminate fatally, a more careful inspection would probably have shown visible changes in the organic structures. The fact, however, remains: persons have died soon after receiving severe blows on the upper part of the abdomen, and the medical men who have examined the bodies for the express purpose of detecting physical injuries, have not found any to record. Moreover, they have not found in any part of the body a natural cause of sudden death. (Reg. v. Stone, Durham Winter Ass. 1872.)

Blows on the abdomen, when they do not destroy life by shock, may cause death by inducing peritoneal inflammation. Violence of a severe kind applied to the abdomen is not always indicated by ecchymosis or injury to the skin. Effusions of blood in the sheaths or tendinous coverings of the muscles, may or may not be indicative of violence. One fact must here be borne in mind, to prevent mistakes in examining a body after death, namely, that blood may be found copiously effused in and around the abdominal muscles, quite irrespective of the application of violence. (Reid’s ‘Physiological Researches,’ p. 511.) The absence of ecchymosis, or abrasion of the skin, in these cases, is sufficient to show that such extensive effusions are not caused by violence. Blows adequate to produce a laceration of the vessels and haemorrhage, would most probably be attended with ecchymosis—and some visible injury to the skin. At any rate when such marks of violence are not visible, and there is no evidence of a blow having
RUPTURES OF THE LIVER.

been struck, a witness would act wisely in declining to attribute the mere effusion of blood to the act of another person. Deeply penetrating wounds of the abdomen are generally fatal by reason of the injury done to the intestines and other organs.

Ruptures of the liver.—Blows on the abdomen may prove fatal by causing a rupture of the liver or other visera, with extravasation of blood: and, as it has been elsewhere stated, these serious injuries may occur without being attended with any marks of external violence. Of all the internal organs, the liver and spleen are the most exposed to rupture, owing to their compact structure, which prevents them from yielding to a sudden shock, like the stomach and intestines. Ruptures of the liver may occur from falls or blows; but this organ may be ruptured merely by a sudden action of the abdominal muscles. Ruptures of the liver are generally seen on the convex surface and anterior margin, seldom extending through the whole substance of the organ, but consisting of fissures varying from one to two inches in depth. The right lobe, from its size, is more usually affected than the left. Their usual direction is from before backwards, with a slight obliquity; they rarely intersect the liver transversely. The lacerated edges are not much separated, while the surfaces present a granular appearance. But little blood is met with in the laceration; it is commonly found effused in the lower part of the cavity of the peritoneum, or in the hollow of the pelvis, and is only in part coagulated. Ruptures of the liver, unless they run far backwards and involve the vena cava or portal vein, are not in general attended with any considerable effusion of blood; but the bleeding, should this vessel be implicated, is sufficient to cause the instant destruction of life. Under other circumstances a person may survive some hours or days, as the blood sometimes escapes slowly, or it may be suddenly effused in fatal quantity as a result of violent exertion or of fresh violence applied to the abdomen. A man came into Guy’s Hospital a few years since, in whom there were no immediate or urgent symptoms. He was sent away, and a few hours afterwards he was found dead in a cell at a police-station. On inspection, the liver was lacerated nearly through its diameter, and as much as a basinful of blood was effused in the cavity of the abdomen. (‘Mod. Times and Gaz.’ 1864, 2, 527.) This effusion must have taken place after the man had left the hospital. Ruptures of the liver generally prove fatal within forty-eight hours. On the other hand, death may be a slow result of this injury. In one case, a man is reported to have died from a rupture of the liver, which had occurred from an accident eight days before. (‘Med.-Chir. Rev.’ Jan. 1836, p. 296.) And a case occurred to Dr. Wilks in which a person in Guy’s Hospital survived this serious accident ten days.

Wounds and ruptures of the gall-bladder are necessarily attended with the effusion of bile. This irritant fluid finds its way into the cavity of the abdomen, and the person dies from peritonitis.
Ruptures of the kidneys and intestines.

Rupture of the spleen.—Rupture of the spleen may occur either from violence or disease, and it would appear that a slight degree of violence may in some cases cause a rupture of this organ, without any marks of injury appearing externally.

Rupture of the kidneys.—The kidneys are occasionally ruptured from violence; but this appears to be a rare accident. A rupture of the kidney may be produced without causing any prominent symptoms, and prove fatal in a few hours. It may be remarked generally that ruptures of the liver, spleen, and kidneys, unless attended with immediate and copious bleeding, are not inconsistent with a person having the power to move and walk. In a case which occurred at Guy’s Hospital, a man had retained the power of walking for some distance, although, on inspection after death, one kidney was found torn in halves from an accident.

Ruptures and wounds of the intestines.—Ruptures of the intestines sometimes occur from disease; and, in a case of rupture alleged to have been produced by violence, we must always take this possible objection to our opinion into account. The ruptured part of the bowel should be carefully examined, in order to see whether there are any signs of ulceration or softening about it. If not, and there is clear evidence of violence having been used, it is impossible to admit this speculative objection. If with the proof of violence there should also be a diseased condition of the bowel, we may be required to say whether this did not create a greater liability to rupture—a point which must be generally conceded. That a rupture of the intestines is not incompatible with the power of locomotion, is also proved by a case related by Mr. Ellis of Dublin, where the cæcum was ruptured: the man was able to walk after the accident, but he died in twenty-four hours. Other instances of this kind are reported by Henke. The ileum is observed to be most liable to rupture from accident. In 1861 a man was brought into Guy’s Hospital. He was able to walk to his bed, and he did not appear to be seriously injured, although it was stated that a bale of wool had fallen on him. In the evening he became collapsed, and he died twelve hours after his admission. On inspection, about a pound of blood was effused in the abdomen, and a portion of the ileum was found lacerated—the laceration extending into the mesentery and including the blood-vessels. The laceration was about an inch and a half long, and the bowel was divided not quite through. The intestines were much matted together by lymph and blood, the result of peritoneal inflammation. There had been only slight extravasation of the contents. (‘Med. Times and Gaz.’ Sept. 1861.) I am indebted to Dr. Croker King for a report of two fatal cases of ruptured jejunum, one arising from a kick on the abdomen and the other from an accidental fall. Dr. King has observed that persons who have sustained this injury retain the power of locomotion and muscular exertion.

Punctured wounds, which merely touch the bowels without laying open the cavity, are liable to cause death by peritonitis.
RUPTURES OF THE STOMACH AND BLADDER.

These injuries to the intestines sometimes destroy life by shock; there is but little blood effused, and the wounded person dies before peritonitis can be set up. Severe wounds to the intestines may, however, be inflicted almost without the consciousness of the individual, and the wounded person may be able to walk a considerable distance. ('Med. Gaz.' vol. 46, p. 24.)

Wounds and ruptures of the stomach.—Wounds and ruptures of the stomach may cause death by shock: ruptures commonly give rise to severe pain, which of itself is sufficient to bring about rapid dissolution. It is proper to state, however, that the stomach may be ruptured from spontaneous causes, as in cases of ulceration resulting from disease; but sometimes there is no morbid cause apparent.

Penetrating wounds of the stomach generally prove rapidly mortal; they seldom form a subject for medico-legal investigation. A singular case was tried at the Norwich Assizes in 1832, in which a man was charged with the murder of his wife by throwing at her a red-hot poker. The weapon completely perforated her stomach, and the woman died in six hours. It might be a question whether this was a wound in the common sense of the term—it was an injury compounded of a burn, puncture, and laceration.

Ruptures of the bladder.—This injury, which has on several occasions given rise to medico-legal discussion, is frequently the result of blows on the lower part of the abdomen. The principal questions in reference to the accident are:—Was the rupture the result of wilful violence or of an accidental fall?—or, did it proceed from spontaneous causes, as from over-distension? The spot in which rupture commonly takes place is in the upper and back part, where the bladder is covered by the peritoneum. The aperture is sometimes large, at others small; but the effect is that the urine is effused, and death takes place sooner or later from peritoneal inflammation. It is commonly stated that ruptures, when attended with extravasation of urine into the peritoneal cavity, are uniformly fatal; but if the rupture occurs in the under part of the bladder, or the urine finds its way into the cellular tissue, the medical opinion is not so unfavourable. The usual period at which death occurs from this accident is in from three to seven days; but Mr. Ellis met with a case in which the person did not die until the fifteenth day. The cause of death is obviously peritoneal inflammation; but a person may die suddenly from this injury as a simple result of shock.

When ruptures of the bladder are produced by blows they are rarely accompanied by marks of ecchymosis, or of injury to the skin. Thus, then, there may be no means of distinguishing, by external examination, whether a rupture was really due to violence or to spontaneous causes. Those who are acquainted with this fact might be disposed to refer the rupture to disease, on the supposition that violence should always be indicated by some visible external injury; but there are numerous cases on record which show that this view is erroneous (p. 206 ante).
As an attempt may be made, in cases in which death has resulted from this injury, to refer rupture of this organ to natural causes, it may be observed that this is an unusual occurrence; a rupture is almost always the result of violence directly applied to the part while the organ is in a distended state. A spontaneous rupture may, however, occur: 1. When there is paralysis, with a want of power to expel the urine. 2. When the bladder is ulcerated or otherwise diseased. 3. When there is an obstruction in the urethra from stricture or other causes. The causes of spontaneous rupture are easily recognizable by ascertaining the previous condition of the deceased, or examining the bladder and urethra after death. If a man were in good health prior to being struck; if he suddenly felt intense pain, could not pass his urine afterwards, and died from an attack of peritonitis in five or six days; if, after death, the bladder was found lacerated, but this organ and the urethra were otherwise in a healthy condition, there can be no doubt that the blow must have been the sole cause of rupture and death. In such a case, to attribute the rupture to spontaneous or natural causes would be equal to denying all kind of causation. As to the absence of marks of violence externally, this would be a difficulty only to those who had not previously made themselves acquainted with the facts attending this and other accidents affecting the viscera of the abdomen (p. 206). Nevertheless, a medical witness must be prepared to hear the same line of defence continually brought forward, as it is always the object of a counsel to make the best of a case for the prisoner. With medical facts, opinions, and doctrines he does not concern himself, so long as they do not serve his purpose. A diseased state of the bladder might probably diminish the responsibility of an accused person for the consequences; therefore the state of this organ should be closely looked to on these occasions. A distended state of the organ can be no mitigatory circumstance, since it is only when the bladder is in this condition that rupture is liable to occur. This can hardly be regarded as an abnormal condition of the organ. An accidental fall forwards over a hard surface when the bladder is distended with urine may lead to rupture. The person generally experiences intense pain in the lower part of the abdomen, and there is an inability to pass the urine. Although a man is liable to be rendered powerless on sustaining a rupture of the bladder from a heavy blow or fall, there are several well authenticated cases on record which prove that a man may walk some distance, and move about even for two or three hours afterwards.

In punctured and incised wounds of the bladder the urine is immediately extravasated, but in gunshot wounds the extravasation does not commonly take place until the sloughs have separated. Thus, life may be protracted longer in cases of gunshot, than under other wounds of the bladder. For the discovery of extravasated liquids or blood, in wounds and other injuries to the abdominal viscera, we must look to the cavity of the pelvis, as it is here that, for obvious reasons, such liquids have a tendency to collect.
Wounds of the Genital Organs.

Wounds of the genital organs.—Wounds of these organs do not often require the attention of a medical juris: such wounds, whether in the male or female, may, however, prove fatal to life by excessive bleeding. Self-castration or mutilation is sometimes observed among male lunatics and idiots. When timely assistance is rendered, a fatal result may be averted. Dr. Demarquay met with a case in which a man in a fit of intoxication cut off the whole of his genital organs with a razor. He lost much blood, from the effects of which he died on the following day. (‘Lancet,’ 1872, 2, p. 10.) The practice of circumcision on infants is sometimes followed by fatal results. Dr. Schwartz, of Vienna, met with two cases of boys, eight days old, who were submitted to this rite. They both died of phlegmonous inflammation, one five days and the other twenty-five days after the operation. (‘Lancet,’ 1870, 2, p. 471.) Another fatal case is reported in the latest return of the Registrar General (1871).

Incised, lacerated, or even contused wounds on the female genitals may prove fatal by loss of blood, not from the wound involving any large vessel, but from the numerous small vessels which are divided. When deeply incised wounds are inflicted upon the genital organs of either sex, the fact of their existence in such a situation at once proves wilful and deliberate malice on the part of the assailant. Accident is wholly out of the question, and suicide is improbable, except in cases of confirmed idiocy, lunacy, or helpless intoxication. Such wounds require to be carefully examined; for the proof of the kind of wound, when fatal, may be tantamount to a proof of murder. A practitioner may be sometimes required to determine whether wounds affecting the female organs have resulted from accident, have been self-inflicted, or inflicted by others with homicidal intention. Accidental wounds of the genitals, unless all the circumstances are known, may sometimes resemble those produced by design. A girl, est. 6, fall from a tree with her legs apart upon one of the sharp-pointed shoots below, about half an inch thick. This entered the vagina, and passing through its posterior wall, broke off. A woman removed the wood with some difficulty. The child died in twenty-eight hours from peritonitis. (‘Lancet,’ 1871, 2, p. 74.) Had this child been found dead with the wood in her body, there might have been some difficulty in assigning an accidental origin to such an injury. (For remarks by Toulmouche on the wounds of the male genital organs, see ‘Ann. d’Hyg,’ 1868, 2, p. 110; and for cases in which such wounds were homicidally inflicted upon males, see ‘Ann. d’Hyg.’ 1848, 1, p. 443; also 1865, 1, 56; and for a case which led to a trial for the murder of a woman, see ‘Med. Gaz.’ vol. 44, p. 813.) The distinction of a homicidal from a self-inflicted wound on the female organs is sometimes attended with great difficulty. In April 1873, a man was tried at Glasgow for the murder of his wife, but discharged on a verdict of ‘not proven.’ They were both intoxicated when they went to bed, and some time afterwards the woman was found bleed-
WOUNDS OF THE GENITAL ORGANS.

ing from a severe wound in the vagina, from which a portion of the intestines had protruded. She died in a week from peritonitis. She denied that her husband had wounded her, and a dying declaration which she made that the wound arose from a fall was obviously false. As they were both at the time in a state of helpless drunkenness, and no one was present, there was a want of evidence to show that the wound had been homicidally inflicted by the husband. (‘Lancet,’ 1873, 1, p. 673.) In the case of Reg. v. Green, Derby Winter Assizes, 1872, the medical evidence established that there was a punctured wound of the genitals in a female which had caused death by haemorrhage; but it could not be clearly shown whether it was the result of accident or homicide.

Contused wounds on the female genitals may prove fatal by the laceration of parts leading to great loss of blood. Several trials for manslaughter have taken place, in which this was proved to have been the cause of death. There may be such a loss of blood in these cases as to destroy life, although no large blood-vessel is implicated in the injury. A contused wound on the vulva may occasionally present an ambiguous appearance and be mistaken for an incised wound. When the soft parts of the body are struck by a blow or kick, if there is a bony surface beneath, a longitudinal rent may appear as a result of the force being received by the bone. A kick on the vulva or a fall on this part, may produce a similar injury, and unless carefully examined, may lead to the inference that a weapon has been used for its production. It is well known that some females are subject to frequent discharges of blood from the genital organs from natural causes. When the bleeding immediately follows a blow, and the woman has not been subject to such a discharge, the fair presumption is that violence was the cause: but when the flow of blood appears only a long time after the alleged violence, of which no traces can be seen, it is most probably due to natural causes. A case of this kind has been communicated to me by Mr. Procter, of York. There was no difficulty in giving an opinion that the flow of blood was not due to violence.

It may be alleged in defence, that the injuries found on the body were inflicted after death, and not while the deceased was living. Kicks or blows on the vulva, if they destroy life at all, cause death by copious effusion of blood. Violence to this part after death would not produce such an effusion as would account for death. There are also other distinguishing characters which have been elsewhere pointed out.
CHAPTER 34.

FRACTURES.—PRODUCED BY A BLOW WITH A WEAPON OR BY A FALL.—BRITTLENESS OF THE BONES.—FRACTURES CAUSED BY SLIGHT MUSCULAR EXERTION.—IN THE LIVING AND DEAD BODY.—HAS A BONE EVER BEEN FRACTURED?—LOCOMOTION.—DISLOCATIONS FROM VIOLENCE OR NATURAL CAUSES.—MEDICAL OPINIONS.—ACTIONS FOR MALAPRAxis.

FRACTURES.

Fractures of the bones have some important bearings in relation to medical jurisprudence. They may result from falls, blows, or the spontaneous action of muscles.

Causes.—Questions are sometimes put as to whether a particular fracture was caused by an accidental fall or a blow; and if by a blow, whether by the use of a weapon or not. It is obvious that the answers must be regulated by the circumstances of each case. In examining a fracture, it is important to determine, if possible, whether a weapon has or has not been used, and this may be sometimes ascertained by the state of the parts. It is a common defence, on these occasions, to attribute the fracture to an accidental fall. Fractures more readily occur from equal degrees of force in the old than in the young, and in the young rather than in the adult; because it is at the adult period of life that the bones possess their maximum degree of firmness and solidity. The bones of aged persons are sometimes very brittle, and slight violence will then produce fracture. This has been regarded as an extenuating circumstance, when the fracture produced by a slight blow was followed by death. Certain diseases, such as syphilis, arthritis, cancer, scurvy, and rachitis, render bones more fragile; but they are sometimes preternaturally brittle in apparently healthy persons, and this brittleness (fragilitas ossium) appears to be hereditary. In such cases, a defence might fairly rest upon an abnormal condition of the bones, if the violence producing the fracture was slight. Several trials have taken place in which this brittleness of the bones became a subject of inquiry. In a case of fractured skull leading to death from inflammation of the brain, it was proved that the bones of the skull were occasionally thin and brittle, and this led to a mitigation of punishment. The orbital plate of the frontal bone is very thin, and it may be fractured by a blow on the eye. Death may, under these circumstances, result from inflammation of the brain.

Spontaneous Fractures.—In a case in which there is no appearance of disease, a fracture may be ascribed to spontaneous causes. Thus bones have been fractured by moderate muscular exertion. The elbow (olecranon), heel-bone (os calcis), and knee-pan (patella) are particularly exposed to this accident. The long bones are seldom the subject of an accident of this kind; but the arm (os humeri)
in a healthy man has been broken by the simple muscular exertion of throwing a cricket-ball. ('Med. Gaz.' vol. 16, 659.) Mr. May reports the case of a young lady, who fractured the neck of the scapula by suddenly throwing a necklace round her neck. ('Med. Gaz.' Oct. 1842.) In July 1868, a gentleman, aged 40, was in the act of bowling at cricket, when on delivering the ball, he and some bystanders heard distinctly a sharp crack like the breaking of a dry piece of wood. He fell to the ground as if he had been shot. The thigh-bone was found to be fractured, and evidently from muscular exertion only. No person can meet with an accident of this kind without being instantly conscious of it. It is probable that in these instances, if there were an opportunity of examining the bone, it would be found to have undergone some chemical change in its composition, which had rendered it brittle. A case of spontaneous fracture of the femur was brought into Guy's Hospital, in December 1846. A healthy man, aged 33, of temperate habits, was in the act of placing one leg over the other to look at the sole of his foot, when he heard something give way, and the right leg immediately hung down. On examination, it was found that the right thigh-bone had been transversely fractured at the junction of its middle with the lower third. This case is remarkable inasmuch as spontaneous fractures of the thigh-bones are very rare, and the man had not suffered from any of those diseases which cause preternatural fragility, and the fracture was not caused by violent muscular exertion. The actual condition of the bone was, of course, unknown; but it healed readily, and the man left the hospital at the usual period. In fractures arising from this cause there will be no abrasion of the skin, nor any appearance to indicate that a blow has been struck; while the marks of a blow would, of course, remove all idea of the fracture having had a spontaneous origin. It is most unusual that the ribs should be fractured from muscular exertion; but a case occurred to Dr. Groninger, which shows that this accident may really occur. It is only of medico-legal importance, inasmuch as the injury might be ascribed to violence; but the absence of any external appearances indicative of a blow would render it probable that this was not the cause.

Fractures are not dangerous to life, unless, when of a compound nature, they occur in old persons, or in those who are debilitated by disease or dissipated habits. They may then cause death by inducing irritative fever, erysipelas, gangrene, tetanus, pyaemia, or delirium tremens.

Fractures in the living and dead body.—It is not always easy to say whether a fracture has been produced before or after death. A fracture produced shortly after death, while the body is warm, and another produced shortly before death, will present similar characters, except that in the former case there might be less blood effused. A fracture caused ten or twelve hours before death, would be indicated by a copious effusion of blood into the surrounding parts and between the fractured edges of the bones, as well as by
laceration of the muscles; or if for a longer period before death, there may be the marks of inflammation. Fractures caused several hours after death are not accompanied by an effusion of blood. A medical witness may be asked, How long did the deceased survive after receiving the fracture? This is a question which can be decided only by an examination of the fractured part. Unless the person has survived eighteen or twenty-four hours, there are commonly no appreciable changes. After this time, lymph is poured out from the surrounding structures. This slowly becomes hard from the deposition of phosphate of lime, and forms what is called a 'callus.' In the process of time, the callus acquires all the hardness of the original bone. The death of a person may take place during these changes, and a medical man may then have to state the period at which the fracture probably happened, in order to connect the violence with the act of a particular person. Unfortunately, we have no satisfactory data, if we except the extreme stages of this process of repair, upon which to ground an opinion. We can say whether a person lived for a long or a short time after receiving a fracture, but to specify the exact time is clearly impossible; since this process of restoration in bone, varies according to age, constitution, and many other circumstances. In young persons, bones unite rapidly, in the old, slowly; in the diseased and unhealthy, the process of union is slow, and sometimes does not take place at all. In those who are at the time affected with a mortal disease there is no attempt at repair. According to Villermé, the callus assumes a cartilaginous structure in from sixteen to twenty-five days; and it becomes ossified in a period varying from three weeks to three months. It requires, however, a period of from six to eight months for the callus to acquire all the hardness, firmness, and power of resisting shocks possessed by the original bone. A force applied to a recently united bone will break it through the callus or bond of union, while after the period stated, the bone will break as readily through any other part. It is generally assumed, that the period required for the union of a simple fracture, is, for the thigh-bone, six weeks; for the tibia (leg), five weeks; for the os humeri (arm), four weeks; and for the ulna and radius (forearm), three weeks; for the ribs, about the same period: but cases have been known in which the ribs had not perfectly united in two months, and in some fractures of the other bones, it was found that union had not taken place in four months. In a case which occurred to Dr. Reid, a fracture of the tibia, the principal bone of the leg, healed in three weeks.

Has a bone ever been fractured?—This question is sometimes put in reference to the living body. It is well known that a bone seldom unites so evenly that the point of ossific union is not indicated by a node or projection. Some bones are so exposed as to be well placed for this examination, as the radius, the clavicle, and tibia,—these being but little covered by skin; in others, the detection is difficult. It is impossible for us to say when the
FRACTURES AND DISLOCATIONS.

Fracture took place; it may have been six months or six years,—as, after the former period, the bone undergoes no perceptible change. These facts are of importance in relation to the dead as well as to the living; since they will enable us to answer questions respecting the identity of skeletons found under suspicious circumstances: and here medical evidence may take a wider range, for a fracture in any bone may be discovered, if not by external examination, at least by sawing the bone longitudinally through the suspected broken part, when, should the suspicion be correct, the bony shell will be found thicker and less regular in the situation of the united fracture than in the other parts. So, in such cases, it will be easy to say whether a fracture is recent or of old standing.

Locomotion.—With respect to the power of locomotion after a fracture, it may be observed, that when the injury is in the arm, or in the ribs—unless many of the ribs are broken or the fractures are on both sides—a person may be able to move about, although he is unfit for struggling or making great exertion. Fractures of the leg generally incapacitate persons from moving, except to short distances. See case by Syme, 'Ed. Med. and Surg. Journal,' Oct. 1836; also another in which one bone of the leg was fractured, and a power of walking some miles was retained. ('Amer. J. Med. Sci.' Oct. 1845, p. 484.) The reader will find additional information on this subject in the 'Ann. d'Hyg.' 1839, 2, p. 241; 1844, 2, p. 146; and in Friedrich's 'Ueber die Knochen in forensischer Beziehung,' Anbach, 1853.

DISLOCATIONS.

Dislocations are not frequent in the old or in those persons whose bones are brittle. They rarely form a subject for medico-legal investigation. A witness is liable to be asked, what degree of force, and acting in which direction, would produce a dislocation,—questions not difficult to answer. They are not dangerous to life, unless of a compound nature, when death may take place from secondary causes. A dislocation which has occurred in the living body may be known after death by a laceration of the soft parts in the neighbourhood of the joint, and by the copious effusion and coagulation of blood. For an account of the appearances presented by a dislocation of the shoulder four days after death, see 'Med. Gaz.' vol. 31, p. 266. If of old standing, a dislocation would be identified by the cicatrices in surrounding structures. Dislocations may occur from natural causes, as from disease and destruction of the ligaments in a joint; also from violent muscular spasm during an epileptic convulsion. Dr. Dymock met with an instance of dislocation of the shoulder forwards during puerperal convulsions. ('Ed. Med. and Surg. Journal,' April 1843; see also 'Lancet,' April 1845, p. 440.) A power of locomotion may exist, except when the injury is in the lower limbs; but it has been observed, that for
some time after a dislocation of the hip-joint, considerable power over the limb remains; it is only after a few hours that the limb becomes fixed in one position. Exertion with the dislocated member is in all cases out of the question.

Detection of fractures. (Malapraaxis.)—There are certain fractures of an obscure kind which closely resemble dislocations. This has been pointed out by Sir A. Cooper, in relation to fractures of the anatomical neck of the os humeri (arm-bone). (‘Guy’s Hosp. Rep.’ No. 9, p. 272.) This accident might easily be mistaken for a dislocation of the shoulder. (‘Med. Gaz.’ vol. 36, p. 38.) In attempting to reduce the bone, the head continually falls back into the axilla. In such a case an action for malapraaxis might be brought against a surgeon, and heavy damages recovered. It could only be by a dissection of the part after death that the real nature of the case would be ascertained. It is requisite, therefore, that great caution should be used in giving an opinion. The same observations apply to fractures of the neck of the thigh-bone, although with less force, because this is a more common accident. It is well known that fractures and dislocations, when cured, are often attended with some slight deformity of the limb, or with some impairment of its functions. This result is occasionally inevitable under the best treatment; but it is commonly set down as a sign of unskilfulness in the medical attendant. An action for malapraaxis is instituted, and, in spite of good evidence in his favour, the surgeon is sometimes heavily fined for a result which could not be avoided. There is often great injustice in these proceedings, and the mischief can only be remedied by referring the facts to a competent medical tribunal, which alone should be empowered to decide whether or not unskilfulness had really been shown in the management of a case. The present system of allowing each party to select his own medical witnesses invariably leads to a conflict of opinion and evidence.

CHAPTER 35.

GUNSHOT WOUNDS.—IN THE LIVING AND DEAD BODY.—WAS THE PIECE FIRED NEAR OR FROM A DISTANCE?—ACCIDENTAL, SUICIDAL, OR HOMICIDAL WOUNDS.—POSITION OF THE WOUNDED PERSON WHEN SHOT.—WOUNDS FROM SMALL SHOT.—WOUNDS FROM WADDING AND GUNPOWDER.

Gunshot wounds are of the contused kind, but they differ from other wounds in the fact that the vitality of the parts struck by the projectile is destroyed, and this leads ultimately to a process of sloughing.

The medico-legal questions which arise out of gunshot wounds, are similar to those which have been examined in relation to other wounds. They are dangerous to life, especially when they pene-
trate or traverse any of the great cavities of the body. Death may take place directly, either from loss of blood or from shock; although immediate or copious bleeding is not a common character of these injuries. Death from shock is occasionally witnessed. Indirectly, these wounds are attended with much danger; sloughing generally takes place uniformly throughout the whole of the parts perforated, and inflammation or fatal bleeding may cut short life. If the person survives the first effects, he may die at almost any period from suppurative fever, erysipelas, gangrene, or from the results of operations absolutely required for his treatment. Gunshot wounds may thus destroy life after long periods of time.

A medical witness may be asked whether the wound was inflicted shortly before or soon after death. It is by no means easy to answer this question, unless the bullet has injured some vessel, when the effusion of blood and the formation of coagula, will indicate that the person was living when it was received. If a gunshot wound has been produced in a dead body, no blood will be effused unless the bullet strikes a large vein.

Was the piece fired near or from a distance?—A gunshot wound produced by the muzzle of a piece being placed near to the surface of the body, has the following characters:—There may be two apertures, the one of entrance and the other of exit; but it sometimes happens that the bullet lodges and does not pass out. The edges of the aperture of entrance are generally torn and lacerated, and appear blackened, as if they had been burnt: this arises from the heat and flame of the gunpowder at the moment of explosion. The skin is often ecchymosed, and is much discoloured by the powder:—the clothes covering the body are blackened by the discharge, and sometimes ignited by the flame. If the muzzle of the piece was not in immediate contact with the part struck, the wound is rounded; but if there has been direct contact, the skin, besides being burnt, is torn and much lacerated. The bleeding is usually slight, and when it occurs, it is more commonly observed from the orifice of exit than from that of entrance. It should be remarked that the aperture of entrance is round only when the bullet strikes point blank or nearly so. If it should strike obliquely, the orifice will have more or less of an oval or valvular form; and by an observation of this kind we may sometimes determine the relative position of the assailant with respect to a wounded person. Supposing the bullet to have been fired from a moderate distance, but so near as to have had sufficient momentum to traverse the body, then the appearance of the wound will be different. The orifice of entrance will be well defined, round or oval, according to the circumstances,—the skin slightly depressed,—the edges presenting a faintly bruised appearance; but the surrounding parts are neither blackened nor burnt, and they do not present any marks of bleeding. In these cases the orifice of exit is large, irregular, the edges somewhat everted, and the skin lacerated, but free from any appearances of blackness or burning: it is gene-
rally three or four times as large as the entrance-aperture. The orifice of entrance is, however, usually large and irregular when a bullet strikes near the extremity of its range. The entrance-aperture may have the appearance of being smaller than the projectile, owing to the elasticity of the living skin. (‘Ann. d’Hyg.’ 1839, t. 2, p. 319.) It is the same with the aperture in the dress, when this is formed of an elastic material. According to Dupuytren, the hole in the dress is always smaller than that made by a bullet in the skin. These points should be remembered in fitting projectiles to wounds which they are supposed to have produced.

The question whether a piece was fired near to, or at a distance from, the wounded person, may be of some importance either on a charge of homicide, or of alleged suicide. Two persons may quarrel, one having a loaded weapon in his hand, which he may allege to have been accidentally discharged, and to have killed the deceased. If the allegation is true, we ought to find on the body the marks of a near wound; if, however, its characters were such that it had obviously been produced from a distance, and therefore after the quarrel, medical proof of the fact might imply malice and involve the accused in a charge of murder. The following case occurred in Ireland in 1834:—A titho-collector was tried for the murder of a man by shooting him. It appeared in evidence that the prisoner, while on duty, was attacked by the deceased and two of his sons, and he drew a pistol to intimidate them. He was dragged off his horse by these persons, and during the scuffle, it is supposed, the pistol was discharged accidentally and inflicted a wound on the deceased, of which he died shortly afterwards. The sons of the deceased swore that the prisoner took a deliberate aim, and fired the pistol at their father when at some distance; and a priest came forward to depose that such was the dying declaration of the deceased. From some doubt of the truth of this story, the body, which had been carelessly inspected in the first instance, was ordered to be disinterred. It was again examined by a surgeon, who was enabled to swear positively that the pistol must have been fired close to the body of the deceased, and not at a distance, since there were the marks of powder and burning on the wrist. Hence it clearly followed that the pistol had not been discharged at a distance, but during the scuffle, either by accident or in self-defence. The prisoner was acquitted, and the parties who had appeared as witnesses against him were convicted of perjury.

It has been said that when a bullet is fired near, it commonly traverses the body; and therefore it has been rather hastily assumed, that when there is only one external wound, and the bullet has lodged in the body, this is a proof that the piece has been fired from a distance. This inference is, however, erroneous. A bullet may be fired close to a person and yet not traverse the body, either from its impulsive force not being sufficiently great, or from its meeting with great resistance in its course. Many cases might be cited to
show, that in the near wounds produced by suicide and murderers, the bullets have not always traversed the body. In suicide, when the piece is discharged into the mouth, the projectile often lodges in some part of the head. It is not in the power of a witness to say, from the mere fact of a bullet lodging or traversing, whether the assassin was far off or near, at the time that the deceased was wounded. The latter point may be sometimes readily determined by the marks of injury and burning about the skin and dress. When a gun or a pistol is discharged at the distance of three or four yards from the person, it will not, of course, produce those marks of blackening, burning, and bruising on the skin which are found when the muzzle is within a few inches of the body. A wound which does not present these appearances may remove the suspicion of suicide, and create a strong presumption of homicide. Dr. Lachèse found that in firing a gun at the distance of four feet, the skin was only partially blackened. It would be very important in a case of this kind to notice the direction of the wound as well as the relative position of the assailant and assailed, as stated by witnesses or deduced from circumstances.

When a ball traverses the body, it sometimes happens that the two apertures are opposite each other, although the ball may not have taken a rectilinear course between them, but have been variously deflected by the subjacent soft parts. This deflection of a ball from a rectilinear course is met with in those cases in which it happens to strike obliquely a curved surface, and it is found that when the ball enters and does not pass out, its course is often circuitous, so that it is not always easy to say in what part of the body it will be found.

A witness may be asked—When was the gunshot wound inflicted, and how long did the wounded person survive after receiving it? Like other wounds, a gunshot wound undergoes no change for eight or ten hours after its infliction. Our judgment in reference to these questions may be assisted by observing the parts which are involved, although we cannot always infer from the quantity of blood found near to a body that the bleeding was an immediate consequence of the wound, or that the whole of the blood was effused at once. We cannot, then, always affirm that the deceased could not have moved or exerted himself in some degree, after receiving it. The exertion thus made subsequently to his being wounded, may have actually caused the fatal bleeding.

Suicidal and Homicidal Gunshot Wounds.—When it is doubtful whether the wound was the result of suicide or homicide, the point may be sometimes determined by paying attention to its situation and direction. Suicidal gunshot wounds are almost always directed to a vital part—to the heart or to the brain: they possess those characters which belong to wounds inflicted near to the body. The skin is discoloured or burnt, the wound wide and lacerated, the hand which discharged the weapon often blackened, and sometimes still grasping the pistol. The ball may or may not have traversed, as
WOUNDS FROM SMALL-SHOT.

this will depend on the momentum which it derived from the charge, and the resistance that it experienced.

Accidental gunshot wounds bear the characters of near wounds:—they may touch vital parts, but, if the body has not been disturbed, the presence or absence of design in the infliction of a wound is commonly made apparent by the relative position of the body and the weapon. They frequently arise from persons drawing the charges of guns or pistols with the muzzles pointed towards them, and they are then situated in front:—at other times they are produced by persons pulling towards them through hedges, or dragging after them, loaded guns. In the latter case the wound is behind, and it may strongly resemble a homicidal wound, although the circumstances under which the body is found generally suffice to explain the matter. (See ‘Ann. d’Hyg.’ 1860, t. 1, p. 443.) In suicide there is commonly strong evidence of design: in accident, all evidence of design is wanting. Suicides sometimes make use of extraordinary weapons, or use weapons in an extraordinary manner.

Position of the wounded person when shot.—Did the deceased receive the shot while standing, falling, or lying down? Was the piece, when discharged, pointed from the shoulder?—These questions can only be answered by reference to the particular circumstances of the case. In general, when a person is shot while standing, and the piece is pointed from the shoulder, the wound is more or less transverse; but due allowance must be made for the deflection of balls after penetration. Was the deceased shot while running away, or when approaching the person who fired?—This question is answered by observing, in the case of a traversing wound, in which alone any difficulty can arise, whether the entrance-orifice be situated in front or behind.

Wounds from small-shot.—Death is sometimes occasioned by small-shot, and here several medico-legal questions present themselves. Small-shot may act in two ways:—1. It either strikes without spreading, in which case the discharge is always near the person, and its action is much more dangerous than that of a single ball, because it produces extensive lacerations; or 2. It strikes after it has spread, and here the discharge must have been distant, and comparatively little mischief is done. Dr. Lachêz ascertained, by many experiments on dead bodies, that in order to produce with small-shot, a round opening somewhat resembling that produced by a bullet, the discharge should take place point-blank at the distance of about ten or twelve inches from the surface of the body. When the distance was from twelve to eighteen inches, the opening made was irregular, and the borders were much lacerated; at thirty-six inches, a central opening was entirely lost, and the surface of the body was covered with shot. The effect after this was found to depend on the distance, the goodness of the gun, and the strength of the charge (‘Ann. d’Hyg.’ 1836, p. 386): but the shot is, in general, much scattered over the surface of the body. From these results we may form an opinion of the distance at which the piece was fired.
It is difficult to conceive that small-shot can, under any circumstances, produce a single entrance-wound, having some appearance of circularity about it, without at the same time singeing or burning the skin or dress. The difficulty of laying down any general rules respecting the wounds produced by small-shot at their entrance and exit, will be apparent from the following facts, communicated to me by two medical gentlemen. A boy was shot in the neck by the accidental discharge of his gun, loaded with an ounce of No. 8 shot. He died instantly. He was leaning forwards on the muzzle, so that it was nearly in contact with the skin of the neck. A large round hole was produced, one inch and a half in diameter, the edges of which were slightly blackened with powder. The exit-aperture, which was at the back of the neck a little to the left of the third cervical vertebra, was a mere slit in the skin, scarcely an inch long, with the long diameter placed vertically. The smallness of this aperture may have been owing to the greater part of the charge being lodged in the body. The entrance-aperture, although rounded, was too large to be mistaken for a bullet-wound; it was evidently a near wound, from the blackening of the edges. On the other hand, Dr. Lowe informs me that in some experiments performed by his brother, it was found that a round aperture might be produced by a discharge of small-shot at a much greater distance from the object than that assigned by Dr. Lachèse. Admitting such exceptional instances, and assuming the general correctness of the inferences drawn by Dr. Lachèse, from the results of his experiments in discharging small-shot at dead bodies placed at different distances, it does not seem probable that a wound from small-shot can, under any circumstances, be mistaken for one produced by a leaden bullet. A discharge of small-shot, in contact with the skin or close to it, will however produce, not a round opening, but a severe lacerated wound.

Small-shot is rarely observed to traverse the body entirely unless discharged so near as to make a clean round opening; but a single pellet reaching the body may destroy life. There may be no exit-aperture, or it may be smaller than that of entrance. Such minute wounds might be easily overlooked in the examination of a dead body. Small-shot, even when wounding only the skin of the back superficially, has been known to cause death by tetanus.

Wounds from wadding and gunpowder.—It matters not with what the piece is charged,—it is capable, when fired near, of producing a wound which may prove fatal. Thus a gun loaded with wadding, or even with gunpowder only, may cause death. In these cases, an impulsive force is given by the explosion, and the substance becomes a dangerous projectile. The lighter the projectile,—the shorter the distance to which it is carried; but when discharged near to the body, it may produce a fatal penetrating wound. A portion of the dress may be carried into the wound, and lead to death from bleeding; or if the wounded person recover from the first effects, he may subsequently sink under an attack of tetanus or erysipelas. It
is unfortunate that so much ignorance prevails on this point: for fatal accidents frequently occur from persons discharging guns at others in sport,—an act which they think they may perform without danger, because they are not loaded with ball or shot.

It has been observed, that persons in attempting to commit suicide have occasionally forgotten to put a bullet into the pistol; nevertheless, the discharge of a piece into the mouth has sufficed, from the effect of the wadding only, to produce a considerable destruction of parts, and to cause a serious loss of blood. Fatal accidents have frequently taken place from the discharge of wadding from cannon during reviews. It is not easy to say at what distance a weapon thus charged with wadding and powder would cease to produce mischief, since this must depend on the impulsive force given by the powder, and on the size of the piece. Dr. Laëtèse has ascertained by experiment, that a piece charged with gunpowder, is capable of producing a penetrating wound somewhat resembling that caused by small-shot, when the piece is large, strongly charged, and fired within six inches of the surface of the body. ("Ann. d'Hyg." 1836, p. 368.) This arises from a portion of the powder always escaping combustion at the time of discharge, and each grain then acts like a pellet of small-shot. Under any circumstances, a discharge of powder only, contuses the skin, producing ecchymosis, and often lacerating it, if the piece be fired near. The dress is burnt and the skin scorched from the globe of flame formed by the combustion of the powder; many particles of gunpowder may be actually driven into the true skin. All the substances here spoken of are considered to be projectiles; and the weapons are held in law to be loaded arms, so long as they are capable of producing bodily injury at the distance from which the piece containing them is discharged. It may therefore become a question as to the distance at which these light projectiles cease to be harmless. The answer must be governed by circumstances; but it will in all cases materially depend on the strength of the charge. Dr. Swift, U.S., has performed some experiments with a pistol loaded with gunpowder and wadding, in order to determine the effect of a discharge at different distances. At twelve inches distance from a dead body, he found that the clothes were lacerated and the skin abraded, but the wadding did not penetrate; at six inches, the clothes were lacerated, and the wadding penetrated to the depth of half an inch; at two inches, the wound produced, which was two inches deep, was ragged and blackened; at one and a half inch from the chest, the wadding passed into the cavity between the ribs, and in a second experiment it carried away a portion of a rib. ("Med. Gaz." vol. 40, p. 734.)

This subject has been investigated by Dr. Mackintosh, of Downham, and he has forwarded to me the results of his experiments. As a summary, he has found, in reference to the wounds produced by wadding, that the amount of injury done is in proportion to the amount of powder in the gun, the hardness and compactness of the wadding or substance used in place of shot or bullet, and the dis-
Examination of Fire-arms.

Examination of Fire-arms.—An attempt has been made by French medical jurists to determine for how long a period a gun or pistol found near a dead body, may have been discharged; but it is out of our power to lay down any precise rules on such a subject. All that we can say is, a quantity of sulphide of potassium, mixed with charcoal, is left adhering to the barrel of the piece, when recently discharged; and this is indicated by its forming a strong alkaline solution with water, evolving an odour of sulphuretted hydrogen, and giving a deep-brown precipitate with a solution of acetate of lead. After some hours or days, according to the degree of exposure to air and moisture, the saline residue becomes converted into sulphate of potash, forming a neutral solution with water, and giving a white precipitate with acetate of lead. If a considerable time has elapsed since the piece was discharged, oxide of iron with traces of sulphate may be found. (See "Ann. d'Hyg." 1834, 468; 1839, 197; 1842, 368.)

When called to a case of gunshot wound either accidental or criminal it is always proper to examine the piece if found. Has it or has it not been recently discharged may be a material question. A trial took place on the Western Circuit, March 1873, in which the fact was of great importance. The prisoner asserted that his gun had not been used for a long time. On examination of the barrel,
however, it was found to have been quite recently discharged. This
at once connected him with the act of wounding with which he was
charged.

The examination of wadding or paper found in a gunshot wound
or near a dead body, has in more than one instance led to the
detection of the person who had committed a crime. His hand-
writing has been traced on the paper used as wadding, or it has
been found to have been part of a printed page, of which the re-
mainder has been discovered in his possession. When a gun is dis-
charged near to the body, a portion of the wadding is generally
carried into the large irregular wound which is produced. This
was part of the evidence in the case of Reg. v. Blagg (Chester
Summer Ass. 1857). The peculiar character of the wadding found
in the body connected the prisoner with the act. Whether the wad-
ing is found in or near the body, it should be equally preserved.
In Reg. v. Richardson (Lincoln Ass. Dec. 1860), the accused was con-
victed of murdering a policeman under the following circumstances:
—He shot at the deceased, who was able before death to identify the
prisoner; but as the deceased was weak from loss of blood and failing
in consciousness at the time, there was some difficulty in relying
upon this dying declaration, especially as no other person witnessed
the act. Some paper-wadding had been picked up on the spot
where the deceased fell; and a gun which had one barrel loaded,
and one empty from a recent discharge, was found in the prisoner’s
house within twenty-four hours of the murder. The wadding in
the loaded barrel consisted of a fragment of ‘The Times’ newspaper
of the 27th of March 1854, and the charred and sulphurous pieces
of wadding picked up on the spot were proved by the publisher of
that journal, who was summoned on the trial, to have formed a
portion of the same impression. The prisoner’s counsel, in fact,
though he contended with marked ability for the innocence of the
prisoner, could not deny that the act had been brought home to
the instrument if not to the agent, and though the explanation of
the crime remained obscure to the last and the motive unassignable,
the aggregate evidence proved sufficient to convince the jury. Any
projectiles found in a gunshot wound should always be preserved
for evidence. In the case of Rush, who was tried and convicted of
the murder of Mr. Jermy by a remarkable train of circumstantial
evidence (Norwich Lent Ass. 1849), it was proved that the pro-
jectiles removed from the body of the deceased consisted of irre-
gular pieces of lead (slugs). Similar masses were taken from the
body of the son, who was killed at the same time. They were
described by the medical witness as being angular, and quite unlike
the shot used in killing game. This proved that the two acts of
murder were committed by the same person or by this person act-
ing in concert with others.

The chemical analysis of a projectile may be occasionally neces-
sary. A common bullet is formed entirely of lead. Cast bullets
are commonly found to have a void space in the interior when cut
BURNS AND SCALDS.

through the centre, owing to the exterior cooling more rapidly than the interior, and to the greater bulk of the metal when in a liquid state. In large bullets this cavity is frequently of the size of a barley-corn. Bullets obtained by compression have no such space, and are of greater specific gravity. Small-shot is composed of lead with a minute fractional portion of arsenic (1-200th part). If the arsenic is in large proportion the shot is lenticular; if absent or in small proportion, pyriform (Ure). In the case of Bush, type-metal was found in the house. This consists of lead with one-fourth part of antimony, the latter being left by digestion in nitric acid. It was therefore considered advisable to examine the slugs chemically, and they were found to consist chiefly of lead, and to contain no antimony.

CHAPTER 36.

DEATH FROM BURNS AND SCALDS.—SYMPTOMS.—STUPOR.—CAUSE OF DEATH.
—POST-MORTEM APPEARANCES.—BURNS ON THE DEAD BODY.—ACCIDENT, HOMICIDE, OR SUICIDE.—WOUNDS CAUSED BY FIRE.—SCALDING.—BURNS BY CORROSIVE LIQUIDS.

Burns and scalds.—A burn is an injury produced by the application of a heated substance to the surface of the body; while a scald results from the application of a liquid at or near its boiling point, under the same circumstances. There seems to be no real distinction between a burn and a scald in reference to the effects produced on the body:—the injury resulting from boiling mercury or melted lead might take either appellation. Nevertheless, as a matter of medical evidence, it may be important to state whether the injury found on a body was caused by such a liquid as boiling water, or by a heated solid. If the former, the injury might be ascribed to accident; if the latter, to criminal design. A scald produced by boiling water would be indicated by a sodden state of the skin and flesh, but there would be no destruction of substance. In a burn by a heated solid, the parts may be more or less destroyed, or even charred: the cuticle may be found blackened, dry, almost of a horny consistency, and presenting a shrivelled appearance. This distinction, however, would only apply to scalds from water. A scald from melted lead (620°) could not be distinguished from a burn produced by a solid heated to the same temperature. Some of the oils boil at 500°, and they produce by contact with the skin, burns as severe as those caused by melted metals. Burns from flame such as that of gas are indicated by extensive scorching of the skin, while burns from gunpowder are known not only by the scorching, but by the small particles of unburnt carbon which are imbedded in the skin.

Neither a burn nor a scald appears to be considered as a wound in law; but in the statute of wounding they are included among bodily injuries dangerous to life. Burns and scalds may be regarded
THE CAUSE OF DEATH.

as dangerous in proportion to the extent of surface (of skin) which they cover, as well as the depth to which they extend. The extent of skin involved in a superficial burn, as a result of exposure to flame, is of greater importance than the entire destruction of a small part of the body through an intensely heated solid. When the burn is extensive, death may ensue either from the severity of the pain produced, or from a sympathetic shock to the nervous system. Death takes place rapidly from burns in children and nervous females; but in adults and old persons, there is a better chance of recovery. In some instances, especially in children, stupor and insensibility supervene, owing to the sympathy of the skin with the brain; and these symptoms have been soon followed by coma and death. If, under these circumstances, opium has been given to the patient as a sedative, the stupor resulting from a burn may be attributed to the effects of the drug; and should the person die, the practitioner may find himself involved in a charge of malapraxis. It may be alleged, as in the following case which occurred to Mr. Abernethy, that the person was poisoned by opium. A medical man was charged with the manslaughter of a child, by giving to it an overdose of opium while it was labouring under the effects of a severe scald. Mr. Abernethy stated in his evidence, which was given in favour of the practitioner, that he thought the exhibition of opium very proper; that the quantity given, eight drops of tincture of opium immediately after the accident, and ten drops two hours afterwards, was not an overdose for a child (the age is not stated). The circumstance of the child continuing to sleep until it died, after the exhibition of the opium, was, in his judgment, no proof that it had been poisoned. The sleep was nothing more than the torpor into which it had been plunged by the accident. The surgeon was acquitted. Notwithstanding the very favourable opinion expressed of this plan of treatment, it would be advisable to avoid the use of opium on these occasions in treating infants and children. Life is readily destroyed in young subjects by the smallest doses of this drug: and there are no satisfactory means of distinguishing the comatose symptoms produced by a burn or a scald from those produced by an overdose of opium.

Cause of death.—In some instances, especially in children, stupor and insensibility have rapidly supervened, owing to sympathy with the brain; and these symptoms have been followed by coma and death. Of the cause of death in persons exposed to fire but little need be said. In large conflagrations persons are frequently simply suffocated, from the want of proper air or the respiration of the products of combustion—carbonic acid or carbonic oxide. The former darkens the blood; the latter renders it lighter in colour. In other cases, where a large volume of flame suddenly falls upon the body and the person is still able to breathe, the fatal effect may be due to shock—a sudden and violent impression on the nervous system. A person may recover from the first effects of severe burns,
but ultimately sink from exhaustion or from an attack of tetanus. ('Med. Times and Gaz.' April 26, 1854, p. 406. See 'Ann. d'Hyg.' 1873, 1, p. 232.) The annual deaths from burns and scalds are numerous. According to the latest return of the Registrar-General (1871), there were in England and Wales 2,612 deaths from this cause.

Post-mortem appearances.—In examining the body of a person found burnt, all matters connected with sex and identity should be first duly observed. Dr. Grünbaum has reported a case in which he was required to examine certain carbonized remains in which, in spite of the destruction of the sexual organs, he was able to determine the sex. (Horn's 'Vierteljahrschrift,' Oct. 1864.) When a body has been entirely consumed by fire the presence of a large quantity of phosphate of lime in the ashes would indicate animal remains. The bones are never completely destroyed; they become white, and portions of them retain their form under the action of a most intense fire.

When death has been caused by severe pain, no changes have been detected in the dead body; but, in some fatal cases, it has been found on inspection that there were patches of redness on the bronchial mucous membrane, as well as in the alimentary canal. The brain has been found gorged, and the ventricles have contained an abundance of serosity. The serous liquids of the pericardium and pleura have also been in larger quantity than natural. In short, besides congestion, there is generally abundant serous effusion in one of the three great cavities, especially in the head. This arises from the sudden reflux of blood into the interior, as an effect of the local injury. In deaths from fires in houses, the persons are usually suffocated, and then there are the appearances of this kind of death (see SUFFOCATION). In a case in which a woman died on the thirteenth day from a superficial burn involving the skin of the lower part of her body, the stomach was found inflamed at its greater extremity, and the duodenum at its lower portion—the mucous folds of the intestines having a scarlet colour. The other intestines as far as the cecum were also more or less inflamed. ('Amer. Jou. Med. Science,' Jan. 1861, p. 137.) If the person survive the first effects, he may die from inflammation, suppuration, gangrene, irritation, or fever, or he may be worn out by exhaustion.

Did the burning of the body take place before or after death?—

Vesication.—The production of vesication or of blisters containing serum, is commonly regarded as an essential character of a burn which has been produced during life, but it is not a necessary or invariable effect of a burn on the living body. Vesication is especially observed in scalds, or in those cases in which the skin has been burnt by flame or by the ignition of the clothes, provided the cuticle has not been destroyed. It is not so commonly observed in burns produced by intensely heated solids. In vesication, the cuticle is raised from the true skin beneath, and is converted into one or more blisters containing serum or a serous liquid, while the skin
around is of a deep-red colour. It is uncertain as to the time at which it appears; it may be produced in a few minutes, or sometimes not for several hours; hence death may take place before vesication occurs, and the non-discovery of this condition does not warrant the opinion that the burn could not have taken place during life. If the cuticle is removed from a vesicated part of the living body, the skin beneath will become intensely reddened, but if the cuticle is stripped off a dead body, the skin will become hard, dry, and of a honey-yellow colour; it does not acquire the intense scarlet injection which is acquired by the living skin when vesicated and the surface is exposed.

In cases in which persons, while living, have suffered from general dropsy, it has been found, on the application of heat to their bodies after death that blisters containing serum or a serous liquid have been formed; hence, in drawing a conclusion from the examination of burns on the body of a person affected with general dropsy, it is necessary to be cautious. In such cases it would not be possible, from the mere presence of serous blisters, to say whether the burn was produced before or after death. The late Dr. Wright found in his experiments on the dead body, that if a sufficient heat were applied to within half an hour or longer after death, blisters containing serum were sooner or later produced. In short, as long as the body was warm and the joints were flexible, the effects of fire were similar to those observed on the living. Other experimentalists have found that blisters were produced, but that they did not contain serum. The result no doubt depends on the time after death at which the experiment is performed.

Accident has enabled me to describe the results within a very short period after death. The body of a drowned man, within a few minutes after the accident, was removed from the water and placed in a warm (hot?) bath. It was found impossible to resuscitate him, but owing to the great heat of the water, portions of the cuticle came off, when the body was removed. On inspection there were several vesications filled with bloody serum over a considerable portion of the skin, especially of the extremities. There was no anasarca here to account for their production; and the fact of their occurrence appears to bear out the view of Dr. Wright, that the production of a serous blister on a dead body depends on the amount of latent organic life remaining in it. In this case the man was pulseless and to all appearance dead, when placed in the hot bath; hence the effects of hot water on the living and recently dead body, so far as the production of serous blisters is concerned, are similar. Dr. Chambert has lately published the results of numerous experiments on the effects of burns on the living and dead body. These have been made on the bodies of persons, from the moment of death until twenty hours after dissolution, and some were performed before death. The general results of his researches are,—that vesications, or blisters, may be produced by burns both on the living and dead body; that they are produced at a lower temperature in
the living than in the dead; that in the living a burn produces great capillary congestion, with the effusion of serum in the blisters, and that this serum when heated, or treated with nitric acid, sets into a nearly solid coagulum. The blisters produced in a dead body, even a few minutes after death, contain a thin watery serum which is only rendered opaline or milky by heat and the action of nitric acid. (‘Ann. d’Hyyg.’ 1859, vol. 1, p. 342.) When the body is cold and rigid, blisters containing air or vapour alone are produced. M. Bouchut found that he could produce by the application of heat, vesicles or bladders containing a watery serum, sometimes bloody, within twelve, eighteen, and twenty-four hours after death. (‘Gaz. Méd.’ March 1847.)

In burns, especially in those produced by red-hot solids, other effects besides vesication follow. The edge of the skin immediately around the part burnt is commonly of a dead white, and close to this is a deep red line, gradually shaded off into the surrounding skin, which is reddened. The diffused redness is removable by pressure, and disappears with life; the red line here referred to, however, is not removable by pressure, and is persistent after death. This line of redness is not always met with in severe burns, and when a person survives one or two days, its production appears to depend upon a power of reaction in the system. Thus, then, its absence furnishes no proof of the burn having been produced after death, for it is not a necessary accompaniment of a burn during life. Dr. Wright considered that in a low state of vitality a line of redness might not be produced by a severe burn on the living body, and that more certain reliance may be placed on the red marks found beneath the blisters and crusts of vital burns. These latter were well marked when he found the line of redness itself indistinct. (On Vital and Post-mortem Burning, p. 25.) The researches of Dr. Chambert confirm this view. In a burn on a living person, if the skin has not been entirely charred and destroyed, the cutis will present a dotted or pointed redness,—these dots or points corresponding to the sudiparous (perspiratory) and hair-follicles. After complete death, a burn does not produce any such effect; the cutis is of a dead-white on its surface and in its substance. In one experiment performed ten minutes after death, there was no redness of the skin, either beneath the blisters or in the surrounding parts. (‘Ann. d’Hyyg.’ 1859, vol. 1, p. 368.) This reddened or congested state of the bare skin is more constant than any other appearance, and forms at present the best criterion of the infliction of a burn on the living body. The conclusions which, it appears to me, we may draw from the foregoing statements are:—

1. That as a general rule, when we discover blisters with effusion of serum, or a line of redness, or both, and a reddened or congested state of the skin, about a burnt part of the body, we are justified in saying that the burn has occurred during life.

2. That when these appearances are not met with, it by no means follows that the burn had not been produced in the living body.
ACCIDENT HOMICIDE OR SUICIDE.

When several burns are found on a dead body, it may be a question whether they were all produced at the same time. This is a point which can be determined only by observing whether any of them present signs of gangrenous separation, of suppuration, granulation, or other changes that take place in a living body after accidents of this kind. The witness may be asked, how long did the deceased survive the burn? A person may die in a few minutes or live some hours after receiving a most extensive burn; and yet there will be no change in the part burnt, to indicate when death actually took place. There may have been no time for inflammation or its consequences to become established. Suppuration generally follows vesication, and in severe cases it may occur on the second or third day; but often not until a later period. In regard to gangrene, this takes place when the vitality of a part burned is destroyed. The time of its occurrence is uncertain, but it sometimes very speedily follows the accident.

The subject of scalding scarcely requires a separate notice. A scald from boiling water would, when recent, be indicated by the production of serous blisters, or a sodden state of the skin, which appears white and soft. The living structures are not charred or destroyed as by the application of a red-hot solid.

Accident, homicide, or suicide.—It is rare that murder is perpetrated by burning: the dead body is either burnt for the purpose of entirely destroying it, or the clothes are fired soon after a person has been killed, in order to conceal wounds or other violent means of death, and to make it appear as if the deceased had been accidentally destroyed by fire. Death by burning is either the result of accident or homicide, most commonly the former; but medical evidence may give rise to a suspicion of murder under two conditions:—1. When it is evident that several parts of the body have been fired at the same time, and the burns are such as not readily to be explained by the same accident, or by the accidental ignition of the clothes. 2. When there are marks of homicidal violence on the body; but these marks, if we except fractures of the bones, may be easily effaced when the burn is extensive.

Time required for the burning of a dead body.—It may be a medico-legal question whether, on discovering a body much burnt, it could be determined from its appearance how long a period it would require to produce the amount of destruction observed. Such a question may arise when it is intended to connect a person with the perpetration of an alleged crime, but it does not admit of a precise answer. A conjecture only can be formed from the facts proved in each particular case. The human body contains a large proportion of water (72 per cent.); this gives to the soft structure a power of resisting combustion. At the same time there is a quantity of fat in the body, varying in different parts, but amounting to an average of about five per cent. The fat or oil tends to increase its combustibility, and this is still further increased if the body is placed on any combustible article which can
imbibe the oil, such as a rug or a deal floor. The nature of the dress will also make a difference. Under a strong and active flame, which might subsequently burn out before the discovery of the body, there would be a degree of destruction in half-an-hour which a more slow and smothered combustion would not effect in several hours. It is from a want of due consideration of these facts that some of the older medico-legal writers have given support to the hypothesis of spontaneous combustion. It has been supposed that in certain cases the dead body has been more destroyed than appeared consistent with the fact of ordinary combustion from articles of dress or furniture; but this arose from want of sufficient experience on the effects of heat on the body. Then, as the means by which the dress of a person had become ignited were generally destroyed with the body, it was thought that a human being might, under certain conditions, be consumed by fire spontaneously generated within him. This extravagant hypothesis, which is on a par with the belief in witchcraft, and requires an equal amount of credulity to receive, has, however, found advocates in modern times. In March 1850, a man named Stauff was tried at Darmstadt for the murder of the Countess of Goerlitz. He had assaulted the deceased in her chamber, and then set fire to the furniture with a view to conceal his crime. The body and dress were partially consumed. As the means by which the fire was applied were not at once apparent, and the assassin had locked the doors of the room, some medical men took up the theory that the deceased had died from spontaneous combustion.

The facts of the case were referred to Prof. Liebig and Bischoff, of Giessen; and their report was issued in March 1850, at which date the man Stauff was put on his trial. They found no difficulty in concluding that a murder had been perpetrated, and the body wilfully burnt after death for the purpose of concealing the crime. There was some doubt whether the deceased had died from strangulation, or from violence to the head. Stauff was convicted chiefly on circumstantial evidence. He subsequently confessed that the Countess had entered her room as he was in the act of committing a robbery. A struggle took place: he seized her by the throat, strangled her, and afterwards placed the body in a chair, piling around it combustible articles of furniture. He set fire to these with the view of destroying the proofs of his crime. It was observed that the tongue of the deceased was protruded, as it is in violent strangulation, and that in its charred state it retained the position given to it by the act of murder. Other instances of alleged spontaneous combustion, if properly investigated, would have turned out to be cases of accidental or homicidal burning.

Spontaneous combustion may take place in some kinds of vegetable and mineral substances, but not in the animal body, living or dead.

Amongst the questions which arise in reference to a body found dead from burns is this—Whether the burns have been caused by
gas, by inflammable vapours, such as petroleum, or by gunpowder. Petroleum is at once indicated by the peculiar and powerful odour, and sooty blackening of the parts. In Reg. v. Gittakeel (Carlisle Spring Ass. 1872) prisoner was convicted of manslaughter under the following circumstances. He poured a quantity of petroleum over the clothes of the deceased, and by accident the vapour caught fire, and the burns produced caused the man’s death on the following day. Burns from the flame of gunpowder are generally characterized by blackening of the skin, and the introduction of some of the grains into the substance of the skin, producing the effects of tattooing.

Corrosive Liquids.—Among the cases in which medical evidence is sometimes required, are those of throwing mineral acids, alkalies, or other corrosive liquids on the person. This crime was at one time prevalent, and until the recent alteration in the criminal law there was no adequate punishment for it (24 & 25 Vict. c. 100, s. 29). On one occasion, an assailant escaped a charge of felony, because it could not be considered, in law, that sulphuric acid was capable of producing a wound—the man having been indicted for wounding! This case clearly showed a strong necessity for some legal definition of a wound, as well as the uncertainty of medical opinions: for while one surgeon considered that the injury produced was a wound, another thought that it was not. The judges decided that it was not a wound within the meaning of the Act. The statute above mentioned, while it punishes the offence, omits all reference to a definition of the word wound. The nature of the liquid thrown is merely defined in general terms, to be ‘any corrosive fluid or any destructive substance’—a point which will require medical evidence for its elucidation.

In common language, and according to the statute, the injury thus produced by a mineral acid such as oil of vitriol, is called a burn, but it is wholly different in its origin, as well as in its progress. I do not know that there has been a single instance in which such an injury has directly destroyed life; but great deformity and actual blindness have resulted. A medical man is sometimes required to distinguish these injuries from burns and scalds: this may be easily done, in the first instance, by the appearance of the part injured, as well as by the description of the first symptoms. The stain is brown when sulphuric acid has been used, and yellow when nitric or muriatic acid has been employed. The eschar or destroyed part is soft and not dry as in a burn from a heated solid. The skin touched by a concentrated acid is destroyed and sloughs away, to the extent of the part on which the corrosive liquid was applied, leaving a suppurating and granulating surface. There is no capillary congestion or redness of the skin around the injury as in a burn; but the colour of the injured part may throw some light upon the nature of the corrosive substance used. Thus, while oil of vitriol (sulphuric acid) produces dark-brown stains, aqua-fortis (nitric acid) produces yellow or yellow-brown stains on the skin. Articles of dress are also differently coloured by these acids. The period at
which a person may recover from an injury of this kind depends on its degree and extent, as well as on the part affected by the corrosive liquid. Although a person may not die from the direct effects of the acid, yet in certain irritable constitutions the inflammation which follows in deep-seated parts may prove fatal. In infants, or delicate nervous females, an extensive injury thus produced may readily destroy life. In one instance, sulphuric acid thrown on the face produced inflammation of the eye, for which bleeding was prescribed. The person died of phlebitis (inflammation of the vein), as the result of this bleeding. The nature of the acid may be determined by applying wetted linen to the part, when the injury is recent, and examining the liquid thus absorbed. In general, however, evidence is readily obtained by examining the spots or stains left on articles of clothing or furniture. Oil of vitriol is most commonly used. The caustic alkalies may be used under these circumstances, as well as numerous other liquids, on which the only medical opinion required would be, whether the article employed should or should not be considered as a 'corrosive' liquid or a 'destructive' substance. To constitute a felony, it is not now necessary that the person should have sustained any bodily injury from the act of throwing the corrosive liquid. Unless vital reaction has taken place, there are no means of distinguishing the effects of a corrosive liquid on the living from those produced on the dead body. ('Ann. d'Hyg.' 1859, vol. 1, p. 396.)

The mineral acids are sometimes used in other ways for the destruction of life. In June 1833, a man poured a quantity of strong nitric acid into the ear of his wife while she was lying asleep. She awoke suddenly with a violent pain in the ear, which continued for three days, whereby she became weak and exhausted. Soon afterwards there was copious bleeding, and a portion of membrane escaped. She lost the use of her right arm, and became completely deaf. Suppuration took place from the ear, and blood escaped daily. She gradually sank, and died six weeks after the injury, the right half of the body being convulsed before death. On inspection, a portion of the external ear was wanting, and the ear-passage was much wider than natural. The brain, near the petrous portion of the temporal bone, was softened, and the bone itself diseased (caries). The injury had led to death indirectly by producing disease of the brain. ('Med. Gaz.' vol. 17, p. 89.)

In a case tried at Aberdeen, the evidence proved that a woman had poured oil of vitriol down the throat of her husband, while he was lying asleep with his mouth open. She was convicted of the murder. In a more recent case, a woman killed her husband by pouring a solution of corrosive-sublimate down his throat while he was sleeping. These, however, were treated as cases of poisoning, as death did not depend on the local or external mischief produced by the corrosive agent employed.
ASPHYXIA.

DROWNING.

CHAPTER 37.

CAUSE OF DEATH.—SECONDARY CAUSES.—POST-MORTEM APPEARANCES.—MEDICAL PROOFS OF DEATH FROM DROWNING.—SPECIFIC GRAVITY OF THE BODY.—CO-INCIDENTAL CAUSES OF DEATH.—MARKS OF VIOLENCE.—ACCIDENTAL FRACTURES.—HOMICIDAL AND SUICIDAL DROWNING.

Under the term Asphyxia or Apneea are included those forms of violent death in which the act of respiration is primarily arrested (p. 40). These comprise death from drowning, hanging, strangulation, and suffocation, and in this section the fatal effects of lightning, cold, and starvation will be considered.

Asphyxia is induced in drowning owing to a physical impediment to the introduction of air into the lungs. The medium in which the person is immersed acts mechanically, and even more effectually than a rope or ligature round the neck; for although air escapes from the lungs, and water penetrates into the minute air-tubes, yet no air can enter to supply the place of that which has already expended its oxygen on the blood. Hence this fluid must circulate, in the first few minutes after submersion, in a state unfitted for the support of life (unassisted); but the person lives, and is susceptible of recovery within a short interval. After the entire suspension of respiration, the action of the heart gradually slackens, and finally stops. It is at this period of the arrest of circulation that asphyxia passes into death. Asphyxia is determined by the period at which respiration is completely arrested; but the point of time at which death from drowning occurs, is fixed by the moment at which the action of the heart ceases. This varies considerably, according to age, sex, state of health, and other circumstances.

When a person falls into water, and retains his consciousness, violent attempts are made to breathe: at each time that he rises to the surface a portion of air is received into the lungs, but, owing to the mouth being on a level with the liquid, water also enters and passes into the throat. A quantity of water thus usually enters the mouth, which the drowning person is irresistibly compelled to swallow. In his efforts to breathe while his head is below water, a
portion of this liquid is drawn into the air-tubes and cells of the lungs. The struggle for life may continue for a longer or shorter period, according to the age, sex, and strength of the person; but the result is, that the blood in the lungs is imperfectly aerated, the person becomes exhausted, and insensibility follows. The mouth then sinks altogether below the level of the water—air can no longer enter into the lungs: a portion of that which they contain is expelled, and rises in bubbles to the surface; an indescribable feeling of delirium, with a ringing sensation in the ears, supervenes: the person loses all consciousness, and sinks asphyxiated. In the state of asphyxia, while the dark-coloured blood is circulated, convulsive movements of the body take place, and the contents of the stomach are sometimes ejected by vomiting. There does not appear to be any sensation of pain, and, as in other cases of asphyxia, if the person recover, there is a total unconsciousness of suffering during the period when the access of air was cut off from the lungs.

Some persons who fall into water are observed to sink at once, without making any attempt to extricate themselves. This may arise either from sudden syncope or from the stunning produced by the fall. Should the person be intoxicated or otherwise incapacitated, as by striking his head in falling, he may not again rise. These different conditions under which death may take place will sufficiently account for the difference in the appearances met with in the bodies of those who have died in water. A fatal result may be accelerated by the impression suddenly produced upon the skin, from the difference of temperature between the body and the water. To those who are not accustomed to water, a sudden immersion produces a great and rapid cooling of the surface, and forces the blood into the internal organs. There is difficulty of breathing, or severe spasmodic respiration, with giddiness and other symptoms, which may render a person powerless to extricate himself. The effect of cold on the skin is seen in the contracted state of the cutis in the bodies of those who have been drowned during the winter. It is calculated that in 25 per cent. of all who are drowned, the cause of death is pure asphyxia, and that in the remainder, syncope and cerebral congestion amounting to apoplexy, may have a share in causing death.

In regard to the time required for death to take place by drowning, it may be observed that when the mouth is so covered by water that air cannot enter, asphyxia comes on in the course of one or two minutes at the farthest, and the time at which this occurs does not appear to vary materially. Perfect insensibility has supervened after one minute's submersion, and it is probable that in most cases a few seconds would suffice for the commencement of asphyxia. In this state a person can make no efforts to save himself, and death commonly ensues in from two to five minutes. The power of restoring life depends not merely on the time that the body may have been submerged, but on the condition of the lungs at the time of its removal from the water. Experiments lately conducted by a Com-
mittee of the Medico-Chirurgical Society have clearly proved that, as a form of asphyxia, drowning is not only more speedily fatal to life than ordinary suffocation, but, from the effects produced on the lungs by water, the chance of recovery is lessened.

The Committee found that the difference in the results was not owing to exhaustion from struggling, from the violent efforts made to breathe, or from the effect of cold in immersing the whole of the body, but to the introduction of water by aspiration into the minute air-tubes and cells of the lungs. This conclusion was derived from the following experiments. Two dogs of the same size were submerged at the same moment, but one had his windpipe plugged, so that no air or water could enter, while the other had not. After **two minutes** they were taken out together: the one with the windpipe plugged recovered at once, the other died. In three experiments dogs with their windpipes plugged were kept below water for **four minutes**: the animals recovered perfectly when removed from the water. (Report on Suspended Animation, Med.-Chir. Trans. 1862, p. 449.) An inspection of the bodies at once revealed the difference. In animals simply deprived of air by plugging the windpipe, the lungs were merely congested; but in those which were submerged in their ordinary condition, the lungs, besides being more congested and showing ecchymosed points on the surface and in the substance, contained in their bronchial tubes a bloody mucous froth, formed of water, blood, and mucus, which completely filled the small air-tubes. The respiratory efforts made by the animal before death had caused the production of this froth, which formed a mechanical impediment to the entrance of air by the movements of the chest, as in respiration. This mucous froth or foam issued from the lungs on section, and appeared to penetrate their entire substance, which was saturated with water tinged with blood. The lungs were soaked with water, heavy, soft, doughy, retained an impression produced by the finger, and were incapable of collapsing. In the lungs of animals which recovered after a short submersion, little or none of this mucous froth was found in the air-cells. In the fatal cases the quantity was great in proportion to the time of submersion. There is no doubt that it is produced by the violent efforts to breathe, which are made within a minute after submersion.

It may be inferred from these results that the power of recovery in human beings has a direct relation to the presence of mucous froth in the air-tubes, and to the penetration of the substance of the lungs with water. The larger the amount of froth produced and the greater the penetration, the less the hope of recovery; for when the lungs have undergone these changes they are physically unfitted either to receive or expel air by respiration—they are incapable of collapsing. These circumstances will account for the fact that persons have been resuscitated in drowning under various and even opposite modes of treatment, and even under no treatment at all. It is right that every reasonable effort should be made to restore life, but if the lungs are soaked with water, their functions
cannot be restored by any mode of treatment. The Committee
found that a complete submersion of four minutes effectually killed
dogs, although after removal from water, the heart continued to
beat from four to five minutes. The continuance of the heart's
action furnishes, therefore, no criterion of the power of recovery.
A human being, as a rule, dies if submerged for a period of from
four to five minutes. In a few exceptional cases, persons have been
resuscitated after this period, but it is most probable that in them
the lungs had sustained no physical damage. Considering the kind
of treatment to which the bodies of the drowned have been in some
instances submitted, there is much truth in the observation of the
late Sir B. Brodie—namely, that recovery has often followed not
from the means used, but in spite of them! When the submersion
has been short, the respiratory struggles below water slight, and
the person has been treated immediately on removal, recovery is
probable; but under opposite conditions, it is, with rare exceptions,
hopeless.

Death from secondary causes.—Drowning may operate indirectly
as the cause of death. Thus it has been repeatedly remarked that
persons who have been rescued from water in a living state, and
who have apparently recovered from the effects of submersion, have
died, in spite of treatment, after the lapse of some minutes or hours;
others have lingered for one or two days, and then have sunk ap-
parently from exhaustion. In those who perish soon after removal
from water, death may arise either from exhaustion or from the
obstruction of respiration by the penetration of water into the air-
cells of the lungs. The case of Colonel Mackenzie (Aug. 1873)
furnishes an instance of rapid death from secondary causes. The
Colonel and a companion, while crossing a river, were carried away
by the current. After much struggling they both reached the bank
in an exhausted state. The companion left the Colonel apparently
well, to procure assistance. On his return soon afterwards, the
Colonel was found dead. Death was attributed to apoplexy, but
it was more probably due to exhaustion from over-exertion. Dr.
Marcot states that spasm of the glottis has been among the severe
secondary symptoms in persons who have been removed from water
apparently drowned. A severe spasm of this kind manifested itself
in one case while placing the patient in a warm bath. (‘Med.
Times and Gazette,’ February 1857, p. 148.) When death takes
place at a remote period, it may be caused by disease; and a ques-
tion may thence arise, whether the disease was produced by the
immersion in water or not. Such cases occasionally present them-
selves before our Courts of Assize.

Post-mortem appearances.—The external and internal appearances
produced by drowning, vary according to the length of time during
which the body may have remained in water, and the period that
may have elapsed after its removal and before it is examined.
Thus, in reference to the bodies of two persons drowned by a com-
mon accident, if one is removed and examined immediately and the
DROWNING. EXTERNAL APPEARANCES: 351

other is not removed from the water until after the lapse of several days, and is then inspected, the appearances will be different. So, if the two bodies are removed at the same time, and one is immediately examined, while the other is not inspected until a month after removal, the proofs of drowning which may be discoverable in the former, will probably have disappeared in the latter. A protracted exposure of the drowned body either to water or air, especially if the temperature is high, renders an inspection useless for the purpose of evidence.

External appearances.—Supposing that the body has remained in the water only a few hours after death, and the inspection has taken place immediately on its removal, the skin will be found cold and pallid—sometimes contracted, under the form of ‘cutis anserina.’ This contracted state of the skin when found, furnishes strong evidence of the body having gone into the water living. The skin is often covered to a greater or less extent by livid discolourations; the face is pale and calm, with a placid expression; the eyes are half open, the eyelids livid, and the pupils dilated; the mouth closed or half-open, the tongue swollen and congested,—frequently pushed forwards to the inner surface of the lips, sometimes indented or even lacerated by the teeth; and the lips, together with the nostrils, are covered with a mucus froth which issues from them. Kanzler has noticed in the male subject a remarkable retraction of the penis. In men who have gone living into the water and been drowned, this appearance has been repeatedly observed by Casper and Kanzler: and the former states that he has not met with this condition of the male organ after any other form of death. In strong and robust men it has been found short, and strongly retracted into the skin. (‘Ger. Leich.-Oeffn.’ ii. 109.)

The body and limbs of a person recently drowned are usually found relaxed; but cadaveric rigidity appears to come on quickly in cases of drowning, and the body is often stiffened in the convulsed or distorted attitude which it may have had at the time of death. In a case observed by Mr. Beardsley, the body of a man who was drowned under ice, was found with the arms stiffened in the attitude in which he was endeavouring to support himself on the ice.

Among the casual external appearances it has been noticed that the fingers and surface of the body occasionally present abrasions. Gravel, sand, mud, weeds, or other substances may be found locked within the hands or nails of drowned persons; for in the act of drowning, as common experience testifies, a person will grasp at any object within his reach, and in his efforts to extricate himself he may excoriate or wound his fingers. Substances floating in the water are also sometimes found in the nose, mouth, and ears. There are, however, many cases of drowning in which such appearances do not exist. There may be no substance for the drowning person to grasp; this will depend in a great degree upon the fact of the water being deep or shallow, of its being confined within a narrow channel.
or not, and many other contingencies. In all cases, when the person is senseless before he falls into the water, or when his death is occasioned by syncope, he will, of course, be incapable of making those exertions which are necessary to the production of this appearance, and it is probable that this frequently occurs among women who are accidentally drowned. When the body has remained several days in water, the skin of the palms of the hands and soles of the feet is found thickened, white, and sodden, as a result of imbibition.

Internal appearances.—In a recently drowned body, the lungs and heart present the appearances usually indicative of asphyxia (p. 40 ante). The venous system is generally gorged with dark-coloured liquid blood. If death has not taken place from asphyxia, or if the body has remained a long time in water before an inspection is made, the lungs and heart will not present the characters about to be described. Some physiologists have asserted that the blood remains fluid in the bodies of the drowned; but more importance has been attached to this appearance than it really merits. Some observers have found the blood coagulated in the drowned, and I have seen coagula, like those usually met with after death, in the bodies of animals which were drowned for the sake of experiment. If the blood is found generally liquid, this may be due to the imbibition of water, or to putrefactive changes. Riedell found the blood in the heart and large vessels to contain coagula, in inspections made from two hours to five days after death. (‘Med. Gaz.’ vol. 46, p. 478.) Hence it follows that the blood may be found either coagulated or uncoagulated in those who go into the water living, and die by drowning.

The lungs are sometimes congested, and more generally distended than collapsed. Casper and Kanzler, as a rule, found them much increased in volume, and completely filling the cavity of the chest, so that when the chest was opened they protruded out of it; but this did not depend on mere fulness of blood. The most accurate observations show in recent cases of drowning, that the lungs are generally distended and in a flabby condition. Owing to the penetration of their substance by water, they have lost their usual elasticity, so that an impression made upon them by a finger is preserved, as in an edematous limb. Riedell has pointed out this flabby and dilated condition of the lungs as a special characteristic of drowning; although they floated, he found that they were three or four times as heavy as in their natural state, owing to the water in their substance. (‘Med. Gaz.’ vol. 46, p. 478.) On making a section of any part of the lungs, a bloody frothy liquid escapes—air and water being mixed together in the air-cells. These appearances are only likely to be observed in a well-marked form, when the body is examined soon after death. The windpipe, bronchi, and minute air-tubes of the lungs, in a recently drowned body, are filled more or less with a mucous froth tinged with blood, as a result of the last violent efforts at respiration, when the mouth has sunk below the level of the water. This appearance is not always met with. Thus
it has not been found in the bodies of those who have sunk at once below the surface and have not again risen to breathe. But from recent experiments on animals, made by the Committee of the Medico-Chirurgical Society, its presence in the air-passages does not depend on the fact of a person rising to the surface—although this may increase the quantity,—but rather upon the violent spasmodic efforts made to breathe, under circumstances in which water alone can enter the lungs. These facts show that a mucous froth is produced in the air-passages even in two minutes, when there is entire submersion of the head; and its quantity appears to be in proportion to the length of submersion, and the violence of the efforts made to breathe.

The presence in the air-passages of a mucous froth, frequently tinged with blood, may be regarded as a characteristic of asphyxia by drowning. When discovered in the lungs, associated with a watery condition of these organs, it furnishes a satisfactory proof of this mode of death. As its presence depends on the retention of air in thin vesicles diffused through the air-tubes, it is obvious that, except in recent inspections, i.e. within a few hours of death, it may have wholly or partly disappeared. Water passing in and out by the windpipe may destroy it—also the exposure of the body to a high temperature. This may account for the fact that it is not always observed in the inspection of the bodies of the drowned, when removed from water. Violent efforts at breathing may, however, produce it—especially if, owing to the loss of power of swallowing, any liquid should find its way into the windpipe. Independently of the presence of water (sometimes mixed with mud, sand, or weeds) in the larger air-tubes, a portion of this liquid is generally drawn into the lungs by convulsive efforts at respiration. It fills the cells and penetrates the substance of the organs, giving to them the flabby or doughy consistency already described. In some cases the contents of the stomach may be found in the windpipe and lungs: this occurs when a person has been drowned with a full stomach. Vomiting takes place, and the vomited matters are drawn into the lungs by the attempt to breathe.

The state of the heart in the drowned has given rise to some discussion. In death from asphyxia the right cavities generally contain blood, while the left cavities are either empty, or they contain much less than the right. Out of fifty-three inspections made by Dr. Ogston, the right cavities were found empty only in two cases, and the left cavities empty in fourteen. (‘Med. Gaz.’ vol. 48, p. 291.) In a case of drowning which was examined by Mr. Bishop, the right side of the heart contained scarcely any blood; and in another case, communicated to me in December 1857, the only medical difficulty regarding death by drowning, presented itself in an emptiness or non-distension of the right cavities of this organ. The facts and observations accumulated by my friend Dr. Norman Chevers, of the Calcutta Medical Board, show that a full condition of the heart, although a common, is not an invariable concomitant of as-
aphxia, either from drowning or any other cause. (‘Medical Juris-
prudence for India,’ 1856, p. 441.) It has been elsewhere remarked,
that the action of the heart continues after the stoppage of respira-
tion, and that the period at which this organ ceases to contract is
variable. Hence, in some cases there may be sufficient power in the
right cavities to contract upon their contents, and to expel, more or
less completely, the last traces of blood received from the body.
Emptiness of the right cavities of the heart must not, therefore, be
regarded as inconsistent with death from drowning; at the same
time, it cannot be taken as a proof that the person has died from
asphyxia. Dr. Riedell states that in half the number of instances
which had fallen under his observation, the two sides of the heart
contained equal quantities of blood; in the other half, the right
side contained the larger proportion. In one case only the emptiness
of the left side contrasted strongly with the fulness of the right.
A greater or less fulness of the vessels of the brain is described
as one of the appearances met with in drowning; but this, when it
exists, is probably a consequence of a congested state of the lungs.
Some remarks have been already made on this subject, and from
these it is evident that the state of the cerebral vessels can afford no
presumption that death has taken place by drowning. In regard
to the cases which I have had an opportunity of examining, the
quantity of blood contained within the cerebral vessels has rarely
been so great as to call for particular notice.

In examining the abdomen, it will commonly be found that the
stomach contains water, which appears to enter into this organ by
the act of swallowing during the struggle for life. This may be
salt or fresh, according to the medium in which the drowning has
taken place. The quantity is subject to great variation; sometimes
it is large, at other times small, and in some instances no water
whatever is to be met with. The absence of water may probably
indicate a rapid death, as there could have been no power to swallow.
Ogilvie has remarked, that the mucous membrane of the stomach and
bowels is occasionally much discoloured in drowned subjects. He
observed also, that when drowning took place while the process of
digestion was going on, the mucous membrane of the stomach often
had a pinkish red or violet tint. When the dead body had remained
a long time in water, this membrane was observed to acquire a deep
violet or brown colour. A knowledge of this fact may be of some
importance in those cases in which a person is suspected to have
been poisoned previously to submersion. It has been said that the
diaphragm is generally much raised towards the chest; but this may
have depended on gaseous putrefaction, and the increase in the size of
the abdomen by the formation of gas in the intestines. The urinary
bladder in some cases contains urine—in others it is perfectly
empty. Casper found it empty in one half of the cases which he
examined. It is obvious that the state in which the bladder is found
must depend on its condition at the time at which the drowning
occurred. (See, in reference to the appearances in the drowned,
a paper by Dr. Ogston, ‘Med. Gaz.’ vol. 47, pp. 763, 854 et seq.;
Was death caused by drowning? — For a correct solution of this question, it will be necessary to consider the appearances met with in the drowned, and to determine how far they are characteristic of this form of death. Among the external signs of drowning, when the body is seen soon after death, are paleness of the surface, a contracted state of the skin (cutis anserina), and the presence of a mucous froth about the nostrils and lips. The absence of these appearances, however, would not prove that the person had not been drowned; for if the body had remained some time in water, or if it had been long exposed to air before it was seen by a medical man, the skin would undergo various changes in its condition and colour, and mucous froth would no longer be found adhering to the lips and nostrils.

State of the skin. — The goose-skin or cutis anserina which is frequently observed in the drowned, shows that the skin possessed the living power of contractility at the time of immersion. Wagner suggests that the appearance might be produced in a dead body if thrown into cold water immediately after death, i.e. while the skin is warm. As none but assassins would be likely to resort to this proceeding, the objection would, if admitted, merely leave the fact of drowning still to be made out by an internal inspection. This contracted state of the skin could hardly be mistaken for a naturally rough or horny skin, as suggested by Casper. (‘Ger. Leich.-Oeffn.’ vol. 1, p. 89.) As this condition of the skin is not invariably present, even in the recently drowned, and as it is observed chiefly in drowning during cold weather, its absence must not be taken to negative the hypothesis of drowning.

Substances grasped in the hands. — Foreign substances, such as gravel, dirt, grass, or weeds, are sometimes found locked within the hands or lodged under the nails of drowned subjects. This fact may occasionally afford strong circumstantial evidence of the manner in which a person has died. If materials are found grasped within the hands of the deceased which have evidently been torn from the banks of a canal or river, or from the bottom of the water in which the body is found, we have strong presumptive evidence that the person died within the water. For although it is possible to imagine that the deceased may have struggled on the bank, and have been killed prior to submersion, yet in the value attached to this sign we are assuming that there are no marks of violence on the person, nor any other appearances about the body sufficiently striking to lead the examiner to suspect that death had occurred in any other way than by drowning. If the substance locked within the fingers or finger-nails is sand of the same character as that existing at the bottom of the river or pond, it is difficult to conceive any stronger fact to establish death from submersion. The abrasion of the fingers is a circumstance of minor importance: no value could be attached to this state of the fingers as an indication of a person having
DROWNING. WATER IN THE STOMACH.

perished by drowning, unless it were in conjunction with the appearances above described. A witness would be constrained to admit, in many cases, that the fingers might become abraded or excoriated after death, or even before submersion; while in no case could he be called upon to make, in regard to substances found grasped within the hands, an admission which would invalidate the evidence deductible from this condition. This must then be regarded as a satisfactory proof of a person having been alive after his body was in the water. It is well known that when two or three are drowned by the same accident, they are not unfrequently found clasped within each other's arms—a fact which at once proves that they must have been living when submerged: so if a dead body is discovered still holding to a rope, cable, or ear, no further evidence is required to show that the deceased must have died from drowning.

The internal appearances upon which medical jurists chiefly rely as proofs of this kind of death are—first, water in the stomach; and secondly, water with a mucous froth in the air-passages and lungs.

1. Water in the stomach.—Dr. Riedell found that in the majority of cases of drowning, water passed into the stomach. In animals previously killed, and placed for twenty-four hours in water with the mouth wide open, no fluid penetrated to the stomach. ('Med. Gaz.' vol. 46, p. 478.) Water commonly passes into the stomach of a living animal while drowning by the act of swallowing. It has been observed, that when an animal is stunned prior to submersion, water does not pass into the gullet, and when syncope occurs none will be found. As a proof that its entrance into this organ depends on the act of swallowing, it may be stated that the quantity in the stomach is greater when an animal is allowed to come frequently to the surface and respire, than when it is maintained altogether below the surface. The power of swallowing is immediately suspended on the occurrence of asphyxia, and in this way we may satisfactorily account for the difference observed in the two cases. The water thus found is in variable quantity; and there are some cases of drowning in which water is not present in the stomach. It was found by Dr. Ogston, of Dundee, in five cases out of seven. ('Ed. 'Med. and Sur. Jour.' Jan. 1837.) Water does not readily penetrate into the stomach of a body which has been thrown in after death; the sides of the gullet applying themselves too closely to each other to allow of the passage of fluid. If putrefaction has advanced to any extent, some water may enter; but a medical man will easily judge, from the general state of the body, how far this process may have been concerned in the admission of fluid into the stomach and intestines. Offila has suggested that water may be found in the stomach of a person apparently drowned, in consequence of this liquid having been drunk by the deceased, or artificially injected by another into the stomach after death. It is difficult to conceive under what circumstances the latter objection could be made, or what purpose it would answer; but in relying upon the presence of water in the stomach, it may be admitted that the deceased may have drunk water before his body was submerged. The mere discovery of water
in the stomach, except under circumstances to be presently mentioned, is not, therefore, a necessary proof that it has been swallowed during the act of drowning.

It is of course presumed that the liquid contained within the stomach is of the same nature as that in which the body is immersed; for it is possible that fresh water may be found in the stomach of a person drowned in salt-water, and in such a case it would be obviously improper for a medical witness to affirm from the mere presence of water, that the person had died where his body was discovered. If the water contain mud, straw, duckweed, moss, or any substance like those existing in the pond or river where the drowning occurred, this is a proof, when the inspection is recent, of its having been swallowed by a living person. The absence of water from the stomach cannot, however, lead to the inference that the person has not died from drowning, because in some instances it is not swallowed, and in others it may drain away and be lost after death before an inspection is made.

2. Water with mucous froth in the air-passages and lungs.—If the body is carefully removed from the water, and is examined soon after removal, these appearances, which furnish satisfactory evidence of death from drowning, will be found. Dr. Riedell regards the presence of a mucous froth as a constant sign of this kind of death. In all his experiments and observations he states that he found a frothy fluid in the windpipe, bronchi, and lungs: after death it gradually disappeared from the air-tubes by exosmosis, but not from the lungs. The fluidity of this froth is, he contends, a distinctive character of death from drowning, and is not met with in any other case. ('Med. Gaz.' vol. 46, p. 478.) The presence of a frothy fluid would undoubtedly show that liquid, from some cause, had penetrated into the air-passages; and when taken in conjunction with the presence of water in the substance of the lungs, it may be considered to furnish conclusive evidence of death from drowning. On the other hand, its absence does not necessarily prove that a person has not died from this cause. If none is found in a body recently after death, this may have been the result of syncope or apoplexy, and there may have been no convulsive efforts at breathing prior to death. A mucous froth may not be found when the body has remained for a long period in the water after death, since by the free passage of this fluid into and out of the air-tubes, the froth, although formed in the first instance, may have disappeared. If, after removal from the water, the body is exposed to the air for several days before it is examined, it is rare that this appearance is seen. The mucous froth may have been formed in the windpipe, but it may have entirely disappeared.

3. Water and foreign substances in the lungs.—It has been elsewhere stated that in the act of drowning, water is drawn with considerable force into the lungs, by violent attempts at inspiration. The aspiratory force thus exerted by the lungs is considerable. It has been found that when the heads of animals were plunged below mercury, some of this fluid metal, in spite of its great density, was
actually drawn into the lungs, and globules of it have been found in the air-cells. A fortiori, this takes place in a greater degree with water which is forcibly drawn into, and permeates the spongy texture of the lungs, rendering death more rapid and recovery more difficult than in other forms of asphyxia. This aspiratory force of the lungs has been measured, and is found, in small animals, to be equal to raising a column of mercury four inches in height. Not only is the water thus drawn in, but sand, mud, weeds, or other substances floating in it, are also carried into the air-tubes and cells of the lungs. When the water is mixed with weeds or mud, and water presenting the same admixture is found in the throat and stomach, this is strong evidence that the body has been plunged into the medium when the power of breathing and swallowing still existed, and hence that the deceased has been drowned. An attention to the condition of the stomach and lungs together, will therefore be of importance in cases of alleged child-murder by drowning, since it may aid in proving or disproving the charge.

When a dead body is thrown into water, and has remained there some time, water with fine particles of sand, mud, or weeds, may pass through the windpipe into the lungs, and be there deposited. Water, under these circumstances, however, does not penetrate into the substance of the lungs as by aspiration during life, and the amount which passes through the chink of the glottis is small. If simply an after-death effect, the water is found in the larger air-tubes unaccompanied by mucous froth. In most cases, however, the effect of aspiration as a result of living power, is so manifest, that the examiner can have no difficulty in forming an opinion.

A medical man may be occasionally required to express an opinion on the length of time that may have elapsed since the act of drowning, when the dead body of a person has been discovered in water. The rules which have been suggested for the guidance of a medical witness on these occasions are open to so many exceptions, owing to the different degrees in which putrefaction takes place in bodies exposed under similar circumstances, that they are of but little service as a basis for medical evidence.

From these observations it will be perceived that the only characters on which reliance can be placed, as medical proofs of death from drowning, are—first, the presence of a mucous froth in the windpipe and air-tubes; secondly, of water in the air-tubes and air-cells of the lungs; and thirdly, of water in the stomach. An early inspection of the body may thus enable a medical man to come to a satisfactory conclusion that death was or was not caused by drowning. The longer this inspection is delayed, the more ambiguous the evidence becomes, since the froth slowly disappears from the air-tubes, while water may penetrate into the lungs and stomach. The great cause of failure in obtaining medical proofs of drowning is generally the unavoidable delay before an inspection is made.

If, in examining a body taken from the water, we find upon it marks of violence, or severe internal injuries sufficient to destroy life, there is strong ground for suspicion. Why the body of a person
who has really died from natural causes should be afterwards thrown into water it would not be easy to explain upon any hypothesis of innocence, but we can readily appreciate the motive when murderous violence has been used. After the lapse of five or six weeks, especially if the body has been removed from the water for the greater part of this period, none of the usual appearances of drowning will be met with: in the present day, no practitioner would think of seeking for evidence under such circumstances.

In consequence of the uncertainty attendant on the appearances of drowning, barristers have considerable advantage in cross-examining those medical witnesses who appear to support the theory of the prosecution that death took place from this cause. Legal ingenuity is here often strained to the utmost, to show that there is no certain sign of drowning, and therefore that the deceased must have died from some other cause. The general impression among non-medical persons appears to be that, whether in drowning or suffocation, there ought to be some particular visible change in some part of the body to indicate at once the kind of death; but it need hardly be said that this notion is founded on false views, and if the reception of medical evidence on the cause of death be made to depend on the production of some such positive and visible change of structure, then it would be better at once not to place the parties charged with the crime upon their trial, because it could never be proved against them. A medical inference of drowning is founded upon a certain series of facts, to each of which, individually, it may be easy to oppose plausible objections; but taken together they furnish cumulative evidence as strong as is commonly required for proof of any other kind of death.

In death from drowning a question respecting the specific gravity of the human body may incidentally arise. In the healthy living body this is made up of the combined specific gravities of its different parts; so that, as in all heterogeneous solids, it is a complex quantity. In the first place, about 72 per cent. of the weight of the body consists of water—hence the question of specific gravity can refer only to the remaining 28 per cent. of dry solids. The only part of the body which is lighter than water is fat. The specific gravity of this is 0.92, and it is calculated that the proportion of fat in an adult is about five per cent. of the weight of the body, or one-twentieth part. The specific gravity of muscle is 1.085, of brain 1.04, of the soft organs generally 1.05, of the lungs containing air 0.94, and of bone, the heaviest part of the body, 2.01. The lightness of the fatty portions is more than counterbalanced by the weight of the skeleton (about ten-and-a-half pounds in the male, and nine pounds in the female), so that the naked human body, placed on water, has a slight tendency to sink. This tendency diminishes just in proportion to the quantity of the body immersed; because all those parts which are out of water, not being supported by water, become so much additional absolute weight to the portion immersed. Hence the frequent cause of death by drowning. An inexperienced person exhausts himself by exertion, raises his arms continually out
of the water, and as often sinks, owing to their weight having just so much effect on his body as if a leaden weight had been suddenly applied to his feet to sink him. When the whole of the living body is immersed, the specific gravity, owing to the expansion of the chest, differs so little from that of water, that a very slight motion of the hands or feet will suffice to keep a person on the surface. The head, owing to the weight of the bones of the skull, has always a tendency to sink below the level of water, and muscular force is required to keep it above the surface. There are two circumstances which cause the specific gravity of the body to vary. If the quantity of fat is proportionably large, it will be diminished; and such a person will float more readily than another in an opposite condition. On the other hand, a large proportion of bone renders a person heavier than his bulk of water; and his body will sink more rapidly than that of another. These two modifying causes of buoyancy are liable to constant variation; hence the different accounts given by experimentalists relative to the specific gravity of the human body. The bodies of women are, ceteris paribus, of less specific gravity than those of men: the skeleton is smaller, and there is a greater proportion of fat—hence they more readily float. Infants and young children float with the greatest ease; the quantity of fat is usually in large proportion, and the bones are light—the earthy matter being not yet fully deposited. Thus, in infanticide by drowning, the body of the child rises very speedily to the surface,—if, indeed, it does not remain altogether upon it.

There are some other points to be considered in relation to the buoyancy of the living human body. 1. Respiration.—It is the fact of the lungs being filled with air that gives the general lightness to it. If these organs are emptied while the face is under water and the person cannot inhale again, the body remains specifically heavier than water and will sink. Hence it follows that, ceteris paribus, a person with a large and capacious chest floats more easily than one whose chest is small and contracted. Hence, also, in a living person the body has a tendency to rise out of water during inspiration, and to sink during expiration—the quantity of water displaced under these two opposite conditions of the respiratory organs being very different. The entrance into water with the chest nearly emptied as the result of a loud scream or shriek is very unfavourable to the buoyancy of the body. The fact of clothes being on the person may also make a difference—either, from their nature, in serving to buoy up the body, or from their weight to sink it more deeply. Women are sometimes saved from drowning by reason of their clothes floating, and thus presenting a large surface to the water; it is partly owing to this circumstance that the bodies of drowned women often remain floating on the water immediately after death.

It may be laid down as a general rule, that the recently dead body unclothed is, when left to itself, heavier than water, and sinks when immersed. The expulsion of air from the lungs and their penetration by water, combined with the fact that the bones and all the
soft parts, excepting the fat, are of greater specific gravity than water, offer a sufficient explanation of the sinking. After a variable period, generally not more than a few days, the body will rise again to the surface, and float. The period of its rising will depend —1st, on the specific gravity of the body; 2ndly, on the nature of the water, whether salt or fresh; 3rdly, on the access of heat and air in facilitating putrefaction. If the gases generated find an escape, the body will sink: more gases may form, and then it will again rise, so that the sinking and rising may become alternate phenomena. A small quantity of air collected in the abdomen, as a result of putrefaction, will suffice for the floating of the body. Thus, taking the specific gravity of the dead body at 1·08 to 1·1, it would require but little air to keep it at or near the surface of the water. But a dead body, whether death has been caused by drowning or not, may not sink at all, owing to some one of the counteracting causes above mentioned. Several cases are reported in which the bodies of persons recently drowned have floated.

Marks of violence on the drowned.—The chief inquiry with regard to marks of violence on the bodies of the drowned is whether they have resulted from accident or design. In forming an opinion, a witness must give due value to the accidents to which a body floating loosely in water may be exposed. Bruises or ecchymoses of considerable extent are sometimes seen on the drowned, when the bodies have been carried by a current against mechanical obstacles in a navigable river or canal. If the deceased fell from a considerable height into water, his body in falling may have struck against a rock or projection, which may have produced extensive marks of violence. Dead bodies taken out of wells often present considerable marks of violence of a vital character when the deceased persons have fallen in accidentally, or have thrown themselves in intentionally. The presence of these marks must not create a hasty suspicion of murder. It is manifestly impossible to lay down any specific rules for forming a decision in cases of this kind, since, probably, no two instances will be met with which will be perfectly similar in the details. In clearing up these doubtful points, everything must depend on the tact and experience of the practitioner who is called upon to conduct an investigation. The first question which he has to determine is, whether the injuries on the body were produced before or after death. (See WOUNDS, ante, p. 201.) If after death, then they ought to be obviously of accidental origin. Accidental violence may sometimes be of a serious nature, so serious that a practitioner might well doubt whether it did not indicate that the deceased had been violently treated prior to submersion. If a dead body were taken out of water, with one or both limbs dislocated, or the vertebrae of the neck fractured, and a surgeon was asked whether such injuries could be accidental and coincident with or consequent on drowning, the answer would probably be in the negative. But an instance has occurred in which both arms of a man were accidentally dislocated at the shoulders in the act of drowning, as the result of a fall into the water from a great height.
The great point with regard to all marks of violence on the drowned, is to throw light upon the questions—1st, whether drowning was really the cause of death; and 2ndly, whether, if so, the act was the result of accident, suicide, or homicide. This last question does not concern a medical witness so much as a jury, who will determine it from the facts, medical and general, proved before them.

There is one case, of rare occurrence, in which a practitioner would be apt to be misled by trusting to appearances found on the drowned. If a dead body were removed from water with a deep ecchymosed circle round the neck, evidently produced by a cord or ligature, but no traces of which could be found, it is not improbable that a strong suspicion would be at once raised that deceased had been murdered by strangulation, and the body afterwards thrown into water. A case occurred some years since in which a mark was produced on the neck of a woman who was accidentally drowned, as a result of the compression produced by the string of her cloak. Marks resembling those of strangulation, have been produced on the necks of bodies floating in water, when soon after death they have been driven by a strong current against the stumps of trees or other obstacles in the stream.

It might be said, that in cases of this description circumstantial evidence would commonly show how the mark had originated. In admitting the truth of this observation, we must remember that circumstances, as matters of proof, do not always present themselves to our notice, or occur to our judgment, at the precise time that the law stands most in need of them. While, then, we use great caution in drawing an inference when there are such strong grounds for suspicion, we should not neglect to examine carefully the slightest appearances of violence on a body.

Fractures are not often met with in the drowned as the result of accident. Certain fractures likely to be followed by immediate death may forbid the supposition of their having occurred after drowning, and a careful examination of the body may show that they were not likely to have arisen from accident at or about the time of submersion.

The medico-legal question has arisen whether fractures of the vertebrae of the neck can occur from accident alone, at or about the time of drowning. In August 1858, a gentleman, in jumping from a bathing-machine head-foremost into water more shallow than he had expected, caused a fracture and displacement of the cervical vertebrae, which led to death. Mr. South quotes the case of a man who threw himself into a river to bathe from a height of seven or eight feet, the water being only three feet deep. He rose to the surface, but fell back senseless. When he recovered his consciousness, the account he gave of the accident was, that he felt his hands touch the bottom of the river, but to save his head drew it violently back, upon which he lost all consciousness. He died in about ten hours, and on examination the skin of the back of the neck was much ecchymosed, the interspaces of the muscles were gorged, and the spinal canal was filled with blood. The body of the fifth ver-
HOMICIDAL AND SUICIDAL DROWNING. 363

tebra of the neck was broken across about the middle of its depth, and the two pieces were completely separated from the lateral parts. As there was no mark of contusion or dirt on the head, Reveillon, who reports the case, believes that the fracture arose from muscular action, and not from a blow received by striking the bottom: but this is doubtful. In another instance related by Mr. South, a sailor jumped headlong into the sea to bathe, a sail being spread three feet below the surface. He immediately became motionless, and died in forty-eight hours. The fourth and fifth vertebrae of the neck were found extensively fractured, and the spinal marrow was crushed and lacerated. ('Chelius's Surgery,' Part 6, Fractures.) In this case the fracture must have resulted from contact with the water or the sail; but as the latter was freely floating, this would be a yielding medium: hence this serious injury may occur accidentally in cases in which we might not be prepared to look for it.

Was drowning the result of homicide, suicide, or accident?—Although the question whether the act of drowning was the result of suicide or murder properly falls within the province of a jury, there are certain points in relation to it, which require to be noticed by medical witness. In the first place, it is not to be imagined that an examination of the body will develop any differences in either of the three supposed kinds of death. So far as the phenomena of drowning are concerned they are the same, and they are accompanied by the same appearances after death in each case. In drowning which is accidental or suicidal it is not usual, as it has already been observed, to meet with marks of violence on the person, except such as are purely of accidental origin, and have commonly been produced after death. In accidental drowning this is almost a constant rule: but if the person has fallen from any height, his body may be injured in the fall, either by projections on the banks of a river or canal, or by mere concussion on the water—allowance for either of which we must be prepared to make, according to the situation of the spot from which the person is supposed to have fallen.

It is calculated that in England drowning is the cause of death in nearly one-half of all suicides; but this of course will vary according to localities. In suicidal drowning we have a difficulty to encounter which we do not meet with in that which is accidental. A man may have attempted suicide by some other means previously to throwing himself into the water: thus then, besides the accidental violence of accidental drowning, we may meet with violence on the person, evidently indicating wilful perpetration. What is the nature of this violence?—Is it to be defined? Can it always be distinguished from that which is positively homicidal? The answers to these questions must depend on the circumstances proved in each case.

Drowning in shallow water.—Homicide has been sometimes presumed from the peculiar circumstances under which a body has been discovered. Thus, for instance, it has been a debated ques-
tion whether a person intent on suicide can voluntarily drown himself in shallow water, as in a bath, by turning upon his face and retaining this position with his mouth below the level of the water. This question has been long since settled in the affirmative by the occurrence of well-authenticated cases. It appears to have been raised originally on the theoretical view that the resolution of a suicide would fail him in such a situation, and that, having the means of escape, he would lose no time in extricating himself. It need hardly be stated that the mere immersion of the mouth in water not more than a few inches deep will produce all the phenomena of death by drowning; with the exception that little or no water would probably be found in the stomach. A man may thus die in two or three minutes. Devergie mentions an instance which occurred in May 1833, where a man was found drowned in a small stream, his face towards the ground, and his head just covered by the water, which was not more than a foot in depth. On dissection there were all the appearances of drowning present, and a large quantity of sand and gravel was found occupying the windpipe and smaller air-tubes. (Op. cit. vol. 2, p. 332.) A case is mentioned by Dr. Smith, in which a woman committed suicide by breaking a hole in the ice of a pond during the winter, and thrusting her head into the water, the rest of her body being out. A man was found dead with his face downwards in a small stream of water only six inches deep. The water was so shallow that it did not cover the deceased's body or his head. There was clear evidence that this was a case of suicidal drowning.

Although a person has for a short time the power of removing from a position in which he must speedily die, that power is soon lost. If the mouth is kept below water by a strong voluntary effort for half a minute or longer, the unaerated blood is circulated through the brain, and the person becomes powerless, so that his fate is not now in his own hands. Lunatics and other persons have thus destroyed themselves in shallow baths, although left unwatched by the attendant for only four or five minutes. The discovery of dead bodies under these circumstances is, therefore, quite consistent with suicide, but it does not necessarily prove that the act was suicidal. It cannot be denied that a person if young or enfeebled by disease or age may be held by others in such a position sufficiently long to produce death from drowning, but if he is capable of making resistance, we ought to find some marks of violence on the limbs or body. So, again, such a position is by no means incompatible with accidental drowning; and on this it may happen that a medical practitioner will be called to express an opinion. A man in a state of deep intoxication, or when suddenly attacked by syncope, epilepsy, or apoplexy, may fall with his face in a gutter, ditch, or small pool of water; he may die in this position, not having the power to extricate himself. Even marks of violence on the body must not be too hastily construed into proofs of murder. Not long since a case of this description gave rise to a trial for mur-
der in one of our midland counties. A man was found dead with his face in some melted snow, and there were several severe contusions on his body. The evidence showed that, after a quarrel, he had left a neighbouring inn much intoxicated; and it was rendered extremely probable that he had perished accidentally on his way home. There was no reason to suppose that he had been murdered. Infants, from mere helplessness, may be drowned under similar circumstances; but at the same time an assassin may select this mode of destroying life in order to give the appearance of accident.

Drowning from partial immersion.—There is no doubt that murder by drowning may be perpetrated without the whole of the body being immersed in water. A case of this kind, which was the subject of a criminal trial, was referred to me by Mr. Aldred, of Norwich, in March 1841. The case was tried at the Norwich Lent Assizes of that year (The Queen v. Yaxley), and the prisoner was convicted. It appears that the mode in which the prisoner destroyed her infant child was by immersing its head for a few minutes in a pail of water. She removed it before it was quite dead; but it soon died, with slight convulsive motions of the limbs. The case was rendered obscure by the fact that the whole of the body had evidently not been immersed; and the only conceivable means of drowning were in a small duck-pond adjoining the house, which was covered with weeds; but no weed was found in the stomach of the child, although a quantity of water was there present.

Ligatures on the hands and feet.—When a drowned body is removed from water with the hands or the hands and feet bound with cords, it is usually considered that we have therein presumptive evidence of homicide; but numerous cases are recorded in which suicides have actually bound themselves in this manner or have attached heavy weights to their bodies before throwing themselves into water for the express purpose of preventing any chance of their escaping death.

HANGING.

CHAPTER 38.

CAUSE OF DEATH.—DEATH FROM THE SECONDARY EFFECTS.—POST-MORTEM APPEARANCES.—MARK OF THE CORD OR LIGATURE.—WAS DEATH CAUSED BY HANGING?—HANGING AFTER DEATH.—SUMMARY OF MEDICAL EVIDENCE.

MARKS OF VIOLENCE ON THE HANGED.—WAS THE HANGING THE RESULT OF ACCIDENT, SUICIDE, OR HOMICIDE?—THE POSITION OF THE BODY.

Cause of death. Asphyxia.—By hanging we are to understand that kind of death in which the body is wholly or partially suspended by the neck, and the constricting force is the weight of the body
itself, while in strangulation the constricting force is due to some other cause. In both cases death commonly results from asphyxia (p. 40), although this must depend in a great measure upon the position of the ligature on the neck, as well as on the degree of pressure produced. If the cord is loose, or applied to the upper part of the neck, a small quantity of air may still reach the lungs, and then the cerebral circulation may become interrupted by the compression of the great vessels of the neck. In this case apoplexy of the congestive kind is induced, and operates as the immediate cause of death. It is easy to conceive that there may be a mixed condition of asphyxia and apoplexy, and according to the observations of Professors Casper and Remer this is actually met with in a great number of cases of death from hanging.

It has been observed in the execution of criminals that death takes place at different intervals of time after suspension. This difference is probably dependent on the greater or less degree of constriction produced by the ligature. If the rope should press upon the larynx or above this organ, the closure of the air-passages will not be so complete as if it pressed upon the windpipe immediately below the cricoid cartilage. A slight degree of respiration might in the former case continue for a short interval, by which the life of a person would be prolonged, while in the latter death would be immediate. If the windpipe is in part ossified, the pressure of the ligature is less perfect, and death will then take place more slowly. Louis found that an occasional cause of death in hanging was a displacement of the second vertebra of the neck whereby the spinal marrow was suddenly compressed. As a general rule this cause of death is only likely to be observed in corpulent or heavy bodies, when a long fall is given to the cord, and when much violence has been at the same time employed by the executioner. Fractures of the vertebrae may occur and prove fatal by compressing the spinal marrow. Death may also be caused suddenly, by cerebral congestion from pressure on the blood-vessels, or by the effusion of blood on the spinal membranes. This is likely to happen when the head falls, or is bent suddenly backwards, so that the weight of the body is supported on the back of the neck.

Death from hanging appears to take place very rapidly, and without causing any suffering to the person. It is observed that in those who are criminally executed there are often violent convulsions of the limbs and trunk. There is no reason, however, to believe that the individual suffers pain, any more than in the convulsions of an epileptic fit. On recovery there is an entire loss of consciousness of pain in both cases. The circulation of dark-coloured blood through the brain and spinal cord may account for these effects. Efforts to inspire are made for one or two minutes after the closure or compression of the windpipe. The diaphragm and intercostal muscles act spasmodically, but no air enters the lungs; and it is probable that in the act of hanging, part of the air contained in the organs is convulsively expelled. When the suspension of
the body has only continued a few minutes, it has often been found impossible to restore life; and indeed the period at which resuscitation may take place varies according to circumstances. Supposing the hanging to be unattended with violence to parts about the neck, some persons might be resuscitated after five minutes' suspension or longer, but then it has been observed that they have subsequently died from secondary causes affecting the brain and nervous system. Others, again, may not be recovered when they are cut down immediately after suspension,—a fact which depends probably on the different degrees to which asphyxia or apoplexy has extended. When the ligature is so placed as to press on the windpipe below the larynx, insensibility and death are almost instantaneous.

Death from the secondary effects.—It by no means follows that because we have succeeded in restoring the respiratory process, a person is safe. Death often takes place by a fatal relapse at various periods after the accident. A case of this description has been published by Sir B. Brodie. A boy, set. 17, was found hanging. When cut down he was insensible, his face livid; his lips were of a dark purple colour, pulse not perceptible, pupils dilated and motionless. Artificial respiration was used, and in a quarter of an hour the diaphragm began to act. He breathed at irregular intervals with stertor, and with a rattling noise in the throat. The pulse became perceptible, but often flagging, and the surface of the body was cold. The countenance was still livid, but the pulse and breathing had improved. At the end of another hour an attempt was unsuccessfully made to take some blood from the arm, and the patient was placed in a warm bath. The breathing was stertorous through the night, and in the morning twelve ounces of blood were taken from the arm; but there was no relief. He continued insensible, and cold on the surface: there was frothing at the mouth, and he died twenty-four hours after he was cut down. The body was carefully examined. The vessels of the brain were very full of blood: this was the only morbid appearance.

We learn from those who have been resuscitated, as well as from experiments performed by persons upon themselves, that the insensibility of asphyxia comes on in the most insidious manner in death from hanging, and that a slight constriction of the windpipe will speedily produce loss of consciousness and muscular power. ('Devergie,' 2, 370.) The only symptoms of which the hanged persons have been conscious were a singing in the ears, a flash of light before the eyes, then darkness and oblivion. The only profitable inference, in a medico-legal view, which can be drawn from observations of this kind is that asphyxia is not only rapidly induced, but that it supervenes under circumstances where it would not be generally expected to occur—i.e., when the weight of the body is in great part supported. M. Fleischmann found that a cord might be placed round his neck between the chin and os hyoideus, and tightened either laterally or posteriorly without perceptibly interrupting respiration; but while the respiratory process was thus
carried on, his face became red, his eyes prominent, and his head felt hot. These symptoms were followed by a sense of weight, a feeling of incipient stupefaction, and a hissing noise in the ears. On the occurrence of this last symptom, the experiment, he says, should be discontinued, or the consequences may be serious! His first experiment on himself lasted two minutes; but in the second, owing to the cord by its pressure more completely interrupting respiration, the noise in the ears appeared in half a minute. When the pressure was applied on the windpipe the effect was instantaneous, but when on the cricoid cartilage it was not immediate. If it was applied between the os hyoides and the thyroid cartilage, or on the os hyoides itself, the period during which a person could breathe was extremely short; and this result was more striking when the act of expiration was performed at the moment of applying the pressure.

The death of Scott, the American diver, in January 1840, shows how readily asphyxia may be induced by a slight compression of the throat, even when a person might be supposed to have both the knowledge and the power to save himself. This man was in the habit of making public experiments on hanging, and had frequently before gone through them without danger; but on the last occasion, it is probable that a slight shifting of the ligature from under the jawbone caused so much compression on the throat between the chin and larynx, as speedily to produce asphyxia. No attempt was made to save him until it was too late, and he was not brought to a hospital until thirty-three minutes had elapsed. He was allowed to hang thirteen minutes,—the spectators thinking that the deceased was only prolonging the experiment for their gratification! The very insidious and painless manner in which a person who is suspended passes from life into death, is also well illustrated in the report of the case of Hornshaw, published by Dr. Chowne. (‘Lancet,’ April 17, 1847, p. 404.) This man was on three occasions resuscitated from hanging,—a feat which, like Scott, he had performed in London for public gratification. He stated that on the last occasion he lost his senses almost at once; it seemed as if he could not get his breath, and that some great weight was attached to his feet: he felt that he could not move his hands or legs to save himself, and that the power of thinking was gone. It is not improbable that many persons have thus lost their lives by privately attempting these experiments, and their cases have been wrongly set down to acts of suicide. There is reason to believe that boys have thus frequently but unintentionally destroyed themselves, from a strange principle of imitation or curiosity.

Post-mortem appearances.—The external appearances met with in the hanged have been generally taken by medico-legal writers from those seen in the bodies of persons who have been criminally executed, or who have been violently hanged. Thus among them are the following: Lividity and swelling of the face, especially of the lips, which appear distorted: the eyelids are swollen, and of a
bluish colour; the eyes red, projecting forwards, and sometimes partially forced out of their cavities; the tongue enlarged, livid, and either compressed between the teeth or sometimes protruded: the lower jaw is retracted, and a bloody froth sometimes exists about the lips and nostrils. There is a deep and ecchymosed impression around the neck, indicating the course of the cord, the skin being occasionally excoriated; laceration of the muscles and ligaments in the hyoidal region; laceration or contusion of the larynx, or of the upper part of the windpipe. There are also, commonly, circumscribed patches of ecchymosis varying in extent, about the upper part of the body and the upper and lower limbs, with a deep livid discolouration of the hands; the fingers are generally much contracted or firmly clenched, and the hands and nails, as well as the ears, are livid; the urine, faeces and spermatic fluid are sometimes involuntarily expelled at the moment of death. Such appearances will rarely be found in those cases of suicidal hanging which are likely to come before a medical practitioner. In these, the face is generally pale, and the mark on the neck is a simple depression in the skin usually without ecchymosis, and acquiring a horny or parchment-colour only after some time. Esquirol found, in one instance, that when the body was examined immediately after death, the face was not livid; but it first began to assume a violet hue in eight or ten hours. He thought that when the cord was left round the neck the face would be livid, but if removed immediately after suspension, pale. This view is not, however, borne out by observation. The tongue is not always protruded. Devergie found that there was protrusion of this organ in eleven cases out of twenty-seven. This protrusion was formerly supposed to depend upon the position of the ligature: thus it was said, when this was below the cricoid cartilage, the whole of the larynx was drawn upwards, and the tongue carried forwards with it, while, when above the os hyoides, the tongue was drawn backwards. The protrusion or non-protrusion of the tongue does not depend upon any mechanical effect of this kind, but simply upon congestion; for it is occasionally met with thus protruding in cases of drowning and suffocation. Besides, the protrusion has not been found to have any direct relation to the position of the ligature.

There is another appearance on which a remark may be made—namely, the state of the hands. As a general rule, in violent hanging or strangulation, the hands are clenched. This appearance may not always be found, as it may exist and be destroyed before the body undergoes medical inspection. When the constriction of the neck is produced suddenly, and with great violence, we may expect to meet with it. Thus it is found in the cases of executed criminals, and in strangulation attended with great violence, whether the act be due to homicide or suicide. In cases in which the constriction is gradually produced, the clenched state of the hands may not be found. Convulsions generally attend violent hanging or strangulation. The influence of these on the atti-
tude or dress may not be apparent unless the body be sitting or lying.

Internally, we meet with the appearances of asphyxia—i.e. engorgement of the lungs and venous system generally with dark-coloured fluid blood: the lungs otherwise present no particular appearances. The right side of the heart, and the great vessels connected with it, are commonly distended with blood. But when the inspection has been delayed for several days, this distension may not be observed. The mucous membrane of the windpipe is more or less congested, and is sometimes covered with a fine bloody mucous froth. This may be owing to imperfectly obstructed respiration, and to spasmodic efforts at breathing. The vessels of the brain are commonly found congested; and in some rare instances it is said extravasation of blood has been met with on the membranes or in the substance of the organ. Effusion of blood is, however, so rare that Remer found this appearance described only once among one hundred and one cases; and in one hundred and six cases recorded by Casper it was not found in a single instance. In one case of death from hanging, Sir B. Brodie found a large effusion of blood in the substance of the brain, and he refers to another case in which there was a considerable effusion between the membranes. (‘Lectures on Pathology,’ p. 58.) The venous congestion of the cerebral vessels is, however, rarely greater than in other cases of asphyxia, and is probably dependent on the degree in which the lungs have become engorged. In most instances there is increased redness of the substance of the brain, so that, on making a section of the hemispheres, a greater number of bloody points (puncta cruenta) than usual will appear. The kidneys have been found much congested. A more important circumstance has been noticed by Dr. Yellowly—namely, that in examining the stomachs of five criminals who had been hanged, he found great congestion in all, while there was blood coagulated upon the mucous membrane in two. Such an appearance might, it is obvious, be attributed in a suspicious case to the action of some irritant substance (p. 70 *ante*, and ‘Ann. d’Hyg.’ 1830, p. 166 ; 1835, p. 208 ; 1838, p. 471.) In the case of Good, who was executed for murder some years since, the stomach was found on inspection to present over its whole surface a well-marked redness, resembling the effect produced by an irritant poison. The redness was especially observed at the pyloric end, where it assumed a somewhat striated character. A drawing representing the appearance of the interior of the stomach is preserved in the Museum collection of Guy’s Hospital. In a case examined by Mr. Stuart, of Azingthorpe, in 1854, the stomach and intestines, especially the inner coat of the former, were much congested and inflamed, as if the man had died from poisoning. The contents of the stomach were analyzed, but no poison was found. Dr. Chevers, who quotes this case, states that he has more than once verified Dr. Yellowly’s observation, and has found the mucous membrane of the stomach much con-
THE MARK ON THE NECK.

suggested in death from hanging. (‘Medical Jurisprudence for India,’ p. 397.)

The most striking external appearance, however, is the mark produced on the neck by the ligature. The skin is commonly depressed, and sometimes ecchymosed, but rarely throughout its whole extent; it is frequently free from all traces of discolouration as the result of ecchymosis, the skin in the depression being then hard, brown, or of a parchement colour and consistency; or there may be only a thin line of blue or livid colour in the upper or lower border of the depression, and chiefly in front. The course of the mark is generally oblique, being lower in the fore-part than behind, and it is often interrupted. It is most commonly above the larynx. If the noose should happen to be in front, the mark may be circular, the jaw preventing the ligature from rising upwards in the same degree before as it commonly does behind. The mark is generally single, but we may meet with it double, as when the ligature has been formed into two circles or loops previously to its application. Its other characters will depend upon the nature of the ligature employed. Thus a large and wide ligature rarely produces ecchymosis,—the mark is wide and superficial; but a small ligature produces a narrow and deep depression, sometimes accompanied with laceration of the cuticle and effusion of blood beneath the skin. The ligature or cord should always be examined for blood, hair, or other suspicious substances.

It was formerly believed that the mark on the skin produced by the cord was invariably discoloured from effusion of blood, or ecchymosis; but more correct observation has shown that this condition is an exception to the general rule. When ecchymosis does exist, it is commonly superficial and of slight extent. There is rarely, if ever, effusion of blood in the cellular tissue. In the bodies of persons who have been criminally executed, it is not unusual to find ecchymosis, but even here it is not always present, or only in front of the neck. Dr. Riecke of Stuttgart, in his observations on hanging, found only once in thirty cases an effusion of blood beneath and on both sides of the depression produced by the ligature. The tongue was generally between the teeth, and in most cases wounded by them. He attributed death to stretching of the spinal marrow. (Henke’s ‘Zeitschrift,’ 1840, 27 Erg. H. 332.) In a case which I had an opportunity of examining some years since, there was only a slight trace of ecchymosis in one spot where the knot in the cord had produced contusion. That it should occur in criminal executions is not surprising, considering the violence employed on these occasions, but it has been somewhat too hastily assumed that the appearances found in executed criminals, are met with in all cases of death from hanging. Dr. Croker King, in examining the neck of an executed criminal, did not discover the smallest effusion of blood in the course of the cord, although in this case the body had been allowed to fall from a height of seven feet and a half, with a fearful jerk. (‘Dublin
Quarterly Journal,' No. 36, Aug. 1854, p. 86; and 'Cases of Ruptured Intestine,' 1855, p. 12.) The theory of the production of ecchymosis has been carried so far that a livid mark in the course of the cord was formerly said to be the best criterion for distinguishing hanging in the living from hanging in the dead body! This statement, however, is not in accordance with facts. In a large number of cases the skin, instead of being blue or livid, or presenting an effusion of blood in the cellular tissue beneath, is hard and of a yellow colour, resembling parchment. It has that appearance which the cutis commonly assumes when the cuticle has been removed from it two or three days; and, on dissecting it, the cellular membrane beneath often appears condensed and of a silvery whiteness. Dr. Chevers states that in cases of death from hanging he has not met with any ecchymosis in the skin along the course of the mark. (Op. cit. p. 496.) In some instances the mark has presented itself simply as a white depression; this has been chiefly observed in fat subjects. The observations of Casper on this point are as follows:—out of seventy-one cases there was no ecchymosis produced by the cord in fifty, and thus in two-thirds of all the cases examined, it was entirely absent. He also found that there was no difference in the appearance whether the ligature was removed sooner or later after death.

Injuries to the muscles and deep-seated parts of the neck are, of course, only likely to be seen when considerable violence has been used in hanging. In one or two instances the lining membrane of the common carotid artery has been found lacerated. Congestion and swelling of the genital organs in both sexes have been set down among the common consequences of hanging,—but many observers have not met with these conditions; and it is doubtful whether, unless the body is examined speedily after suspension, any marked difference would be discovered. A more common sign, perhaps, is the discharge of the spermatic secretion in the male, by a spasmodic action, at the moment at which death takes place. It appears to me that no reliance can be placed upon evidence derivable from this appearance, and yet it has sufficed to give rise to a violent controversy among French medical jurists. ('Ann. d'Hyp,' 1839, vol. 1, pp. 169, 487; vol. 2, p. 393; 1840, vol. 2, p. 314.) Unless death from hanging is strongly established by other facts, neither the examination of the linen of the deceased, nor the application of the microscope to the mucus fluid found in the urethra, would be of any practical value in elucidating the question,—at least to the satisfaction of an English jury.

The following may be regarded as a summary of the appearances in hanging, when death has really taken place from asphyxia. The countenance is either livid or pale, the eyes are prominent, the tongue congested and occasionally protruded, the lower jaw retracted:—the skin is covered with patches of cadaveric lividity, the hands are livid and clenched,—an oblique mark is found on the neck, sometimes presenting traces of ecchymosis: commonly, how-
ever, the skin is only brown in colour and hardened. The larynx, windpipe, and subjacent muscles are lacerated, depressed, or discoloured. The vessels of the brain are congested, as well as those of the lungs and the right cavities of the heart. A mucous froth tinged with blood is occasionally found in the windpipe. These appearances will of course be modified, or they may be altogether absent, when death has arisen from disorder of the cerebral circulation, or from injury to the spinal marrow, either by great congestion, effusion of blood, fracture, or displacement.

Was death caused by hanging?—When a person is found dead and his body is suspended, it may be a question whether death really took place from hanging or not. In investigating a case of this kind, it is necessary to draw a distinction between the external and internal appearances of the body. The former alone can assist us in returning an answer to this question: the internal appearances of the body can furnish only the general signs of asphyxia, and enable us to say whether any latent cause of death existed or not.

The mark of the cord.—Among the external appearances, it is chiefly to the mark produced by the cord on the neck that medical jurists have looked for the determination of this question. As the form, position, and other characteristics of this mark have been already described, it will now be necessary to allude to it only as furnishing evidence of life at the time of its production. It has been stated, that so far from being constantly livid or ecchymosed, this condition is in reality not seen in more than one-half of the cases which occur. But admitting that we find ecchymosis in the course of the ligature, are we always to infer that it must have been applied while the person was living? There are numerous cases which show that the presence of active life is not necessary for the production of ecchymosis in the mark: and from the experiments of Devergie, it would appear that if a body is hanged immediately or a short time after death, an ecchymosed mark may be produced on the neck by the ligature. (Op. cit. vol. 2, p. 408.) If a few hours were suffered to elapse, so that the body had become cold before suspension, no ecchymosis was produced by the ligature. Professor Vrolik of Amsterdam found, however, that a slightly livid mark was produced on the neck of a dead body, which had been suspended after the lapse of an hour from the time of death. (Casper 'Woch.' Feb. 1858.) Hence this condition of the mark in a body found dead merely indicates, either that the deceased must have been hanged while living, or very soon after the breath had left his body. It would be for a jury to decide between these two assumptions; and to consider why, when a man had really died from any other cause, his body should have been hanged in secrecy immediately after death. (See 'Ann. d'Hyg.' 1842, vol. 1, p. 154.) The circumstance that an ecchymosed mark may be produced by suspending a recently dead body bears out the statement of Merzdorff—that it would be in the highest degree difficult, if not
utterly impossible, to determine medically from an inspection, whether a man had been hanged while living, or whether he had been first suffocated, and his body suspended immediately after death. In making this admission it is proper to bear in mind, that that which is difficult to a conscientious medical jurist in confining himself to the medical facts, is often easily decided by a jury from these as well as the general evidence afforded to them.

Sometimes, besides ecchymosis, there are abrasions of the skin in the course of the cord, and these are known to have been produced during life by the effusion of blood which accompanies them. Devergie never met with this appearance in the hanging of a dead body even when the hanging took place immediately after death. The discovery of effused coagula in or about the spinal column would render it probable that the deceased must have been hanged while living. Such marks of violence are, however, rare in cases of hanging; and when they are found, it might be assumed that the effusion and coagulation of blood had been caused by violence offered to the neck immediately after death; but this assumption may be met by the question already suggested—namely, why death by hanging should be simulated in the body of a person who is alleged to have died from another cause!

With regard to the other, or more common kind of mark in suicidal hanging, it can scarcely be said to furnish any evidence in relation to the question which we are here considering. The depression may be hard and brown, although it does not usually acquire this colour until some hours have elapsed after death; for it appears to depend simply upon a desiccation or drying of that portion of the skin which has been compressed by the ligature. Sometimes the upper and lower borders only of the depression present a faint line of redness or lividity: and it is worthy of remark that when the ligature presents any knots or irregularities, those portions of skin which sustain the greatest compression are white, while those which are uncompressed are found more or less ecchymosed. It is in this manner that the form of a ligature is sometimes accurately brought out. It may be remarked of these depressions produced by the cord, that the characters which they present are the same whether the hanging has taken place during life or soon after death:—the appearances may be similar in the two cases.

The experiments performed on dead bodies by Casper and other observers, show that the ordinary or non-ecchymosed mark caused by hanging during life may be produced by a ligature applied to the neck of a subject within two hours or at a much longer period after death,—consequently the presence of this mark on the neck is no criterion whether the hanging took place during life or after death. The changes in the skin beneath the mark are also destitute of any distinctive characters: there is a similar condensation of the cellular membrane whether the hanging has occurred in the living or dead. These changes are the simple result of a physical cause,—mechanical compression.
Summary of medical evidence.—From the foregoing considerations we draw the conclusion that there is no distinctive sign by which the hanging of a living person can be determined from an inspection of the dead body. All the external marks may be simulated in a dead body, and the internal appearances furnish no characteristic evidence whatever. Still, when the greater number of the signs enumerated are present, and there is no other satisfactory cause to account for death, we have strong reason to presume that the deceased has died from hanging. We must not, however, abandon medical evidence on these occasions, merely because plausible objections may be taken to isolated portions of it. Facts may show that, however valid such objections may be in the abstract, they are wholly inapplicable in the concrete, i.e., to the particular case under investigation. Perhaps the greatest medical difficulties occur in reference to cases of suicide, owing to the slight appearances which attend this form of death; but on these occasions moral and circumstantial proofs are so generally forthcoming, that a medical inspection of the body is scarcely ever deemed necessary by a coroner. If, then, it is admitted by a medical jurist that it is not in all cases possible to distinguish hanging in the living from hanging in the dead, the admission must be considered as having reference to cases wherein persons destroy themselves, and not to cases in which they are destroyed by others. Even if a doubt were raised in any particular instance, it is more than probable that circumstantial evidence would furnish data for a decision, and thus satisfactorily make up for the want of strict medico-legal proofs. If when we found a deeply ecchymosed or livid mark around the neck of a dead subject, we said, all other circumstances being equal, that the person had most probably died by hanging, we should not be departing from a proper discharge of our duty; since, although it is medically possible that such a mark may, by a certain amount of skill, be produced after death, yet, as it would be only a murderer who would think of hanging up a recently dead body to simulate suicide, so it is certain that in this case there would be some obvious indications of another kind of violent death about the person. The absence of these, and the presence of ecchymosis in the course of the cord, would, it appears to me, leave the question of hanging during life decidedly settled in the affirmative. Some caution should be used in expressing an opinion that hanging took place after death, even in cases in which there is no ecchymosis in the seat of the ligature; because, while such an opinion would be generally correct, it might in some instances lead to the concealment of the real mode of death. Many facts already adduced show that numerous cases of hanging during life would be pronounced to be cases of hanging after death, if the mere absence of ecchymosis in the mark were taken as a criterion. The discovery of marks of violence about the person is not of itself sufficient to rebut the presumption of death from hanging on these occasions. The violence should at least be of such a nature as to account for the immediate destruc-
tion of life, or it can throw no light upon the question whether the person might not have died from hanging, in spite of the marks of maltreatment found upon the dead body.

If, in reference to a body found hanging, a medical jurist should assert that death had not taken place from this cause, this would be tantamount to declaring that the deceased must have been murdered—because it is difficult to suppose that anyone but a murderer would have a reasonable motive for hanging up a recently dead person. This hanging after death has been frequently carried out with the view of concealing the real mode of death, and of making the act appear to be one of suicide.

Marks of violence on the hanged.—The presence of marks of violence on the body of a hanged person is important, and it will therefore be proper for a witness to notice accurately their number, situation, extent, and direction. Having satisfied himself that they must have been received during life, he will have to consider the probability of their being of accidental origin or not. These marks of violence are not always to be regarded as furnishing unequivocal proofs of murder; for it is possible that they may have been produced by the person himself before hanging, and not succeeding in committing suicide by these attempts, he may subsequently have resolved to accomplish his purpose by suspending himself. Let the witness duly reflect on these circumstances before he allows his opinion to implicate any suspected individual,—let him consider that a hanged subject may bear the marks of a gunshot wound, his throat may be cut, his person lacerated or disfigured, and yet, before a suspicion of homicide is allowed to be entertained, it ought to be clearly shown that such injuries could not, by any probability, have been self-inflicted. The importance of observing caution in such a case, will be still more manifest when there is no ecchymosis produced by the cord, and the face does not present the usual appearances of hanging. (See 'Ann. d'Hyg.' 1870, 2, p. 226.)

Marks of violence on a hanged subject may in some instances be fairly ascribed to accident. If the person has precipitated himself with any violence from a chair or table in a furnished apartment, he may have fallen against articles of furniture, and thus have caused lacerations and bruises, especially on the limbs or body. The rope may have given way, and the person, in falling, have injured himself; but he may afterwards have had resolution enough to suspend himself again. Such an occurrence may be rare; but when the presence of these injuries is made to form the chief ground of accusation against another person, their possibly accidental origin ought not to be lost sight of by a considerate witness.

The falling of the body on a hard pavement, or against some article of furniture, may produce accidental injuries which might be wrongly assigned to homicidal violence. In a case of suicidal hanging in the gaol of Newgate which occurred to Mr. Gibson, there was a copious effusion of blood from injuries produced accidentally after death. In death from asphyxia the blood
ON THE DEAD BODY.

remains fluid in the body longer than in other cases, so that accidental wounds after death, may be attended with comparatively large effusions. The bleeding post mortem is also favoured by the general congestion of the venous system. ('Ann. d’Hyg.' 1868, 2, 218.) Severe injuries may be found on the head of the deceased, and yet these may not be inconsistent with suicidal hanging. (See case by Dr. Riembault, 'Ann. d’Hyg.' 1867, 1, 164; also 1, 460.)

If we suppose the deceased to have been hanged in a state of intoxication or stupefaction, medical evidence alone will rarely suffice to determine the question of homicide or suicide. The absence of all marks of violence from the body might actually nullify suspicion. It is proper on these occasions to look to the hands of the deceased, since it is with these that a person defends himself; and unless taken unawares, it is almost certain, if the hanging were homicidal, that there would be traces of violence on these parts. The clothes would be torn and discomposed, and the whole appearance of the deceased, would be that of one who had done his utmost to resist a violent murderous attack. There might be some injuries which could not be attributed to accident under the circumstances. Among these we may enumerate fractures, dislocations, deeply penetrating incised and gunshot wounds. Now the question is—Do these serious injuries necessarily establish homicidal hanging? The answer must be in the negative: although when fractures or dislocations exist, there are strong grounds for suspicion. ('Ann. d’Hyg.' 1842, vol. 1, p. 160.)

Suicides frequently make attempts on their lives by various means, as by poison, the use of razors, knives, or pistols, and still retain power to hang themselves. Such cases as these are generally determined by circumstantial evidence. A suicide may attempt to destroy himself with a knife or pistol: he may fail in the attempt, and ultimately hang himself. Any description of wound, provided it be such as to allow of a person surviving a sufficient time, may thus be found on a hanged subject, and yet constitute no proof whatever of murder. If there are circumstances about the wound or injury which show that it could not have been self-inflicted, this of course will affect the conclusion; but when such circumstances are not met with, a cautious medical jurist should say, in answer to inquiries respecting the origin of these wounds, that they may have been inflicted either by the deceased himself or by another. The medical facts of the case might be consistent with either view. In one instance of suicidal hanging there were lacerated wounds upon the head, and a handkerchief was found blocking up the mouth. A woman committed suicide in 1868 under the following circumstances:—She fastened a cord to the top of a bed-post, put her head in a noose while kneeling on the bed, and then made a deep wound in her arm with a razor; she closed the razor and put it aside. Becoming faint from loss of blood, she must have fallen forward, and the pressure of the cord
on the neck caused death. Of course if, in any case, the wounds
or injuries are of a decidedly mortal nature, and have probably
caused death, the presumption of murder is very strong; for who but
a murderer would suspend the dead body of a person so wounded

Was the hanging the result of accident, homicide, or suicide?—
Most medical jurists have passed over the subject of accidental
hanging, probably believing it to be impossible. In the sense com-
monly implied by the term it is certainly unusual, but although
rare, it is a possible occurrence. Circumstantial evidence will al-
ways suffice for the discrimination of accidental hanging; and we
have therefore merely to inquire whether, when the body of a per-
son is found hanging under circumstances which do not allow of
the suspicion of accident, the act has been the result of suicide or
of homicide. A medical witness must remember that this is strictly
a question for the jury. It is not for him to say whether a man
has hanged himself or been hanged by others, but merely to state,
when required, those medical circumstances which support or rebut
one or the other presumption. The jury, under the direction of
the judge, will arrive at a conclusion from the whole of the evi-
dence medical and non-medical.

It has been truly observed, that of all the forms of committing
murder, hanging is one of the most difficult, and it is therefore but
seldom resorted to. In most cases when a person has been hanged
by others, it has been after death, in order to avert a suspicion of
homicide. Hence the discovery of a person hanging affords prima
facie evidence of suicide, supposing it to be rendered absolutely
certain that death has taken place from this cause. We must,
however, admit that a man may be murdered by hanging, and that
the appearances about his body will not afford the smallest evidence
of the fact. The circumstances which will justify a medical jurist
in making this admission are the following:—First, when the per-
son hanged is feeble, and the assailant a strong, healthy man.
Thus a child, a youth, a woman, or a person at any period of life,
worn out and exhausted by disease or infirmity, may be destroyed
by hanging. Secondly, when the person hanged, although usually
strong and vigorous, is at the time in a state of intoxication, stupe-
fiied by narcotics, or exhausted by his attempts to defend himself.
Thirdly, in all cases murder may be committed by hanging when
many are combined against one person. With these exceptions,
then, a practitioner will be correct in deciding in a suspected
case, in favour of the presumption of suicide. Unless the person
laboured under stupefaction, intoxication, or great bodily weak-
ness, we must expect to find in homicidal hanging marks of vio-
ience about the body; for there are few who would allow them-
sele to be murdered without offering some resistance—notwith-
standing the assertion of Mahon that some might submit to this
mode of death with philosophical resignation when they saw that
resistance was hopeless!
HOMICIDAL AND SUICIDAL HANGING.

Some medical jurists have thought that the mark left by the cord on the neck would serve as a criterion of murder on which we might depend. Thus it has been said, if the mark is circular and situated at the lower part of the neck, it is an unequivocal proof of murder. In hanging, the mark of the cord is generally oblique, being higher at the back part of the neck, in consequence of the loop formed by it yielding more in this direction than in front. But it is an error to suppose that this want of obliquity in the impression can afford any evidence in favour of the act having been homicidal. Its form will depend in a great degree upon the fact of the body being supported or not, for it is the weight of the body which causes its obliquity; it will also depend on the manner in which the cord is adjusted. A case of suicidal hanging is related by Orfila, in which the mark of the cord extended horizontally round the neck from behind forwards. (‘Méd. Lég.’ tom. 2, p. 376.) The slip-knot of the cord was in front of the neck, and it is obvious that when the cord is thus adjusted by a suicide, there will be scarcely any obliquity in the depression produced by it. Equally ill-founded is the assertion that the existence of two impressions on the neck affords positive proof of homicide. One of these impressions may be at the lower part of the neck, and circular—the other at the upper part and oblique: it is therefore contended that the deceased must have been strangled in the first instance and afterwards hanged. The possibility of a prior attempt being made by a suicide to strangle himself, and thus produce the mark, is not adverted to. ‘Si l’on observe les deux impressions,’ says Mahon, ‘l’assassinat est alors parfaitement prouvé.’ It is fortunate that there are facts on record to oppose to this very positive statement. One of the first cases reported by Esquirol is that of a female lunatic who committed suicide by hanging herself, and on whose neck two distinct impressions were seen—the one circular, the other oblique! These appear to have arisen from the cord having been passed twice round the neck, the body being at the same time partially supported.

In some instances a presumption of homicidal interference may exist if there are two distinct impressions, but it cannot be admitted that they establish the fact of murder. Dr. Walter has reported a case of some interest in this respect. A woman was found hanging to the branch of a tree, the feet resting on the ground. There were two marks on the neck, one like that of strangling with the same ligature as that by which the body was hanging. Dr. Walter concluded that the mark produced by the suspension of the body was the result of post-mortem hanging after murder by strangulation. (‘Vierteljahrsschrift,’ 1867, 1, 161.) In the same journal for 1871, 2, 223, a case is reported by Dr. Maschka, of Prague, in which a boy, 9, was found hanging. There were on the neck marks of pressure, which at first led the examiners to draw the inference that the boy had been strangled and afterwards hanged. The reasons for this opinion were not satisfac-
HANGING. CIRCUMSTANTIAL EVIDENCE.

tory, and suicide was admitted to be not only possible but probable.

The injury done to the neck by the cord or ligature can rarely afford any clue to the manner in which hanging took place, unless the circumstances under which the body is found favour the presumption of homicide or suicide. Thus the laceration of the muscles and vessels of the neck, the rupture of the windpipe and the displacement of the larynx, the stretching of the ligaments of the spine, and effusion of blood on the sheath of the spinal marrow, may be observed in suicidal as in homicidal hanging. The presumption, however, is obviously in favour of the latter, when these violent injuries are found to be accompanied by fracture or displacement of the vertebrae of the neck, and the body of the deceased is not corpulent, the ligature by which he is suspended is not of a nature to produce them, and the fall of the body has not been great.

A much disputed question has arisen in medical jurisprudence, whether the vertebrae of the neck can become fractured or displaced in suicidal hanging. Most medical jurists deny the possibility of this accident occurring—the displacement or fracture of these vertebrae being rarely observed, even in criminal executions when the greatest violence has been used by the executioner. So far as I am aware, there is no case of suicide on record in which such an injury to the neck has been found.

Circumstantial evidence.—In all doubtful instances we should not lose sight of moral and circumstantial evidence. We should ascertain whether the individual had been previously disposed to commit suicide or not: we should observe whether the doors and windows of the apartments had been secured on the inside or on the outside; whether the dress of the deceased is at all torn or discomposed, or his hair dishevelled; whether the attitude of the body is such as to show interference after death; whether there are marks of blood about the body, or the ligature, or in the room; whether the hands are bloody, or present marks of wounding or struggling; whether the rope or ligature corresponds to the impression seen around the neck; and lastly, whether the cord is of sufficient strength to support the weight of the deceased. The strongest evidence of homicide is often found in the attitude and the state of the dress of the dead body: it may or may not indicate interference or change after death irreconcilable with the supposition of death from suicide or accident. On this point the minutest circumstance may become of considerable importance as medical evidence. When there are indications of violent struggling, the dress may be found disordered, unless it has been smoothed or arranged by the murderer after the death of the deceased. There may, of course, be no evidence of disorder or discomposure of the dress in the case of a female, when the body is freely suspended. These points fall, it is true, more within the province of the officers of justice than of a medical practitioner; but the latter is generally the first who is called to see the deceased,
and therefore, unless such facts are noticed by him on his visit, they may remain altogether unknown. The medical opinion of the actual cause of death, however, should be based only on medical facts, but circumstantial evidence has on various occasions assisted in clearing up a doubtful case. Louis states that on removing the body of a man who was found hanging, the rope was observed to be stained with blood. This simple circumstance led to further investigation, by which it was discovered that the person had been murdered, and his body afterwards suspended. The presence of marks on the neck indicative of strangulation, such as the cord was not likely to have produced, may lead to a suspicion that the hanging followed death.

The position of the body.—Lastly, it has been contended that the position of the dead body may serve to distinguish suicidal from homicidal hanging. This point was strenuously argued on the investigation which took place relative to the death of the Prince de Condé in 1830. This case involves two glaring errors in reference to medical evidence on death from hanging: 1st, that a person cannot die from hanging when the body is in any way supported, and therefore that murder must have been perpetrated; 2ndly, that in all cases of death from hanging, the mark produced on the neck by the cord or ligature must be discoloured or ecchymosed. If not ecchymosed, it is assumed that death must have taken place from some other cause, and the body have been afterwards suspended for the concealment of crime. It is scarcely necessary to state that these propositions are utterly inconsistent with well-known facts. Since this trial, many cases have been recorded in which death has taken place from hanging when the feet were in contact with the ground, or the persons were almost sitting or recumbent; they may be regarded as mixed cases of hanging and strangulation. The following case fell within my own knowledge:—In 1832 a man was found hanging in his room, with his knees bent forwards, and his feet resting upon the floor. He had evidently been dead for some time, since cadaveric rigidity had already commenced. The manner in which this person had committed suicide was as follows: he had made a slip-knot with one end of his apron (he was a working mechanic), and having placed his neck in this he threw the other end of the apron over the top of the door, and shutting the door behind him he had succeeded in wedging it in firmly. At the same moment he had probably raised himself on tiptoe, and then allowed himself to fall; in this position he died. The weight of his body had already sufficed to drag down a part of the apron, for it seemed as if it had been very much stretched. The deceased was in the position in which the body of the Prince de Condé was found, and the depression produced by the ligature on the neck was, as in that case, nowhere ecchymosed. These facts, so far from being considered to negative suicide, were treated as perfectly in accordance with it! Dr. Williams, of Norwich, communicated to me a similar
case of suicide which occurred in September 1872:—A lady, who had been for some time suffering from great depression, was found dead hanging by a long cloth to a closed door, over the top of which she had thrown the other end of the cloth (knotted) and then shut the door upon it. (For another case by Dr. Albert, see Henke’s ‘Zeitschrift,’ 1843, 2, 50.) Casper reports an instance in which a man was charged with the murder of his wife because her body was found hanging in almost an erect position! (‘Ger. Leich.-Oeffn.’ vol. 2, p. 92.) (For other cases, with illustrations of the positions of the body, see a paper by M. Tardieu, ‘Ann. d’Hyg.’ 1870, 1, 94.)

The reports of eleven cases of suicidal hanging or strangulation which I have collected within a few years, give the following results: in three, the deceased were found nearly recumbent; in four, in a kneeling posture—the body being more or less supported by the legs—and in four, the persons were found sitting. In one case the deceased, a prisoner, was found hanging to the iron bar of the window of his prison, which was so low that he was almost in a sitting posture.

Rener found that among one hundred and one cases of suicidal hanging, in fourteen the body was either standing or kneeling, and in one instance it was in a sitting posture. Dr. Duchesne has published an account of fifty-eight cases in which the suspension of the body was partial—the feet or trunk being more or less supported. Twenty-six of these cases are new. The reporter draws the conclusion that suicide by hanging is consistent with any posture of the body, even when resting upon the two feet. (‘Ann. d’Hyg.’ Oct. 1845, vol. 2, pp. 141 and 346.) Further evidence need not be adduced to show how unfounded is that popular opinion which would attach the idea of homicidal interference to cases in which a body is loosely suspended, or in which the feet are in contact with any support. We ought rather to consider these facts as removing a suspicion of homicide; for there are probably few murderers who would suspend their victims, either living or dead, without taking care that the suspension was not partial but complete. Besides, the facts of many of these cases are readily explicable: thus, if the ligature is formed of yielding materials, or if it is only loosely attached, it will yield to the weight of the body after death, and allow the feet to touch the floor, which they might not have done in the first instance. If there is reason to believe that the body has not altered its position after suspension, we must remember the suddenness with which insensibility comes on, and the rapidity with which death takes place in this form of asphyxia. Under very slight pressure on the windpipe a person is rendered utterly powerless to help himself or to move from his position. (See p. 367, also ‘Med. Gaz.’ vol. 44, p. 85.) In spite of these well-known facts, the most serious mistakes are still liable to be made. A case occurred in France in June 1872, in which a young man was charged with the murder of his brother,
and suspending his body after death. The only grounds for this strong medical opinion were that there was no deep ecchymosed depression round the neck of the deceased, and the body was found hanging nearly in a sitting posture. These conditions were considered to be inconsistent with death from hanging. The cause of death was ascribed to poisoning with phosphorus, in consequence of some alkaline phosphates and phosphoric acid being found in the stomach by a chemical analysis! On this series of medical assumptions and mistakes, the young man, who had accidentally discovered his brother hanging, was convicted of murder, and sentenced to the galleys for twenty years! The ignorance displayed by the medical witnesses who gave evidence on this occasion has been fully exposed by MM. Boys de Loury, Chevallier, and Personne. (See 'Ann. d'Hyg.' 1873, 2, p. 113.)

The limbs secured in suicidal hanging.—One or two points are worthy of notice in relation to this medico-legal question. The hands or legs, but more commonly the former, have been found tied in cases of undoubted suicidal hanging ('Ann. d'Hyg.' 1832, vol. 1, p. 419); and yet it has been gravely debated whether it was possible for a person to tie or bind up his hands, and afterwards hang himself! It is unnecessary to examine the ingenious arguments which have been urged against the possibility of an act of this kind being performed, since they are refuted by well ascertained facts. ('Med. Gaz.' vol. 45, p. 388, and 'Guy's Hospital Reports,' Oct. 1851.)

It has also been a debated question, whether corporeal infirmity, or some peculiarity affecting the hands, might not interfere with the power of an individual to suspend himself. This question can be decided only by reference to the special circumstances of the case. In the case of the Prince de Condé, it was alleged that he could not have hanged himself, in consequence of a defect in the power of one hand: it was also said that he could not have made the knots in the handkerchiefs by which he was suspended. Allegations of this kind appear to have been too hastily made in this and other instances. A determined purpose will often make up for a great degree of corporeal infirmity; and unless we make full allowance for this in suicide, we shall always be exposed to error in drawing our conclusions. Blindness is no obstacle to this mode of perpetrating suicide; and in reference to age, suicide by hanging has been perpetrated by a boy of nine and by a man of ninety-seven years of age.
CHAPTER 39.

CAUSE OF DEATH.—APPEARANCES AFTER DEATH.—WAS DEATH CAUSED BY STRANGULATION, OR WAS THE CONSTRUCTION APPLIED TO THE NECK AFTER DEATH?—MARKS OF VIOLENCE.—ACCIDENTAL, HOMICIDAL, AND SUICIDAL STRANGULATION.

Strangulation. Cause of death.—Hanging and strangulation are usually treated together, and some medical jurists have admitted no distinction in the meaning of these terms. In hanging, the phenomena of asphyxia take place in consequence of the suspension of the body, while in strangulation, asphyxia may be induced not only by the constriction produced by a ligature round the neck independently of suspension, but by the simple application of pressure, through the fingers or otherwise, on the windpipe. M. Tardieu considers that the two modes of death should be kept distinct. The external and internal appearances in some respects differ; and while the proof of death from hanging leads to the strongest presumption of suicide, the proof of death from strangulation is equally presumptive of murder. (Sur la Strangulation, ‘Ann. d’Hyg.’ 1859, vol. 1, p. 107.) This medical jurist defines ‘strangulation to be an act of violence, in which constriction is applied directly to the neck, either around it or in the fore-part, so as to prevent the passage of air, and thereby suddenly suspending respiration and life.’ This definition obviously includes hanging, and every person who is hanged may be said to be strangled; but while there is only one method of producing death by hanging, there are various methods of producing death from strangulation. A person may be strangled by the use of a cord, band, or ligature drawn tightly round the neck, or by manual violence to the front of the neck, whereby respiration is prevented. The cause of death is asphyxia or apnoea. The rapidity with which it takes place, will depend on the degree and situation of the pressure, and the completeness with which the act of breathing is obstructed.

M. Faure applied a ligature forcibly and suddenly to the neck of a middle-sized dog. For fifty-five seconds the animal did not appear to suffer; but he suddenly became violently agitated, his body stiffened, and he rolled convulsively on the ground. A bloody froth issued from his nostrils and throat, and he made frequent and violent efforts to breathe. In three minutes and a half he was dead. In a second experiment an elastic tube was introduced into the windpipe, which admitted of being gradually
closed by pressure. The animal could bear the pressure up to the reduction of one-half of the calibre of the tube; but beyond this he suffered greatly, and when the pressure was increased he had convulsions. The dog died, in great suffering, before the tube was completely closed. ('Ann. d’Hyg.' 1859, vol. 1, p. 122.) It is probable that human beings die more quickly than animals, especially from the effects of manual strangulation. A sudden and violent compression of the windpipe renders a person powerless to call for assistance and give alarm, and it causes almost immediate insensibility and death without convulsions. When a ligature or bandage is used, the pressure is not so complete, and death takes place more slowly with convulsive movements. The circulation of dark-coloured blood continues for a short interval (about four minutes), as in other cases of asphyxia. Owing to this, the face and lips, in accidental strangulation, have been observed to acquire a dark-leaden hue. This arises partly from the arrest of the current of venous blood as the result of compression of the vessels, and partly from the circulation of unanaerated blood. There is a fair chance of recovery if the cause of constriction is removed, and air is permitted to have access to the lungs within a period of five minutes: this is on the assumption that no great mechanical injury has been done to the neck.

In the act of strangulation a much greater degree of violence is commonly employed than is necessary to cause death; and hence the marks produced on the skin of the neck will be, generally speaking, much more evident than in hanging, where the mere weight of the body is the medium by which the windpipe is compressed.

Post-mortem appearances.—The appearances after death are similar to those of hanging, but the injury done to the parts about the neck is commonly greater. Externally.—If much force has been used in producing the constriction, the windpipe with the muscles and vessels in the fore-part of the neck, may be found cut or lacerated, and the vertebrae of the neck may be fractured. The face is commonly livid and swollen, the eyes wide open, prominent, and congested, and the pupils are dilated. The tongue is swollen, dark-coloured, and protruded: it is sometimes bitten by the teeth, and a bloody froth escapes from the mouth and nostrils. The principal external signs of strangulation are seen in the marks on the neck produced either by a cord or manual pressure. M. Tardieu has described another appearance which might be overlooked. This consists in the presence of numerous small spots of ecchymosis upon the skin of the face, neck, and chest, as well as in the conjunctivae or membranes of the eyes. These parts present a dotted redness, which has, however, been met with in other cases besides death from strangulation. ('Ann. d’Hyg.' 1859, vol. 1, p. 125.)

The mark on the neck when a ligature has been used, is commonly described as a depression, wide but not deep, and corresponding in its characters to the form and thickness of the ligature and the mode in which it has been secured. Too much importance
must not be attached to this supposed correspondence when the ligature is not forthcoming. In a case of accidental strangulation which I saw in November 1864, the mark round the neck presented the appearance which might be expected from the use of a narrow cord. But, in this instance a soft silk neckerchief was the means of constriction, and the peculiar narrowness of the mark on one side was owing to the great tightness with which it had been drawn. The mark or impression produced by a ligature is generally circular, from the mode in which the pressure is produced. It may be situated at any part of the neck, but it is more commonly below the windpipe. In manual strangulation the marks of bruising and ecchymosis will be in the front of the neck, chiefly about the larynx and below it. The circular direction of a mark produced by the ligature is not an absolute indication that strangulation has taken place without suspension of the body, since cases of hanging have occurred in which a circular mark has been observed; and it is possible that some degree of obliquity may occasionally exist in the course of the depression produced by a ligature in strangulation. A medical jurist ought, therefore, to weigh all the facts connected with the position of the body and the nature and direction of the ligature, before he forms an opinion from the appearances presented by the mark on the neck, whether the person has been hanged or not. Greater importance is to be attached to the lividity, ecchymosis and abrasion of the skin in the course of the ligature, than to the circularity or obliquity of the depression produced by it. In the strangling of a living person by a cord, it is scarcely possible that a murderer can avoid producing on the neck marks of severe injury, and in the existence of these we have evidence of the violent manner in which death has taken place.

In cases in which great violence has been used to the neck, blood may escape from the mouth and nose. It is a matter of popular belief that if there is no open wound in the body there can be no bleeding. In Reg. v. Millar, C.C.C., July 1870, the prisoner was charged with the murder of a Mr. Huelin. One of the circumstances which led to the discovery of the crime was the large amount of blood which had escaped from the mouth and nose as a result of the act of strangulation. The evidence left it clear that the prisoner had murdered Mr. Huelin and his housekeeper, and had endeavoured to conceal the dead bodies. He had packed the body of the housekeeper in a box, and requested a carrier to place a cord round it. The man observed that fluid blood was oozing from the box, and that there was a large stain of blood on the floor beneath. On opening the box, the body of the woman was found inside. There was a cord tied tightly round the neck of the deceased, and blood had escaped from the mouth and nose and had run down the side of the box. The deceased had been strangulated, and such an amount of force used in the tightening of the cord round the neck, as to lead to a copious effusion of blood from the mouth and nose. In cases of asphyxia, as it has been elsewhere
stated, the blood, owing to its liquidity, continues to flow for some time after death from any lacerated wound or blood-vessel.

On the other hand a person may be strangled, and yet the ligature, in consequence of its being soft and of a yielding nature, will not cause a perceptible depression or ecchymosis—scarcely anything more than a slight depression of the skin. If we except cases of suicide, such a condition must be rare; because assailants usually produce a much more violent constriction of the neck than is necessary to ensure the death of a person. The general lividity of the body, contraction of the fingers, with clenching of the hands and swelling and protrusion of the tongue, are more marked in strangulation than in hanging. A thin mucous froth tinged with blood is occasionally found in the air-passages in both cases. In some instances of violent strangulation, blood has escaped from one or both ears during the act; but this is not a usual appearance. In two well-marked cases, in which I was consulted, the constriction of the neck was carried to a great degree, but there was no bleeding from the ears. The late Dr. Geoghegan informed me that in a case of suicidal strangulation which he examined, the constriction had been produced by a riband, and the violence applied was sufficient to produce bleeding from one ear: on dissection this was found to have resulted from a rupture of the membrane of the drum of the ear. There was no froth at the mouth or nostrils, and scarcely any lividity or swelling of the face. It was further observed that the mark on the neck, which was deep, almost disappeared after the removal of the ligature. Sir W. Wilde, of Dublin, met with a case in which rupture of the membrane of the drum of the ear with effusion of blood, was caused by strangulation. Bleeding from the ears, as a result of rupture of the membrane of the drum, must, however, be regarded as an exceptional appearance. Dr. Chevers does not mention it as having been noticed in any one of the numerous cases which he has collected in his Indian experience, although bleeding from the nostrils had been observed. (‘Med. Jur. for India’, 1856, p. 374.) Without rupture of the membrane of the drum, blood could not issue from the ears, and in order that this membrane should be ruptured, certain conditions not commonly met with are required.

Internally.—In a case which occurred to Dr. Fuller of Nuddea, the body of a woman who had been homicidally strangled, presented the following appearances. The skin of the head, face, neck, and chest was darker than natural and discoloured underneath, particularly that of the scalp. The brain was suffused with dark blood, the lungs gorged and of a dark colour, the bowels of a dusky-red colour. The eyes were somewhat protruded and bloodshot, the lips swollen and darker than natural, the tongue slightly protruding between the teeth, and froth issuing from the nostrils. There was a mark of pressure behind the right ear, and other marks on the neck and chest, with discoloration of the muscles. (Chevers’s ‘Medical Jurisprudence for India,’ p. 378; see also p. 387.) In a case of
suicidal strangulation which occurred at Liverpool in 1863, the body of the deceased was found dead, cold, and rigid, about seven hours after he had been seen alive. The arms were flexed, and the hands raised a little above the breast. Round the neck, just below the cricoid cartilage, was a strip of the deceased's shirt, which had been used as a ligature: it was tied at the back of the neck. There was slight ecchymosis in the mark beneath. The skin of the face had a dark-red colour, and was dotted with spots of a deeper red. The conjunctivæ were ecchymosed, and some blood had escaped from the nose. The brain was congested, and much fluid effused. The heart was empty: the lungs were deep in colour (congested). (‘Lancet,’ Aug. 15, 1863, p. 183.) Many of the cases of strangulation which have presented themselves, have been too superficially examined. The most complete account of the appearances is that given by M. Tardieu. It is based on observations made in twenty-eight inspections. (‘Ann. d’Hyg.’ 1859, vol. 1, p. 132.) The lining membrane of the larynx and windpipe was more or less reddened from congestion,—sometimes it was livid or of a dark-red colour. There was a bloody froth extending into the air-tubes. The state of the lungs was variable. Contrary to what is generally alleged to be characteristic of death by asphyxia, M. Tardieu found these organs to contain but little blood. Sometimes they were congested, at other times normal. There were ruptures of the superficial air-cells producing patches of emphysema, which were seen singly or in groups. This condition, which was rarely absent, gave to the surface of the lungs the appearance of being covered with white layers of thin false membrane. When these patches were punctured, air escaped. There was an absence of that condition of the lungs which he observed in death from simple suffocation, namely, dotted ecchymoses on the surface, immediately below the investing membrane (the pleura). Throughout the substance of the lungs, effusions of blood varying in size were, however, generally found, provided an early inspection of the body was made. When some days had elapsed, the lungs were found pale or congested, without any ecchymosed or mottled appearance. The ruptured air-cells with air beneath them, were still visible on the surface.

The heart presents no uniform condition: it is sometimes quite empty, and at others it contains dark fluid blood. The brain is occasionally congested, but more commonly in its natural state. In one instance blood was found effused on the brain, but this is an unusual appearance. It has also been stated that a congested state of the sexual organs, both in males and females was one of the appearances connected with strangulation, but this has not been confirmed by careful observers. M. Tardieu met with nothing to call for notice in this respect in the numerous cases which he examined. The involuntary discharge of faeces, urine, and seminal fluid, described as one of the characters of death by hanging, may equally occur in death from strangulation. No importance can be attached to this as a sign of death from asphyxia in any form. It
frequently occurs in sudden and violent death from any cause, and
there are many instances of death from asphyxias in which it is not
observed. Among the occasional appearances of violent strangula-
tion, may be mentioned injury to the windpipe and the muscles of
the neck around it. One case in which the rings of the windpipe
were split as a result of pressure, was communicated to me by Dr.
Inman, of Liverpool. Several instances of laceration and rupture
of the windpipe are quoted by Dr. Chevers. (Op. cit. pp. 381, 384.)
In one instance the ossified thyroid cartilage had been broken and
forced inwards, causing suffocation. In Reg. v. O'Brien (Liverpool
Winter Assizes, 1857), a case of alleged murder by strangulation,
the cartilage of the windpipe was broken; and in the case of
Pinckard (Northampton Lent Ass., 1852), the windpipe was broken
longitudinally. In reference to fractures of the larynx, see Casper,
'Klinische Novellen,' 1863, p. 497. In suspected homicidal stran-
gulation it is always proper to examine the contents of the stomach
for narcotic poison. In all cases, the cord or ligature, if forth-
coming, should be carefully examined, in order to determine
whether it bears upon it marks of blood, or whether hair or other
substances are adhering to it. A portion of it should be reserved
for the purposes of identity. In two instances of homicidal stran-
gulation, the ligatures found round the dead bodies were proved
to correspond with portions of the same material found in the
possession of the persons who were charged with the murders.
In removing the ligature from the neck, the precise mode in which
it is tied or secured should be noticed, as this may be a fact of
importance in reference to an allegation of suicide.

The medico-legal questions relative to strangulation are of the
same nature as those which have been already considered in treat-
ing of hanging. Thus, in examining the body of a person suspected
to have been strangled, we may be required to answer the following
questions:—

Was death caused by strangulation, or was the constriciting force
applied to the neck after death?—Medical jurists have hitherto con-
sidered that the internal appearances throw no light upon this
question. This opinion probably arose from the fact that inspec-
tions have not been made until some days after death, when the
peculiar appearances of strangulation have been merged in those
of putrefaction. The state of the lungs, however, may be con-
sidered as characteristic. It would be impossible, by the applica-
tion of a ligature round the neck, to produce rupture
of the air-cells on the surface of the lungs, and effusions of blood
in their substance. The state of the eyes and of the inside of the
larynx and windpipe in persons who have been strangled could not
be imitated by any constriction of the neck after death: no bloody
mucous froth would be found in the windpipe or air-tubes. The
external appearances have been considered to furnish more accurate
means of distinction. Although the condition of the neck generally
yields the strongest evidence, it will be proper to seek for that
appearance of dotted redness or ecchymosis in the skin of the face, neck, and chest, described by Tardieu. The state of the eyes, as to their prominence and the congestion of the membranes, as well as the position of the tongue, should also be examined. The ecchymosis about the depression of the neck, when a ligature has been employed, with the accompanying swelling and lividity of the face, are phenomena not likely to be simulated in a dead body by the application of any degree of violence. When the constriction is produced within a few minutes after death, an ecchymosed depression may result; but it is improbable that there should be any lividity or swelling of the countenance. Prof. Casper found that when the constricting force was not applied to the neck until six hours after death, a mark indicative of vital strangulation could not be produced. It is doubtful whether it could be produced in the dead body even an hour after death. The period cannot be determined with positive certainty: the results would probably vary, according to the rapidity with which the body had cooled.

This question was of importance in the case of Marguerite Dixblanc, tried in June 1872, at the C.C.C. for the murder of her mistress, Madame Riel. The body of deceased was found with marks of violence about the head, sufficient to account for death, and there was a rope tightly drawn round the neck. In the defence it was suggested that the rope had been placed round the neck after death for the purpose of dragging the body to the place where it was found. Another theory was that the prisoner had strangled her mistress with the rope. From the appearance of the neck, the medical evidence left it doubtful whether the rope had been applied during life or soon after death. If the former, it would have proved a deliberate design to murder. The prisoner received the benefit of the doubt, and although found guilty, the capital sentence was commuted.

It is difficult to conceive under what circumstances an attempt to simulate strangulation in a recently dead body could be made, unless for the purpose of throwing suspicion upon an innocent person connected with the deceased. When an individual has been murdered, it is not likely that the murderer would attempt to produce the appearances of strangulation on a body after death, under the idea of concealing his crime; for strangulation is, in most cases, an actual result of homicide, and is rarely seen as an act of suicide. A rope might, however, be applied, as in Dixblanc's case, supra, for the purpose of dragging the body. In the absence of ecchymosis from the neck it will be difficult to form an opinion, unless from circumstantial evidence; but there may not be an ecchymosed circle; for a person may be strangled by the application of pressure to the windpipe through the medium of the finger-nails, or of any hard or resisting substance. In Reg. v. Lunnun (Warwick Lent Ass. 1873), a mother was indicted for the murder of her child by strangulation. The face was livid; there were bruises on
OF VIOLENCE ON THE NECK. 391

the forehead, and there were five marks on the throat, which might have been caused by the four fingers and thumb of a right hand. There were recent wounds on the forearm and the back of the hand. There was a bruise on the scalp with blood beneath it. The brain and lungs were congested. The medical opinion correctly referred death to strangulation. The prisoner was convicted of manslaughter. The ecchymosis on the neck in such cases will be in detached spots or patches. In the absence of all marks of violence round the neck, we should be cautious in giving an opinion which may affect the life of an accused party; for it is not probable that homicidal strangulation could be accomplished without the production of some appearances of violence on the skin over the larynx or windpipe. It is doubtful whether strangulation can ever take place without some mark being found on the neck indicative of the means used. The bare possibility of death being caused in this manner, without leaving any appreciable trace of violence, must be admitted; although the admission scarcely applies to those cases which require medico-legal investigation. Suicides and murderers generally employ much more violence than is necessary for the purpose of destruction—hence detection is easy. But if a soft and elastic band were applied to the neck with a gradually regulated force, it is possible that a person might die strangled, without any external sign being discovered to indicate the manner of his death. Indian surgeons inform us that the Thugs, and other robbers met with in India, are thus accustomed to destroy their victims with the dexterity of practised murderers.

A case involving this question of strangulation without marks of violence on the neck, was tried in France, and from the medical evidence decided in the affirmative. (‘Gaz. Méd.’ 9 Mai 1846, p. 375.) The medical witness should, however, be prepared to consider whether, in the absence of any mark, death might not have proceeded from another cause, and leave it to the authorities of the law to decide from circumstances, in favour of or against the prisoner. There is, I conceive, nothing to justify a medical witness in stating that death has proceeded from strangulation, if there should be no appearance of lividity, ecchymosis, or other violence about the neck or face of the deceased. Congestion in the organs of generation is an appearance which it would not be safe to take as positive evidence of death from strangulation. The state of the countenance will not warrant the expression of an opinion unless it is accompanied by other well-marked signs of this mode of death; for there are many kinds of death in which the features may become livid and distorted from causes totally unconnected with the application of external violence to the throat. So, again, the eyes and tongue may be protruded as a result of putrefactive changes. Let not a witness, then, lend himself as an instrument for the condemnation of a person against whom nothing but a strong suspicion from circumstances may be raised, and where medical evidence is unable to furnish any distinct and conclusive proofs of death from
strangulation. This caution is especially necessary in reference to
the inspection of bodies which are in a state of putrefaction. A
medical man, already provided with a theory of the cause of death
by the discovery of a rope or other means of constriction, found
near a dead body, may easily arrive at the conclusion that death has
taken place from strangulation. The absence of the usual confirmatory
appearances in the body may be ascribed to decomposition, and
those caused by decomposition may be set down to strangulation.
When there is obvious mechanical violence to the neck, such as frac-
ture of the larynx or windpipe, with laceration of the muscles be-
neath—a visible depression, such as a cord, a ligature, or manual
pressure would produce, a medical opinion may be fairly given in
spite of putrefaction. But when, in a putrefied body, indistinct
marks on the neck, or patches of discolouration, are relied upon as
evidence of homicide, there is great risk of a serious medical mistake.

In cases of alleged drowning, it is sometimes the practice to ask
a medical witness how far his opinion of the cause of death has
been influenced by the discovery of the dead body in or near water.
In cases of alleged strangulation a similar question may be put in
reference to the discovery of a rope or ligature round the neck of
the deceased, or in the apartment in which a dead body is found.
A medical opinion should rest upon the clear and obvious changes
produced on the neck, and on the structures below the skin, and
not upon the mere presence of a cord or ligature. This might be
put round the neck of a dead body, or near to it, for a malicious
purpose. The act of strangulation should be, medically speaking,
as distinctly provable without the production of a rope, as the act
of stabbing without the production of the knife which inflicted the
stab. If these principles are not strictly adhered to in practice,
policemen would be as competent as medical experts, to give evidence
of the cause of death in cases of alleged strangulation.

It is scarcely necessary to state that all marks of violence on the
body of a supposed strangled person should be accurately noted, as
the questions respecting them, however slight the marks may be,
are material. The witness will be expected to state whether they
were inflicted before or after death: if before, whether they were
sufficient to account for death, or whether they were such as to be
explicable on the supposition of an accidental, suicidal, or homicidal
origin. It should be observed whether there exist any morbid
changes sufficient to account for death, in either of the three great
cavities of the body, as this kind of negative evidence may be essen-
tial in the progress of a case. In reference to females, whether chil-
dren or adults, the surgeon should not neglect to examine the sexual
organs in order to ascertain whether there are any marks of violation.
Cases have occurred in which rape has been perpetrated, and strangu-
lation resorted to for the purpose of concealing the crime.

Strangulation, like hanging, is occasionally the result of accident,
but the occurrence may be looked upon as rare. When the body
is not suspended, it is commonly more in the power of a person to
strangulation. This caution is especially necessary in reference to the inspection of bodies which are in a state of putrefaction. A medical man, already provided with a theory of the cause of death by the discovery of a rope or other means of constriction, found near a dead body, may easily arrive at the conclusion that death has taken place from strangulation. The absence of the usual confirmatory appearances in the body may be ascribed to decomposition, and those caused by decomposition may be set down to strangulation. When there is obvious mechanical violence to the neck, such as fracture of the larynx or windpipe, with laceration of the muscles beneath—a visible depression, such as a cord, a ligature, or manual pressure would produce, a medical opinion may be fairly given in spite of putrefaction. But when, in a putrefied body, indistinct marks on the neck, or patches of discolouration, are relied upon as evidence of homicide, there is great risk of a serious medical mistake.

In cases of alleged drowning, it is sometimes the practice to ask a medical witness how far his opinion of the cause of death has been influenced by the discovery of the dead body in or near water. In cases of alleged strangulation a similar question may be put in reference to the discovery of a rope or ligature round the neck of the deceased, or in the apartment in which a dead body is found. A medical opinion should rest upon the clear and obvious changes produced on the neck, and on the structures below the skin, and not upon the mere presence of a cord or ligature. This might be put round the neck of a dead body, or near to it, for a malicious purpose. The act of strangulation should be, medically speaking, as distinctly provable without the production of a rope, as the act of stabbing without the production of the knife which inflicted the stab. If these principles are not strictly adhered to in practice, policemen would be as competent as medical experts, to give evidence of the cause of death in cases of alleged strangulation.

It is scarcely necessary to state that all marks of violence on the body of a supposed strangled person should be accurately noted, as the questions respecting them, however slight the marks may be, are material. The witness will be expected to state whether they were inflicted before or after death: if before, whether they were sufficient to account for death, or whether they were such as to be explicable on the supposition of an accidental, suicidal, or homicidal origin. It should be observed whether there exist any morbid changes sufficient to account for death, in either of the three great cavities of the body, as this kind of negative evidence may be essential in the progress of a case. In reference to females, whether children or adults, the surgeon should not neglect to examine the sexual organs in order to ascertain whether there are any marks of violation. Cases have occurred in which rape has been perpetrated, and strangulation resorted to for the purpose of concealing the crime.

Strangulation, like hanging, is occasionally the result of accident, but the occurrence may be looked upon as rare. When the body is not suspended, it is commonly more in the power of a person to
SUICIDAL STRANGULATION. 393

assist himself, and escape from the constriction; hence cases of accidental strangulation are less frequent than those of accidental hanging. As a general rule, cases in which the constriction of the neck has been produced by some accident, present no difficulty to a medical jurist, provided the relations of the body to surrounding objects and the compressing force have not been disturbed. Should it happen, however, that the body has been removed from the place in which it was first discovered, or the ligature taken from the neck, we can only establish a presumption of accident from the description given.

When a charge of murder is instituted against a person, an attempt is not unfrequently made by counsel for the defence to show the probability that the deceased might have fallen while in a state of intoxication, and have become accidentally strangled, either by a tight cravat or by some foreign substance exerting pressure on the windpipe. If we admit the possibility of an occurrence of this nature, we must not lose sight of the existence of other more probable causes of death, nor should we allow our judgment to be so swayed as to abandon what is probable for that which is merely possible.

Suicidal strangulation.—This mode of suicide is of rare occurrence, and, except under particular circumstances, impossible. The possibility of an individual strangling himself was for a long time denied by medical jurists; for it was presumed that when the force was applied by the hand, all power would be lost as soon as the compression of the windpipe commenced. This reasoning, which is physiologically correct, is, however, only applicable to those cases in which the windpipe is voluntarily compressed by the fingers. When a person determined on suicide allows the windpipe to be compressed, by leaning with the whole weight of his body on a cord passed round his neck and attached to a fixed point, he may perish in this manner almost as readily as if he had hanged himself; for insensibility and death will soon supervene. In the chapter on Hanging, it was stated that suicides were often found with their bodies in close contact with the ground; and cases are reported in which strangulation was accomplished, in the manner above described, while the suicide was in a sitting or kneeling posture (p. 381). On other occasions, the peculiar disposition or nature of the ligature has enabled a person bent on suicide to strangle himself without much difficulty. An instance is related by Orfils, in which two cravats, that were twisted several times round the neck of the deceased, who was discovered lying on his bed, had effectually served the purpose of self-destruction. (‘Méd Lég.’ vol. 2, p. 389.) Sometimes strangulation has been suicidally effected by a rough cord passed repeatedly round the neck, and tightened by being pulled with each hand. The number of coils would still cause some pressure to be exerted even when the grasp was relaxed by death. (See ‘Guy’s Hospital Reports,’ Oct. 1851.) Other cases are related, in which suicides have succeeded in strangling themselves by tighte-
394 HOMICIDAL STRANGULATION.

ing the ligature with a stick (see 'Guy's Hospital Reports,' Oct. 1851); or when the ligature was formed of thick and rough materials, by simply tying it in a knot.

Although suicidal strangulation may be effected under unexpected circumstances, yet in a case of murder by strangulation, it would not be easy to simulate suicide: it would at any rate require great skill and premeditated contrivance on the part of a murderer, so to dispose of the body of his victim, or to place it in such a relation to surrounding objects, as to render a suspicion of suicide even probable. Thus, if the cord or ligature should be found loose or detached,—if the ecchymosis or mark in the neck should not accurately correspond to the points of greatest pressure,—if, moreover, the means of compression were not evident when the body was first discovered and before it had been removed from its situation, there would be fair grounds for assuming that the act was homicidal. In those cases in which strangulation has resulted from a compression of the windpipe by the fingers, and where there are fixed ecchymosed marks indicative of direct manual violence, we have the strongest presumptive evidence of murder; for neither accident nor suicide could be urged as affording a satisfactory explanation of their presence.

Dr. Hofmann, of Innsbruck, met with an instance of this kind in which he rightly concluded, from the deep depressions in the neck of the deceased, attended with abrasion of the cuticle and effusion of blood, as well as from the great injury done to the parts about the larynx and trachea, that the strangulation was homicidal. (Eulenberg's 'Vierteljahresschrift,' 1873, p. 89.) This case is remarkable for another fact. The assassin had wiped his hand, which must have been stained with blood from the violence used, on a towel which was found concealed, but was subsequently traced to his possession. It was affirmed in defence that the blood on the towel was of old date, but spectral analysis showed that it had the characters of recent blood. That this had been used for the purpose stated, was proved by the discovery on it of the shreds of epidermis and the fine downy hairs of the deceased such as would have been removed under violent pressure with the fingers.

Homicidal strangulation,—Strangulation occasionally comes before our courts as a question of murder: and when a person has been tried upon a charge of this kind, the circumstances have been commonly so clear as to render the duty of a medical witness one of a simple nature. When the cause of death is contested, or when it is contended in defence that the strangulation is suicidal, a medical witness must be prepared to give his reasons for affir-
mation that the act was not done by the deceased himself. He must be prepared to meet and explain the differences between the case under investigation, and those reported cases which are admitted to have been suicidal. The attitude of the body, the condition of the dress, the means of strangulation, the presence of marks of violence or of blood on the person of the deceased,—on his clothes or
the furniture of the room,—or on the rope or ligature, are circumstances from which, if observed at the time, important medical inferences may be drawn. As a rule, a criminal who attempts to imitate suicide under such a form of murder must, when the facts are properly investigated, inevitably fail in his object. The assassin either does too little, or he does too much. In one case of murder by strangulation, the woman who perpetrated the crime had been a nurse in an infirmary, and accustomed to lay out dead bodies. After the act of murder she appears to have carried out, unthinkingly, her professional practice, by smoothing the clothes under the body, placing the legs at full length, the arms out, straight by the side, and the hands open and laid out! Such a condition of the body was quite inexplicable on the supposition of suicide, considering the amount of violence which must have attended the strangulation. In another case, the criminal had attempted to make the death appear like an act of suicide by placing the lower end of the rope near the hand of the deceased: but he selected the left hand whereas the deceased was right-handed, and he did not leave enough rope free from the neck for either hand to grasp, in order to produce the very violent constriction of the neck which had been caused by the two inner coils. Both of these criminals confessed their crimes before execution.

Sometimes the appearance of the mark on the neck will allow us to establish a slight presumption for or against homicide. In homicidal strangulation, from the unnecessary violence used, we may expect to find the skin much ecchymosed, lacerated, or excoriated; and the deep-seated parts, such as the muscles and vessels, as well as the windpipe itself, more or less bruised, lacerated, or extensively injured. Such a degree of violence is not commonly to be expected in suicidal strangulation. The mark on the neck has furnished evidence of this mode of death, even under circumstances in which it might be supposed all evidence would be destroyed. Dr. Schüppel, of Tübingen, describes a case in which he was able to verify the fact of strangulation after the burning of the body. In August 1869, a fire took place in a cottage in which there were at the time a man and his wife with a stepson (set. 10) and a newborn infant. The man escaped with the infant, and said that his wife and stepson had left the house before the fire. This was proved to be a falsehood: their dead bodies were subsequently discovered much burnt. A suspicion of incendiary and murder arose, and the remains were examined by Dr. Schüppel. On the burnt remains of the neck of the boy there was a horizontal mark or depression encircling the greater part of the neck, about one-quarter of an inch wide and presenting a smooth surface, quite distinct from the broken, blistered and carbonized skin above and below it, and the tongue protruded from the mouth.

From this condition of the neck and tongue Dr. Schüppel drew the conclusion that the boy had died from strangulation, and that the ligature had been applied to the neck while the boy was living,
and had been burnt with the body (Horn's 'Vierteljahresschrift,' 1870, 2, 140.) The man was found guilty of the murder of his wife and stepson, and a few days afterwards he committed suicide by hanging himself while in prison. He had set fire to the house after the murder, in order to conceal the double crime. The burnt neck of the boy, with the mark upon it, is preserved in the Museum of the University of Tubingen.

In the case of the Countess of Goerlitz (ante p. 344), whose body was destroyed by burning, the tongue protruded from the mouth, thus indicating death by strangulation. In a case which occurred to Mr. Jackson of Grantham, some of the appearances of strangulation were found in spite of the burning of the body.

It is proper to notice in this place the frequent occurrence within a recent period of what are called 'Garotte robberies.' The system of murder normally pursued by the Thugs in India appears to have been imported into England, and many lives have been destroyed in the manufacturing districts and in large towns, by the employment of strangulation for the purposes of robbery. In spite of numerous convictions, there is reason to believe that many criminals still set the law at defiance. The rigorous proof required of facts which under these assaults can rarely admit of proof, confers complete impunity on the assailants. The attack is made during darkness: the person is seized by the windpipe from behind, or a bandage is thrown around his neck; and this is suddenly tightened while accomplices are engaged in perpetrating robbery. The nature of the assault by pressure on the windpipe, renders it impossible to give an alarm or call for assistance. The person assaulted, if he should recover, is seldom able to identify an assailant; he is attacked from behind, is rendered immediately senseless and powerless, and can rarely offer resistance. Recovery or death in such cases depends on the lapse of a few seconds, more or less, during which the constriction of the neck is continued—on the degree of constriction, and on the age, sex, and strength of constitution of the person assaulted. An attempt at strangulation, as in garotting, besides inflicting serious local injury to the windpipe and other parts near to it, may cause a state of insensibility which may continue for some hours. There is severe pain in the throat, with difficulty of speaking and swallowing, and if the larynx be seriously injured there may be loss of voice. Dumbness, however, is not one of the secondary symptoms: and loss of voice is usually only temporary during the pressure. By the 24th and 25th Victoria, c. 100, s. 14, it is enacted, inter alia, that 'whosoever shall attempt to drown, suffocate, or strangle any person, with intent to commit murder, shall, whether any bodily injury be effected or not, be guilty of felony; and being convicted thereof shall be liable, at the discretion of the Court, to be kept in penal servitude for life, or for any term not less than three years, or to be imprisoned for any term not exceeding two years.' As the intent in these cases is to perpetrate robbery, and not murder,
another section (21) has been framed, for the prevention of the crime of garrotting: 'Whosoever shall, by any means whatsoever, attempt to choke, suffocate, or strangle any other person, or shall, by any means calculated to choke, suffocate, or strangle, attempt to render any other person insensible, unconscious, or incapable of resistance, with intent, in any of such cases, to enable himself, or any other person, to commit, or with intent in any of such cases thereby to assist any other person in committing any indictable offence, shall be guilty of felony; and being convicted thereof shall be liable, at the discretion of the Court, to be kept in penal servitude for life, or for any term not less than three years, . . . or to be imprisoned for any term not exceeding two years,' &c.

Marks of violence.—It may be inquired whether marks of violence on the body, or blood-stains on the clothes, furniture, or in the apartment, do not afford strong evidence of homicidal strangulation. The answer is—if the marks of violence are such that they could not possibly have arisen from any accident before death, or that they could not possibly have been self-inflicted, they afford the strongest evidence of murder. But the cases wherein so positive an answer can be returned are exceptions to the rule. It is not always in our power to distinguish accidental or self-inflicted from homicidal violence; and we are always bound to look to the probability of accident or of previous attempts at suicide, being the source of those personal injuries which may be apparent on a strangled body. There may be several marks on the neck, but then the person may have tried to strangle himself more than once. The throat may be cut—there may be a deep-seated stab or gunshot wound, involving some of the important organs of the body—or poison may be found in the stomach; but in a purely medical point of view, how are we to know that the deceased did not actually make the marks, inflict the wounds, or take the poison before he succeeded in strangling himself? In the chapters on Drowning and Hanging, we have seen what suicides can do when they are desperately bent on destroying themselves. Wounds and personal injuries often create serious difficulties to a medical jurist, which it requires the greatest caution and prudence on his part to meet and explain. The prejudice of the public mind is such, that the discovery of a strangled person, with any marks of personal injury or of poisoning in his stomach, would, in most cases, lead to a charge of murder, unless the facts rendered it clearly impossible that any attempt could have been made on his life. It is against this prejudice that a medical witness must strenuously guard himself: he may be abused for not joining in the outcry of the vulgar, but the best recompense for this abuse, will be the conviction that he is interposing the shield of science to protect a possibly innocent fellow-creature from the senseless denunciations of ignorance. Further, before a charge of murder by strangulation is raised against any person from marks or appearances found on a dead body, care should be taken that they admit of no other reasonable
explanation than the direct application of violence. Even if marks indicative of strangulation are discovered, the question arises whether they may not have been produced by the deceased upon himself in an attempt at suicide which may have failed. If the body of a person is allowed to cool, with a handkerchief, band, or tightly-fitting collar round the neck, a mark resembling that of strangulation will be produced. Before any opinion is given that murder has been perpetrated or attempted, the medical proofs on which reliance is placed should be clear, distinct, conclusive, and satisfactory.

In the dead bodies of infants and children, in whom the neck is short, a mark is occasionally seen which arises from the bending of the head; and in short-necked persons a similar mark or depression has been noticed after death, in front of the neck. These marks are then rendered more prominent by their assuming a livid appearance. They might, at first, be mistaken for marks produced by a ligature in an attempted strangulation. In one case a death from apoplexy was attributed to homicidal strangulation from a cadaveric change of this kind. ('Ann. d’Hyg.' 1859, vol. 1, p. 139, and vol. 26, p. 149.) The matter was set right by the late M. Ollivier. Homicidal strangulation may be perpetrated on the weak and infirm without causing any noise or creaking alarm. In the first place, if the throat is at once seized and firmly compressed, no cry can be made, nor any noise produced to excite the attention of those who are near. In June 1857, an aged woman was strangled in her shop by an apprentice in so short a time and so quietly, that her husband, who was only separated from her by a slight partition, heard no noise or disturbance during this act of murder. ('Ann. d’Hyg.' 1859, vol. 1, p. 157.)

It cannot be disputed that in contested questions of suicidal or homicidal strangulation, rare as they are, we must be often greatly indebted to evidence founded on circumstances, as well as to moral presumptions. How far a medical jurist may be allowed to make use of these in the formation of an opinion, it will be for the Court to determine. Generally speaking, his duty is rigorously confined to the furnishing of medical evidence from medical data alone; but instances present themselves in which this rule must be departed from, or the course of justice will be impeded. Besides, there are numerous circumstances of a collateral nature which may materially modify a medical opinion. Thus the sight of a ligature, the state of the dress, and the attitude of the deceased when discovered, although not strictly medical circumstances, bear directly upon medical opinions; and that evidence ought not to be objected to which is partly founded upon facts of this nature. It must occur to all, that without circumstantial evidence, the best medical opinion in these cases will often amount to nothing. It may be, for example, no more than this: the case is either one of homicide or suicide; and why is such an indefinite answer to be returned? Because, in the abstract view of strangulation, it is not easy to determine whether
a ligature was suicidally applied round the neck or not. The appearances may be in many cases the same, and where they are different, this difference may be due to accident, so that it is a mistake to suppose that we must look to medical circumstances alone for clearing up this intricate question. On some occasions the theory of homicide or suicide will be equally consistent with the facts. The cases of Dr. Franck and his son, which occurred at Brighton in November 1855, were of this ambiguous character. Whether the son strangulated himself, or was strangled by his father, was a question which could not be satisfactorily solved by medical, moral, or circumstantial evidence. Unfortunately, the bodies did not undergo a proper medico-legal inspection.

In all fatal cases resulting from acts of suicide, the means by which strangulation was produced will be found upon the neck. The condition of the mark on the neck, the course and direction of the cord, the mode in which it was secured or fixed in order to produce effective pressure on the windpipe, the amount of injury to the muscles and parts beneath, are circumstances from which, if observed at the time, a correct medical opinion may generally be formed. If the means of constriction are removed, or the cord or ligature is loosely applied, these facts, unless explained, are presumptive of homicidal interference.

There is another condition in which a presumption of homicide will be justifiable. A man, in strangling himself, is not likely to vary the means. The act is commonly due to a sudden impulse, if we may judge from the moral proofs afforded in the instances on record. The article which is nearest to the suicide is seized, and made the instrument of self-destruction. It has already been stated as doubtful whether a person could strangle himself by the mere application of the fingers to the windpipe: the discovery of such marks only as would indicate this kind of strangulation, therefore, renders suicide in the highest degree improbable. But these marks may be sometimes ascribed to the deceased having fallen with his hand possibly applied to his neck, and the inference will be drawn that they have accidentally resulted from the pressure of his own fingers. This is an improbable mode of accounting for the production of ecchymosis or excoriation of the skin in front of the neck. If, besides these marks of fingers, we find a circular mark, with a ligature still around the neck, the presumption of murder becomes very strong. It may be said that a person might at first try to strangle himself with his fingers, and, not succeeding, might afterwards employ a cord. But the degree in which the coincidental impressions exist, will assuredly in general remove this objection.

Imputed strangulation.—Hitherto the subject of strangulation has been considered in reference to the dead. But a living person may charge another with attempting murder under such circumstances, and here a medical jurist will have the not very arduous duty of detecting and exposing the imposture. It has been considered so
improbable that any one would seriously attempt to strangle himself, and then impute the act to another, that medical jurists have given but little attention to this subject. A case tried in France in March 1864 (Affaire Armand et Maurice Roux) has shown the great importance of it, and how easily medical men and the public may be deceived by a plausible story (infra). As in reference to imputed wounds, so in these cases impostors rarely produce such injury to themselves as to place their lives in jeopardy. The cord is loose round the neck, or there would be speedy death; it is not so secured as to press with great force on the air-passages, to cause the tongue to protrude, or to produce lividity of the face and neck, or ecchymosis in the conjunctivae and the skin. It is either a ligature or a rope which is used by the impostor: he does not commonly resort to manual violence to his throat. The marked feature of a really homicidal attempt is in the great amount of violence done to the neck; and the account given by the impostor will be inconsistent in its details, and not reconcilable with the ordinary effects of homicidal strangulation. Tardieu met with a case, in which a young woman of good social position, wishing to excite some public sympathy, alleged that she had been made the victim of a political conspiracy. One evening she was found at the door of her room apparently in a very alarming state: she could not speak, but indicated, partly by gestures and partly by writing, that as she was entering her room a man had attempted to strangle her by pressing his hand upon her neck, and at the same time had stabbed her in the chest with a dagger. On close examination it was found that there were two stabs which had penetrated only through the outer clothing. But the most singular effect of the alleged attempt at strangulation was that, instead of producing a difficulty of speaking and alteration of the voice, it had been followed by complete dumbness! M. Tardieu, who was officially authorized to examine the case, could find on the neck no trace of any attempt at strangulation; and on assuring the young lady that the loss of voice under such circumstances could not last for more than a minute, she at once admitted that there was no foundation for the charge! ('Ann. d'Hyg.' 1859, vol. 1, p. 163.) On this occasion no person was accused: but the case is different when, for the purpose of extortion or other base motives, one or more persons are charged with an attempt at murder. A flagrant instance of this kind occurred in France, in which a wealthy merchant of Montpellier was charged by his servant, Maurice Roux, with having attempted to murder him by strangulation. The case was tried in March 1864, before the Court of Assizes of the Bouches du Rhone; and, fortunately for the interests of justice as well as for the credit of medico-legal science in France, it ended in a complete acquittal of the accused. (Affaire Armand et Maurice Roux, Paris, 1864. *Relation Medico-légale de l’Affaire Armand,* &c., par A. Tardieu. *Annales d’Hygiène et de Médecine Légale,* 1864, vol. 1, p. 415.)

It may be observed in reference to these imputed cases, that men who deliberately strangle others, either draw a cord tightly or secure
it by a knot. The pressure to the neck is not so gentle as to leave no mark whatever, or to allow the strangled person to breathe and watch all that goes on around him! Slight marks of violence about the neck should be viewed with great suspicion on these occasions. As a rule, a man does not half-strangle any more than he half-stabs or half-poisons another; but the impostor stops short of this stage, as he has no intention to destroy himself. If, as is most improbable in attempted homicide, the cord is left only loosely coiled around the neck, the person assaulted necessarily retains the power of breathing and calling for assistance; but if the hand of a murderer has been at work, it is effectually tightened and the person dies in a few minutes. A charge of this kind, where there can be no witness but the person making it, requires to be supported, not by medical probabilities but by the strongest medical facts. These ought to show that there are marks of violence on the neck such as an assassin would be likely to inflict, and, at the same time, such as the person making the charge would not be likely to produce, or have the power of producing, on himself.

SUFFOCATION.

CHAPTER 40.

SUFFOCATION FROM MECHANICAL CAUSES.—CAUSE OF DEATH.—APPEARANCES AFTER DEATH.—EVIDENCE OF DEATH FROM SUFFOCATION.—ACCIDENTAL SUICIDAL AND HOMICIDAL SUFFOCATION.—SMOTHERING.

By suffocation we are to understand that condition in which air is prevented from penetrating into the lungs, not by constriction of the windpipe, but by some mechanical cause operating on the mouth externally, or on the throat, windpipe, or air-passages internally. In this sense it will be perceived that drowning is one form of death from suffocation, the water being an effectual medium for preventing access of air to the lungs.

The term suffocation is applied to various conditions in which the symptoms and effects differ. There may be a simple privation of air,—the air respired may not be renewed for the want of proper ventilation,—or, lastly, the air which is breathed may be mixed with certain noxious gases or vapours, which, by absorption into the blood through the air-cells of the lungs, may destroy life like poisons. The symptoms preceding death, the disposition to recovery, and the post-mortem appearances in fatal cases, will differ under these circumstances. It will be sufficient at present to consider the most simple form of suffocation which is within the reach of experiment,
nearly, that which depends on the privation of air by substances blocking up the air-passage, or by the covering of the mouth and nostrils. The Committee of the Medico-Chirurgical Society performed a series of experiments on dogs, in which a tube was inserted into the windpipe, and breathing either took place or was completely arrested, according to whether the tube was kept open or closed by an accurately fitting plug. When the tube was closed, the animal, after a variable number of seconds, made strong efforts to breathe; and when these ceased, unless air was speedily admitted, it died. From nine experiments on the dog, the average duration of the respiratory movements, after the animal had been completely deprived of air, was four minutes and five seconds. The average duration of the heart’s action was seven minutes and eleven seconds; and it further appeared that, on an average the heart’s action continued for three minutes and fifteen seconds after the animal had ceased to make these efforts to breathe. In respect to the rapidity with which death takes place in animals, the following conclusions were drawn:—1st, a dog may be deprived of air during a period of three minutes and fifty seconds, and afterwards recover without the application of artificial means; and 2ndly, a dog is unlikely to recover, if left to itself, after having been deprived of air during a period of four minutes and ten seconds. As in drowning, the shorter the interval between the last respiratory efforts and the re-admission of air, the greater the probability of recovery. (‘Med.-Chir. Trans.’ 1862, vol. 45, p. 454.)

The results of these experiments in reference to the duration of life under privation of air, may be considered applicable to a human being. It is not likely that a man would survive under these circumstances longer than a dog, and it may therefore be fairly inferred that the life of a man would be destroyed in from four to five minutes after the power of breathing had been completely arrested.

There are many varieties of death by suffocation, all of which are of great medico-legal interest:—1. The close application of the hand over the mouth and nostrils, or the placing of a plaster or cloth over these parts, combined with pressure on the chest: this was formerly not an unfrequent form of homicidal suffocation. 2. Smothering, or the covering of the head and face with articles of clothing, &c., which effectually prevent breathing. 3. The accidental or forcible introduction of foreign bodies into the mouth and throat. 4. The flow of blood into the windpipe from a severe wound in the throat, or from the bursting of a blood-vessel or aneurismatic sac. 5. In wounds of the throat, when the windpipe is completely divided, the lower end may be so drawn into the wound as to produce a closure of the orifice, and intercept the passage of air. One or other of these causes frequently operates to render a wound in the throat fatal. 6. The plunging of the face into mud, snow, dust, ashes, feathers, or similar substances. In all these cases death takes place from asphyxia, and with great rapidity if the chest sustains at the same time any degree of forcible compression.
7. Swelling or spasm of the glottis produced by the contact of corrosive liquids or boiling water. A case was referred to me, in July 1848, in which death was probably thus caused by the application of a strong solution of permanganate of mercury to an ulcer in the throat.

Suffocation may arise from morbid causes operating mechanically to prevent respiration, such as a diseased state of the parts about the throat, an enlargement of the glands, the bursting of a tonsillar abscess, or the effusion of lymph, blood, or pus into the windpipe, or about the opening of the larynx (rima glottidis). Any of these causes may suddenly arrest the act of breathing, a fact which can only be determined by a careful examination of the air-passage. Accidental suffocation may arise from large masses of food blocking up the larynx. If the glottis (the opening of the windpipe) be completely closed by food, death may take place suddenly; although the person so situated may be capable of making some exertion or of moving from the spot. Dr. Mackenzie relates a case in which a man was suddenly choked by swallowing a large piece of meat; he immediately walked across the street to a chemist's shop, and soon after entering it, he fell down in a state of insensibility. After death the throat was found to be filled with a piece of beef, which rested on the glottis, and had pressed the epiglottis forward. Part of the mass had entered the windpipe through the rima glottidis, and had thus caused death by suffocation. It is probable that, in this and similar cases, the foreign body does not so completely close the aperture as to prevent some degree of respiration, but the blood being imperfectly aerated, asphyxia is speedily induced. ('Ed. Month. Jour.' July 1851, p. 68.) A man, aged 31, was put to bed drunk, having previously vomited; and shortly afterwards he was found dead. On inspection, Dr. Jackson, of Leith, discovered the usual appearances of asphyxia, i.e. congestion of the lungs and of the right cavities of the heart. He was thus led to examine the air-passage carefully, and he found lying over the upper opening of the windpipe (rima glottidis) a thin and transparent piece of potato-skin so closely applied to the fissure as to prevent breathing. The man had died accidentally suffocated from this mechanical cause. He had had potatoes for dinner the day before; the piece of skin had probably been thrown up at the time of vomiting, and had been drawn back by inspiration into the singular position in which it was found. Owing to intoxication, the deceased was unable to cough it up. I agree with Dr. Jackson in thinking that this case conveys a caution in making inspections. In England the verdict would most probably have been, 'Died by the visitation of God, without an examination of the body!' The result clearly shows that in every case of sudden death there should be a strict investigation. ('Ed. Med. and Surg. Journ.' April 1844, p. 390.)

A person may die suffocated, not from the act of swallowing food, but by reason of part of the contents of the stomach finding their way into the air-passage. Whenever vomiting is followed by an inspiration while the vomited matters are in the mouth, the food is
very liable to be drawn by aspiration into the trachea, bronchi, and pulmonary cells, and to cause suffocation. Pressure on the body may have the same effect as the act of vomiting. A man was struck several blows with the fist, he was then stabbed in the nape of the neck, and finally his body was trampled on by his assailants. He died before any assistance could be rendered. On inspection the air-passages were found to contain a large quantity of pulpy matter such as existed in the stomach. The wounds received were only flesh wounds, no large blood-vessel having been injured. Nevertheless one expert attributed death to loss of blood from the wounds —another assigned it to asphyxia from the food vomited by the deceased passing into the lungs during an inspiration. MM. Engel and Hauska were able to prove that asphyxia was the cause of death, and that the assailants were responsible. The food had been forced into the fauces by the act of trampling on the body. ('Ann. d’Hsg.' 1868, 1, 450; and 2, 226; and 1869, 1, 471.) This mode of death by suffocation, as a result of violence to the abdomen, is probably more frequent than it is commonly supposed to be. It is likely to occur in the maltreatment of drunken persons. Dr. Behrend has reported a case in which suffocation was caused by the aspiration of food, with a full account of the post-mortem appearances, in Horn’s 'Vierteljahrschrift,' 1868, 1, 123. Accidental suffocation from food is one of those causes of violent death which is recorded in the Registrar-General’s returns. It appears from the latest report of mortality in England and Wales that in the year 1871 there were 81 deaths from this cause.

A person has been wrongly charged with causing the death of another, when the cause was really owing to the impaction of food in the larynx. A remarkable instance of this kind (which is reported in the 'Lancet' for March 9, 1860, p. 313), occurred at Hillingdon. Deceased had had a quarrel with the accused, who was his son-in-law, and they were seen to fall to the ground together, while struggling and fighting. They were separated. About two hours afterwards the deceased, who appeared quite well, was observed to rise from the dinner-table and leave the room. He was found leaning against the cottage, as if in a falling position, and he expired in two or three minutes. The person with whom deceased had been fighting, was charged with manslaughter before a magistrate. At the inquest the medical witness stated that he found the organs of the body, excepting the brain, in a very healthy state. The brain was excessively congested, and he attributed death to apoplexy. The coroner desired the witness to examine the mouth and throat (which he had omitted to do at the inspection), as from the suddenness of death after eating, he (the coroner) thought the man might have been choked. This opinion turned out to be correct. A large piece of meat was found wedged in the opening of the throat; this had caused death by suffocation. It had not completely closed the air-passages in the first instance: hence the man was able to move from the dinner-table. The person accused of
man slaughter was discharged. A medical jurist, however, must not lose sight of the fact that a foreign substance may be homicidally impacted in the larynx, and that, except by a careful examination of the body, death may be wrongly assigned to accident. A case reported by Dr. Littlejohn is in this respect instructive. In examining the body of a woman who it was stated had died suddenly, he found a quart-bottle cork inserted tightly into the upper part of the larynx. The sealed end was uppermost, and was roughened by the passage of the screw. Fractures of the ribs were found, and it was quite clear that deceased had not died a natural death. It was suggested that the deceased, while extracting the cork from the bottle with her teeth, might, by the sudden impetus of the contained fluids, have drawn it into the position in which it was found. But this theory was negatived by the sealed end of the cork being uppermost in the throat, as well as by the structure of the parts. The medical opinion was that the cork must have been forcibly placed there by another person, while the woman was in a helpless state of intoxication. There was no reason to doubt that this was a deliberate act of murder. Five persons were present with the deceased at the time of her death, but it was impossible to fix with certainty upon the person who had committed the act, and the man on whom the strongest suspicion fell was acquitted on a verdict of 'not proven.' (Ed. Med. Jour. Dec. 1855, p. 511; and for a report of the trial, see p. 540.)

Cause of death.—In suffocation death takes place from asphyxia; and this occurs with a rapidity proportioned to the degree of impediment existing to the passage of the air. There does not seem to be any reason to attribute death to apoplexy. The congestion of the cerebral vessels may be regarded as a consequence of the disturbance of the functions of the lungs. If the veins of the neck were opened, so as to prevent an accumulation of blood in the vessels of the brain, it is pretty certain that the prevention of respiration would destroy life under the same circumstances, and within the same period of time; therefore we may regard death from suffocation as resulting from pure asphyxia. In treating a case of suffocation, we have simply to allow of the renewal of air by removing, if this be possible, the mechanical obstacle to respiration. The results of experiments on dogs show that, even with a perfect closure of the windpipe, an animal may recover spontaneously after nearly four minutes' deprivation of air; and there is every reason to believe that a human being might recover after the same length of time. If five minutes have elapsed there will be but little hope of recovery. In drowning, the chances of recovery continue only for half the period observed in suffocation; the lungs are injured, and the water by which they are penetrated, forms a physical obstacle to the free admission of air. In hanging and strangulation there is sometimes great violence done to the parts about the neck. In suffocation these accidental obstacles to recovery do not exist: the surgeon has simply to readmit the air into the lungs. All experi-
ments go to show that, even in this form of asphyxia, which is most
favourable for recovery, the complete suspension of respiration for
five minutes is fatal. Hanging and strangulation prove fatal from
asphyxia in the same period of time, and drowning probably within
half this period.

Post-mortem appearances.—There are rarely any considerable marks
of violence externally. When the body has become perfectly cold,
there may be patches of lividity diffused over the skin; but these
are not always present. M. Tardieu has found upon the skin of the
neck, face, and shoulders dotted or punctiform ecchymoses. (‘Ann.
d’Hyg.’ 1866, 2, p. 346.) The lips are livid; the skin of the face
and neck may be pale, or present a dusky-violet tint, with small
patches of ecchymosis. The eyes are congested: there is a mucous
froth about the lips and mouth. The mouth, throat, and parts
about the windpipe should be carefully examined for foreign sub-
stances. Internally the lungs and right cavities of the heart may be
found distended with blood. The state of the lungs and heart is,
however, subject to variation. The lungs are not necessarily found
congested; and sometimes, as in a case referred to me in November
1864, one lung may be found congested and the other not. M.
Tardieu states, from his observations, that the lungs are of a red-
dish colour, sometimes pale, not distended, and presenting occa-
sionally only a slight degree of congestion at the base and pos-
teriorly! A special character which he states he has invariably
noticed in these organs consists in the presence of small ecchymosed
spots or patches beneath the pleura or investing membrane. He
describes these spots as of a dark colour, and varying in size from a
pin’s head to a lentil. In the adult they are of still larger size.
Their number is variable; sometimes five or six may be found, at
others twenty or thirty; and in other cases the surface of the lung
may be so studded with them as to give to it a granite-like
appearance. These spots of ecchymosis are sometimes agglomer-
ated, at other times separated, but their outline is generally dis-
tinct and well-defined on the surface of the lungs. They are most
frequently seen at the root of the lungs, at their bases, and about their
lower margin. They are owing to small effusions of blood from rup-
tured vessels, like true ecchymosis. They may be distinguished so
long as the tissue of the lung remains unchanged. M. Tardieu
states that he has seen these subpleural ecchymoses in the body of an
He admits, however, that they may also be found in the bodies of
children that have not breathed; hence no inference of death from
suffocation should be drawn from this appearance in the lungs of
children, unless they have actually received air. In three instances
he met with this appearance in lungs which sank in water, and had
all the usual characters of these organs in a fœtal state. The children
had been born living, prematurely, and under conditions in which
life by respiration could not be perfectly established: one of them
had made several cries without effectually receiving air into the
lungs (loc. cit.). (See Casper’s ‘Klinische Novellen,’ 1863, p. 471.) This struggle to breathe may have produced the appearance resembling that of suffocation: in new-born children that die from suffocation the thymus-gland has been found in a similar condition.

This dotted appearance of the surface of the lungs in suffocation is not attended with the apoplectic effusions in their substance which are met with in death from strangulation. Emphysema, or escape of air from rupture of the air-cells, is occasionally observed. The more rapidly suffocation has taken place, the more strongly marked is this appearance of ecchymosed spots. On the other hand, when the interruption of breathing has been slow and gradual, the substance of the lungs is more congested with blood, and then these dots or patches are merged in the general violet colour of the surface of the organs. The lining membrane of the windpipe and larger air-tubes is sometimes pale, but commonly dark-coloured when the lungs are congested. In the air-passage there is occasionally a frothy reddish-coloured liquid in small vesicles.

M. Liman disputes the accuracy of the observations of M. Tardieu regarding this appearance described by him as characteristic of death from suffocation. (‘Ann. d’Hyg.’ 1867, 2, 388.) According to Dr. Ogston, the subpleural or punctiform ecchymoses observed by Tardieu were not present in the cases of nine adults who had died from suffocation. (‘Brit. Med. Jour.’ Sept. 1868.) On the other hand, they may be found in cases in which death has taken place from drowning, hanging, and strangulation. Too much reliance must not therefore be placed on their presence or absence. These spots of ecchymosis were found by Dr. Ogston not only on the surface of the lungs, but on the heart, the scalp, the pericranium, the thymus-gland, and other parts. (See ‘Ann. d’Hyg.’ 1868, 1, 104.) That they are frequently absent in death from suffocation is shown by the observations of different medical jurists. (See paper by Ssabinaki, ‘Vierteljahrschrift,’ 1867, 2, 146.) In an elaborate paper published in the same journal, Dr. Lukomsky of Kiev has endeavoured to show, by a variety of experiments, the circumstances under which we may expect to find these ecchymoses in death from suffocation, and the cases in which they are likely to be absent. (Eulenberg, ‘Vierteljahrschrift,’ 1871, 2, 58.)

Dr. David Page, who has experimented on this subject, agrees with the above-named medical jurists in considering that M. Tardieu has been too hasty in making these dotted or subpleural ecchymoses a certain diagnostic sign of death from suffocation. According to him they probably arise from the continued and violent efforts to breathe in the early stage of apnoea. Their occurrence in the lungs of a hanged person would not therefore justify the inference that the person had been first suffocated and afterwards hanged. The same remark applies to drowning. Dr. Page found, on drowning animals, that subpleural ecchymoses were so numerous on the lungs as to give to the organs a granitic aspect. (‘On the Value of certain Signs of Death from Suffocation,’ by Dr. Page, M.D., Edinburgh,
1873.) He has drawn the following conclusions from his experiments:—1. The ecchymoses or patches of extravasated blood found on the surfaces of certain internal organs, and notably of the lungs, are not peculiar to any one mode of death by apnoea, but are common to all. 2. The ecchymoses are not diagnostic of death from suffocation. 3. They probably occur with greater frequency in suffocation owing to the absence of interference with the cerebral circulation, and the opportunity which the means usually employed afford for respiratory struggles.

The heart presents no special appearance indicative of the mode of death, if we except the presence of small spots of ecchymosis found below the investing membrane, like those met with on the lungs. They have been found near the roots or origin of the great vessels, but are not so frequently observed in this organ as in the lungs. The blood is generally dark and fluid; sometimes coagula are met with. The stomach and intestines have been observed to present patches of lividity. Casper has found the kidneys more strongly congested with blood than the liver, spleen, and other organs. The vessels of the brain are sometimes congested, but at other times they do not appear to be more than ordinarily full. Their condition may be affected by the congested state of the lungs, as well as by the slowness or rapidity with which death takes place. Other appearances which have been described are of an accidental nature, and are not connected with death from suffocation.

In a case of alleged murder by suffocation, respecting which I was consulted in December 1857, the following appearances were met with. The body was lying on the bed: the right leg was drawn up towards the body—the right arm was bent, with the hand directed towards the face; the left hand was lying upon the chest. The lips were livid, the tongue protruded and swollen, and there was a bloody fluid issuing from the nostrils. There was no mark of constriction on the neck; the eyes were half open; the body was rigid and still warm. The face and neck were much swollen, and the skin of these parts, as well as of the chest, abdomen, arms, and legs, was covered with dark livid patches. The brain was gorged with venous blood. The heart was soft and flaccid, and its cavities were empty. The mucous membrane as well as the tissues of the air-passages were much congested with dark liquid blood: the blood was everywhere liquid. The stomach contained a small quantity of a dark-coloured liquid, and the greater end was reddened. The spleen was congested. The emptiness of the cavities of the heart was at first considered to be inconsistent with death from asphyxia: but this condition of the heart is occasionally found. It may be stated that in this case the deceased, a female, was greatly exhausted by sickness and purging. On the second day of her illness she was found dead in the state described, and her husband was charged with having suffocated her.

Evidence of death from suffocation.—In medical jurisprudence
there is not, perhaps, an instance in which we have fewer medical data upon which to base an opinion than in a case of alleged death from suffocation. The inspection of the body of a person suffocated, if we except the peculiar condition of the surface of the lungs lately pointed out by M. Tardieu, presents so little that is peculiar, that a medical man, unless his suspicions have been roused by circumstantial evidence, or by the discovery of foreign substances in the air-passages, would probably pass it over as a case of death without any assignable cause—in other words, from natural causes. In examining the body of the woman Campbell, who was suffocated by Burke in Edinburgh, Dr. Christison was unable to come to a conclusion respecting the cause of death until some light had been thrown on the case by collateral evidence. On this occasion a violent death was suspected, because there were marks of violence externally, and the face of the deceased presented some of the characters of strangulation. These conditions, however, are by no means essential to death from suffocation, and when they exist they can only be regarded as purely accidental accompaniments. Appearances similar to those found in the bodies of suffocated persons, if we except the dotted ecchymoses on the lungs, are frequently met with in inspections when death has taken place as a consequence of disease or accident. They can, therefore, furnish no conclusive evidence of the kind of death; they scarcely permit a witness to establish a presumption on the subject, until, by a careful examination of the body, he has ascertained that there is no other cause of death depending on organic disease or on violence. Medical evidence may, however, be serviceable in some instances. Thus, let the general evidence establish that a deceased person has probably been suffocated, the witness may have it in his power to state that the appearances in the body are consistent with this kind of death; that the body is in all respects healthy and sound, and that death was probably sudden—as where, for instance, undigested food is discovered in the stomach. The presence of ecchymoses on the surface of the lungs, may justify an opinion of death by suffocation when no other cause is apparent. In all cases of this description, we must bear in mind that an opinion relative to the supposed cause of death is to be formed from the medical circumstances and from what we have ourselves seen, unless it be otherwise allowed by the Court. From this want of clear evidence a great difference of opinion on the cause of death frequently exists among medical witnesses.

Accidental suffocation is not unfrequent; and there are various conditions under which a person may die suffocated only discoverable after death. 1. Diseases about the tongue, larynx, or throat may have advanced to such an extent as effectually to prevent breathing. 2. The deceased may have fallen, and the mouth become covered with dust, ashes, or other substances; and if helpless, as in the case of an infant or an aged person, or of one who is intoxicated, death may thus easily take place. A child was found dead in a
SUFFOCATION FROM ACCIDENTAL CAUSES.

room, with its face in the ashes under a grate: it had fallen during the absence of the mother, and, from its helpless condition, had speedily become suffocated. Some of the ashes were found in the windpipe. ('Med. Gaz.' vol. 17, p. 642.) For a case in which suffocation was caused by a pea, see the same journal, vol. 29, p. 146. In trials for murder or manslaughter, a medical opinion respecting the accidental suffocation of a drunken person under similar circumstances, is occasionally required. These persons, it must be remembered, are generally as helpless as children: if they fall in a position so that the mouth is covered, they may be so powerless from intoxication as not to be able to escape. 3. A portion of food may have remained fixed in the larynx or throat. Children are sometimes accidentally suffocated by drinking boiling water from a tea-kettle. The parts about the larynx then become swollen from the action of the hot water, and breathing cannot take place. 4. Accidental suffocation is not uncommon among infants, when they sleep with adult persons. A child may be in this way speedily destroyed. Even the close wrapping of a child’s head in a shawl to protect it from cold may effectually kill it, without any convulsive struggles to indicate the danger to which it is exposed (p. 412, post.) Convulsions by no means necessarily attend on death from suffocation.

Those instances of accidental suffocation which depend on disease, or on the impaction of food, are easily known by a careful examination of the parts about the throat: generally speaking, they present no difficulty. In other instances,—when a child or a drunken person is presumed to have been suffocated owing to the position in which he has fallen, evidence as to the position of the body; or even the actual sight of the body, is necessary before forming an opinion. The following questions may here arise;—Was the position such as to be explicable on the supposition of accident? Was it not such a position as might have been given to it by a murderer? Could not the deceased have had strength or presence of mind to escape? Could he have been actually suffocated in the position in which his body was discovered? A little reflection upon the circumstances—for here something more than medical facts will be required—may enable us to give satisfactory answers to these questions.

Some singular cases are on record, in which persons have wilfully destroyed themselves by blocking up the throat mechanically. An instance of this form of suicide is reported in the ‘Edin. Med. and Surg. Jour.’ April 1842. A woman confined in prison forced a hard cotton-plug into the back of her throat. The cavities of the chest and abdomen had been already examined, and a medical certificate given that the deceased had died of apoplexy! The body was sent to one of the anatomical schools, and on re-inspection it was accidentally found that the throat was firmly blocked up with a plug of spindle-cotton.

Homicide by suffocation is not very common, although it is a
SUFFOCATION OF INFANTS. 411

ready means of perpetrating murder. Hitherto the cases which have come before our Courts have been those either of infants, of the aged and infirm, or of persons enfeebled by illness. In regard to the latter, the rigorous administration of the law has succeeded in putting a check to this crime; but with respect to children, it probably yet continues. Death by suffocation is most difficult to detect; and, unless the assailant has employed an unnecessary degree of violence, it is probable that the crime may pass altogether unsuspected. Homicide by suffocation would not be attempted on healthy adult persons, unless they were in a state of intoxication, and thereby rendered defenceless. It is certain that most individuals would have it in their power, unless greatly incapacitated by disease or intoxication, to offer such a degree of resistance as would leave upon their bodies indubitable evidence of murderous violence. Death by suffocation may be considered as presumptive of homicide, unless the facts are clearly referable to accident. Accidental suffocation is, however, so palpable from the position of the body and other circumstances, that when death is clearly traced to this cause, it is not easy to conceive a case in which it would be difficult to distinguish it from one of actual murder. In some instances, the very means that have been adopted to produce suffocation may forbid the supposition of accident, and clearly establish the fact of homicide.

The suffocation of new-born children, by the introduction of substances into the mouth, is not infrequent. The unnecessary force employed generally leaves traces of violence, which may be easily discovered by a careful examination, even should it happen that the substance used for the murderous purpose has been removed.

Dr. Parrol met with the following case. A child at one year, after it had been fed with a bottle, was put to bed at six o'clock and died at midnight with all the signs of dyspnœa. On inspection ten hours after death, the lower lobes of the lungs were found softened, of a greyish colour, and apparently pulpy. Curdled milk was found in the trachea and bronchi. There was no doubt that the milk had been vomited after the child was put to bed, and on account of the horizontal position, a portion of it had been drawn by aspiration into the air-passages and had caused suffocation. ('Lancet,' 1873, 1, p. 669.)

It is necessary to point out a dangerous practice common among ignorant nurses, which, without exciting suspicion on the part of a coroner or medical witness, may be an occasional cause of death in infants. In order to quiet a child, and to enable a nurse to sleep without disturbance, a bag made of wash-leather or rag, containing sugar, is thrust into the child’s mouth. It is thus completely gagged, and the child soon becomes quiet, respiring chiefly through the nostrils. If these by any accident become obstructed, or by the act of aspiration the bag should fall to the back of the throat, death by suffocation must inevitably result, the infant being perfectly helpless! The suspension of breathing may be so gradual that the child may die without crying or convulsions. The removal of the
DEATH FROM SMOOTHERING.

beg from the mouth, as no violence had been used, will remove every
trace of the cause of death; and, in order to exculpate herself, the
guilty person may ascribe death to 'fits.' In one instance, within
my knowledge, an infant was timely saved by the mother having
discovered, while the nurse was sleeping, a mass of wash-leather
projecting from its mouth. The woman awoke, and attempted to
remove and conceal the leather, but she was detected in the act.
The detection of this dangerous practice can only be a matter of
pure accident: hence a fatal case can be rarely the subject of a
coroner's inquest, and even then medical evidence may fail to throw
any light upon the cause of death. In one instance only have I
known it to give rise to a criminal charge—Reg. v. Cox, Warwick
Lent Assizes, 1848). The mother, a pauper female, was tried for
the attempt to suffocate her infant, eleven days old. The child was
discovered by another person with a piece of rag hanging from its
mouth. It was livid in the face, but when the rag was removed it
made a violent gasp, and recovered its breath. There was no malice
on the part of the prisoner, but it was made a strong point in her
favour that instances had occurred in the workhouse, in which
women had with impunity put rags with sugar into the mouths of
infants in order to soothe and keep them quiet! The jury ac-
quitted her. The admitted practice of infantile suffocation in the
Warwick workhouse appears to have passed without reprimand or
even comment, although this plan of soothing infants is just as
likely to be fatal to them as that of encircling their necks with tight
ligatures.

SMOTHERING.

Smothering is a variety of suffocation, and consists in the mere
covering of the mouth and nostrils in any way so as to prevent the
free ingress and egress of air. Like drowning, hanging, or strangu-
ation, it produces death by asphyxia. In new-born infants it is
not an unusual occurrence, sometimes originating in accident, and at
others in criminal design. An infant may be speedily destroyed by
smothering. If the mouth be only lightly covered with clothing, or
slightly compressed, so that respiration is interrupted, as in the act
of carrying a child in the arms, this will suffice to cause death; and,
as it has been already remarked, death may take place without
being preceded by convulsions or other striking symptoms.
Smothering is not often resorted to as a means of perpetrating
murder, except in infants, or in debilitated and infirm adults. In
a case which occurred at Ayr, a woman was charged with the
murder of her child by smothering it in her shawl. She was
travelling in a steamboat; it was a cold stormy day, and she had
wrapped the shawl closely round the head of the child. There could
be no doubt, from the moral circumstances, that she had intended
to kill it; but the defence was that she had merely intended to
protect the child from the cold, and it was suffocated before she
was aware of it. There were no facts to exclude this defence, and
the woman was acquitted. But children may be thus accidentally destroyed through the ignorance of persons who nurse them.

According to the late Mr. Wakley, infants are frequently found dead owing to their being suckled at night while the woman is in bed. The child’s face is pressed on the breast: mother and child fall fast asleep; the head slips beneath the clothes, and the child is then quietly suffocated. There is no mark of pressure or violence on the body. (‘Lancet,’ Jan. 16, 1858, p. 69.) This statement is strongly confirmed by the annual returns of the Registrar-General. In his report of deaths in England and Wales for the year 1871 it is stated that in that year 480 children died from suffocation by bedclothes, and 277 by overlaying. A case, apparently of this kind, was communicated to me by Mr. Nason in Sept. 1880. The child (five days old) died quietly on its mother’s arm while lying in bed. There was much lividity about the head, neck, and back; but there were no marks of violence. The bronchial tubes of the right lung contained bright florid blood. The left lung was gorged with blood, but none had escaped. The heart was firmly contracted, and there was only a small quantity of blood in its right cavities.

According to the returns of the Registrar-General, suffocation in bed from ‘overlaying’ is the most frequent cause of violent death among infants. In ten years (1858–67) the total deaths registered in London from this cause were 3,612, or 361 per annum; and 2,070 in the five years (1863–7), or on an average 414 per annum. Infants are readily smothered by the bed-clothes accidentally covering the mouth and nostrils, and they have not the power to change their position. Dr. Lankester states that he had within a short period held 200 inquests on the bodies of children thus found suffocated in bed. In a return of inquests held in Liverpool in 1864, it appeared that out of 960 inquests there were 143 on infants and children who had been suffocated, chiefly between the Saturday and Monday of each week.

The appearances met with in the bodies of three children who had died under these circumstances are thus described by Mr. Canton (Nov. 1848): Externally: features placid; lips congested; eyes not unduly prominent; conjunctives rather reddened; hands clenched; no patches of ecchymosis found on the skin. Internally: Head—patches of effused blood here and there beneath the pericranium; great congestion of the pia mater, accompanied by numerous effusions of blood, varying in size from a pin’s point to a silver penny in superficial extent; a little clear fluid in the ventricles: some frothy mucus in the windpipe and bronchi, with redness of their lining-membrane. The lungs were much congested and crepitant, whilst beneath the pleure, blood was effused, presenting numerous small bright-red patches and fine points (punctiform ecchymoses). The pericardium contained some serum, and was spotted in its whole extent in the manner described; the vasa vasorum of the heart’s great vessels and thoracic aorta were minutely injected.
The right cavities of the heart in all the cases contained dark liquid blood; the left cavities were nearly empty; the tissue of the organ was free from effused blood. The surface only of the thymus-gland was mottled like the heart.

There is a prevalent notion that congestion of the lungs is an invariable accompaniment of death from suffocation, and where this was not found, it has been hastily assumed that death had taken place from some other cause. Some remarks on this post-mortem appearance have been made in the chapter on drowning; and it is desirable, in reference to future cases, to point out the fallacy involved in the assumption that congestion of the lungs is necessarily present in death from suffocation. Mr. Watson observes that the gorged state of the right side of the heart and lungs is greatest where the act of suffocation (asphyxia) has been slow and gradual, by the access of air to the lungs not having been completely prevented. When, on the other hand, death has taken place quickly or suddenly from this cause, there is little or no unusual congestion of blood in the lungs or heart. (‘On Homicide,’ p. 115.) At page 118 he describes a case of death from suffocation in which the lungs were natural; and in the case of Campbell, for whose murder by suffocation Burke was convicted and executed in 1828-9, Dr. Christison and Mr. Newbigging found the organs within the chest perfectly natural, the lungs remarkably so, and unusually free from infiltration. The blood in the heart and great vessels as well as throughout the body was fluid and black. (‘Ed. Med. and Surg. Jour.’ vol. 31, p. 239.) Again, in the case of Carlo Ferrari, for the murder of whom Bishop and Williams were convicted and executed in London in 1831, the lungs were quite healthy, and not congested; the heart was rather small, contracted, and its four cavities were perfectly empty. (Taylor’s ‘Elements of Medical Jurisprudence,’ 1836, p. 292.) The prisoners in this case confessed that they had destroyed the deceased by suffocation. From these facts it will be perceived that the actual state of the lungs and heart in the bodies of those who have been notoriously murdered by suffocation, is that which has been wrongly pronounced to be inconsistent with this mode of death.

Certain trials which took place some years since clearly proved that persons in a state of intoxication or infirmity had been murdered by smothering, for the sake of the money derived from the sale of the dead bodies! The victims were commonly destroyed by the assailant resting with his whole weight upon the chest, so as to prevent the motion of the ribs, and at the same time forcibly compressing the mouth and nostrils with his hands, to prevent the entrance of air. A case of this kind was referred to me for examination in 1831. (Rex v. Elizabeth Ross, Old Bailey Sessions, Dec. 1831.) It was remarkable for the fact that the prisoner was convicted of homicidal suffocation, although the body of the deceased was never discovered. (‘Med. Gaz.’ vol. 37, p. 461.) In Reg. v. Norman, C.C.C., July 1871, the prisoner, a girl, aged 15,
was indicted for murder by suffocation. She was a nursery-maid; and had had the care of three children, the deceased, one of these children, being fifteen months old. There were three other charges of murder by suffocation against her, and one of an attempt to murder. There were suspicious marks of violence on the lower lip of deceased, as if produced by pressure of the mouth against some hard substance. The medical witnesses attributed death to suffocation by pressure on the mouth, but admitted that the marks might have been accidental. On this admission the prisoner was acquitted. On the trial for the attempt to murder, the girl was convicted, and the evidence given in this case threw a light upon the mode in which she might have perpetrated the four murders with which she was charged. A little boy, six, 10, was heard to give an alarm while in bed; it was like a stifled cry. The prisoner was caught in the act of getting off the bed. The boy was in great agitation, and said that the prisoner had tried to strangle him while he was sleeping. He was awaké by feeling a hand on his mouth and throat. He tried to make a noise, upon which the prisoner, who was lying upon him, gave him a sweet, and told him not to cry. His lips and throat were very sore. The prisoner was convicted and sentenced to ten years' penal servitude. There can be no doubt that the four murders were all perpetrated in a similar manner, by burking—the children being helpless, and unable to give an alarm. The conviction of the prisoner on the attempt, simply arose from this child being older and better able to resist. The facts show that medical science in many of these cases is powerless to aid the law. It is not always possible to distinguish murder by smothering or suffocation from accident.

In reference to the case of Campbell, Dr. Christison observes that the conviction in the public mind that a well-informed medical man should always be able to detect death by suffocation simply by an inspection of the body and without a knowledge of collateral circumstances is erroneous, and may have the pernicious tendency of throwing inspectors off their guard, by leading them to expect strongly-marked appearances in every case of death from suffocation. That such appearances are very far from being always present ought to be distinctly understood by every medical man who is required to inspect a body and give an opinion of the cause of death. (Op. cit. p. 243.) At the same time, in the absence of marked appearances to indicate violent death, due caution should be used by a medical witness in expressing an opinion. At the trial of the prisoner Burke, Dr. Christison restricted his opinion by stating that death by violence was, from the medical circumstances alone, very probable,—a degree of caution which on similar occasions it will be desirable for a medical witness to imitate. Under the rule of English jurisprudence, by which accused persons are not allowed to be interrogated, it is not possible to carry medical evidence further than this. There is nothing in the act of suffocation, as there is in wounds, poisoning, hanging, or strangulation, by
which the hand of a criminal can be clearly and unequivocally traced.

As an accident, smothering may be conceived to take place when a person falls, in a state of intoxication and debility, so that his mouth is in any way covered, or the access of air to the mouth or nostrils is interrupted. On an inspection of the body the appearances elsewhere described will be met with in the lungs and heart. If the person has been able to struggle, it is probable that slight marks of violence in the shape of scratches or bruises may be found about the mouth and nostrils, with bruises or marks of pressure on the chest, legs, or arms, and a bloody mucous froth as well as foreign substances in the air-passages. The marks of violence may be slight, or even entirely absent. In a case of suspected murder a medical jurist should look for the special indications of suffocation in the lungs, the circumstances under which the body or bodies are found, the evidence of sudden death in the presence of food in the stomach, and lastly the absence of any other cause to account for death. All these sources of evidence may fail; and as the means by which homicidal smothering was accomplished are not likely to be found with the body, a medical opinion on the case may become little more than a conjecture. Still this may suffice when the evidence from extraneous circumstances is strong.

CHAPTER 41.

Mode of action of gaseous poisons.—In following common language, a medical jurist is compelled to apply the term suffocation to another variety of death—viz., to that of poisoning by gases. Physiological accuracy must here be sacrificed, in order that we may make ourselves generally intelligible. Thus, if a person die from the effects of carionic acid, of confined air, of sulphuretted hydrogen, or of other noxious gases, he is commonly said to die suffocated. Strictly speaking, he dies poisoned—as much so as if he had taken oxalic or hydrocyanic acid. The only differences are:—1. That the poison, instead of being liquid or solid, is gaseous; and 2. Instead of being applied to the mucous membrane of the stomach, it affects that of the air-cells of the lungs. In the action of arsenuretted hydrogen we have a clear instance of poisoning by a gas, and in the respiration of the narcotic vapours of chloroform and ether we have also illustrations of this form of
RAPIDITY OF ACTION OF GASES AND VAPOURS.

poisoning. Owing to the fact that the poisonous material is in a finely-divided state, and that in the air-cells of the lungs it meets at once with a large absorbing surface and instantly enters the blood, the effects are more rapid and more strongly marked. It has been observed, too, that some (and probably all) of these aerial poisons have an accumulative action—i.e. their effects continue to increase for a short period, even after a person has ceased to breathe them.

The remarks made respecting the action of gases on the lungs apply equally to the effects produced by the vapours of alcohol, ether, chloroform, and bichloride of methylene. The specific action of some of these vapours has been elsewhere noticed (ante, p. 165). A person dies not only from the privation of oxygen, but from the absorption of the poisonous vapour into the blood through the pulmonary membrane. Although often described as cases of suffocation, they are not to be regarded as such. Hydrogen and nitrogen have been considered to be the only two gases which operate as negative agents, i.e. by simply excluding oxygen; but hydrogen breathed with oxygen in atmospheric proportions has been found to produce narcotism.

Dr. Norris, of Birmingham, has endeavoured to determine experimentally the relative periods of time within which some of these vapours and gases may prove fatal. He employed a chamber filled with common air in which an animal could live without inconvenience for a period of three hours. When pure hydrogen was substituted for common air, the animal lived for nine minutes. This was taken to represent death from the privation of air or oxygen, and assuming this as a standard, the following table shows the time in which death occurred with different gases and vapours:

<table>
<thead>
<tr>
<th></th>
<th>Min. Sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure hydrogen gas</td>
<td>9 0</td>
</tr>
<tr>
<td>Common air saturated with ether</td>
<td>5 0</td>
</tr>
<tr>
<td>" with chloroform</td>
<td>1 30</td>
</tr>
<tr>
<td>" with bichloride of methylene</td>
<td>0 20</td>
</tr>
<tr>
<td>Pure nitrous oxide gas</td>
<td>0 25</td>
</tr>
<tr>
<td>Oxygen gas saturated with ether</td>
<td>8 30</td>
</tr>
<tr>
<td>" with chloroform</td>
<td>0 25</td>
</tr>
<tr>
<td>" with bichloride of methylene</td>
<td>1 45</td>
</tr>
<tr>
<td>Pure carbonic acid gas</td>
<td>0 8</td>
</tr>
</tbody>
</table>

These experiments were performed on rats. (See 'Brit. Med. Jour.' Oct. 4, 1873, p. 401.) In the experiments on dogs performed by the Committee of the Med.-Chir. Society it was found that under complete privation of air, the heart's action continued for a period of eight minutes and twenty seconds (ante, p. 401). This nearly corresponds to the time at which life ceases in pure hydrogen. These results show that the gases and vapours are directly poisonous agents, and that they do not produce their effects merely by excluding oxygen or air.
The cause of death mistaken.—The greater number of the poisonous gases are chiefly complex products of art, and are never likely to be met with in the atmosphere so abundantly as to produce injurious consequences; hence fatal accidents arising from their inhalation, most commonly occur under circumstances which can leave no doubt respecting the real cause of death. The peculiar effects of all of these, it will not be necessary to describe in this place; but there are two a knowledge of the properties and operation of which may, on certain occasions, be required of a medical jurist: these are the carbonic acid and sulphuretted hydrogen gases. Agents of this description can rarely be employed with any certainty as instruments of murder; and if they were so employed, the fact could be established only by circumstantial evidence. One alleged instance of murder by carbonic acid is, however, reported by M. Devergie. ('Ann. d’Hyg.' 1837, vol. 1, p. 201.) Death, when arising from the breathing of any of the gases, is generally attributable to suicide or accident. In France it is by no means uncommon for a person to commit self-destruction by sleeping in a closed apartment, in which charcoal has been suffered to burn; while in England accidental deaths are sometimes heard of, where coal or coke has been employed as fuel in small and ill-ventilated rooms. On such occasions a person may be found dead without any apparent cause to the casual observer. The face may appear pale or livid, and the skin may be covered with patches of lividity. The discovery of a body under these circumstances will commonly be sufficient in the eyes of the vulgar, to create a suspicion of murder; and some person with whom the deceased may have been at that period on bad terms, will perhaps be pointed out as the murderer. In such a case, it is obvious that the establishment of the innocence of the accused will depend entirely on the discrimination and judgment of a medical practitioner. An instance, illustrative of the consequences of this popular prejudice, occurred in London in 1823. Six persons were lodging in the same apartment, where they were all in the habit of sleeping. One morning an alarm was given by one of them, a woman, who stated that on rising she found her companions dead. Four were discovered to be really dead, but the fifth a married man, whose wife was one of the victims, was recovering. He was known to have been on intimate terms with the woman who gave the alarm, and it was immediately supposed that these two had conspired to destroy the whole party, in order to get rid of the wife. The woman who was accused of the crime was imprisoned, and an account of the supposed barbarous murder was soon printed and circulated in the metropolis. Many articles of food about the house were analysed in order to discover whether they contained poison, when all the circumstances were explained by the man stating that he had placed a pan of burning coals between the two beds before going to sleep, and that the doors and windows of the apartment were kept closed. ('Christison,' p. 583.) A set of cases of a similar kind, in which
ACTION OF CARBONIC ACID.

there was at first a strong suspicion of poisoning, has been reported in the 'Med. Gaz.' by Mr. Smith, of Liverpool (vol. 36, p. 567; see also 'Ann. d’H'yg.' 1843, vol. 2, p. 56.)

CARBONIC ACID.

This gas is freely liberated in respiration, combustion, and fermentation; it is also produced in the calcination of chalk or limestone, and is sometimes diffused through the shafts and galleries of coal-mines, where it is commonly called 'choke-damp.' Carbonic acid gas is likewise met with in wells, cellars, and other excavations in the earth. In these cases it is generally found most abundantly on the soil, or at the lower part of the well; and it appears to proceed from the decomposition of animal and vegetable matters confined in such situations. The slow evaporation of water strongly charged with the gas, while trickling over the sides of these excavations, may likewise assist in contaminating the air. Damp sawdust straw or decayed leaves slowly absorb oxygen from a confined atmosphere, and set free carbonic acid.

Sir Humphry Davy believed that carbonic acid, in a perfectly pure state, did not pass into the trachea when an attempt was made to breathe it; the glottis seemed to close spasmodically at the moment that the gas came in contact with it. On diluting the carbonic acid with about twice its volume of air, he found that he could breathe it; but it soon produced symptoms of giddiness and somnolency. In a diluted state there is no doubt that it penetrates into the lungs, and that it is absorbed and circulated with the blood. In estimating the effects of this gas when mixed with air, a distinction must be made. The gas may either be simply added to the air, or it may be produced at the expense of the oxygen in the enclosed space or apartment. In the latter case, it must be remembered that every volume of carbonic acid thus produced, represents an equal volume of oxygen removed. Such an atmosphere is, therefore, more destructive than another in which the air and gas are in simple admixture. If we assume that in each case the noxious atmosphere contains 10 per cent. of carbonic acid, then in one instance there will be 7 per cent. more of oxygen and 7 per cent. less of nitrogen than in the other, since the production of 10 parts of carbonic acid as a result of combustion implies the loss of 10 parts of oxygen. This difference in the proportions may not be, practically speaking, correct, because there is no apartment sufficiently closed to prevent air rushing in from the exterior while combustion is going on within it; but, nevertheless, the above statement may be taken as an approximation to the truth.

The statements made by chemists and physiologists, respecting the proportion of carbonic acid in air required to produce noxious or fatal effects on human beings, are very conflicting. Small animals, such as birds and mice, have been generally made the subjects of experiment, but the results thus obtained, cannot be satis-

\[\text{\textcopyright 1882} \]
factorily applied to show the relative action of carbonic acid on man. Berzelius stated that a proportion of 5 per cent. in air was not injurious, and that such a mixture might be usefully employed in the treatment of consumption. (‘Traité de Chimie,’ t. 2, p. 83.) Allen and Pepys inferred, from their experiments on guinea-pigs, that 10 per cent. of the gas would prove fatal to man. In the more recent experiments of Bernard this inference is corroborated by the fact that a bird died in two-and-a-half hours in an atmosphere consisting (in 100 parts) of 9·5 of carbonic acid, 28 of oxygen, and 62·5 of nitrogen. (‘Les Substances Toxiques,’ 1857, p. 135.) In this case the proportion was less than 10 per cent., while the proportion of oxygen was 7 per cent. more than that existing in the atmosphere. On the other hand, Demarquay says that one part of carbonic acid (25 per cent.) and three parts of air produce in man but slight discomfort after being breathed for some time! According to this writer, most of the accidents caused by charcoal-vapour, confined air, and gases in fermenting vats, are wrongly ascribed to carbonic acid, and should be attributed to carbonic oxide, sulphuretted hydrogen, alcoholic vapours, or other gases not yet understood. (‘Chem. News,’ Aug. 4, 1865.) Those who have employed mixtures of carbonic acid and air for anaesthetic purposes have stated that air containing 20 per cent. of carbonic acid may be breathed without any injurious effects. Such a mixture would be composed (in 100 parts) of 20 of carbonic acid, 16 of oxygen, and 64 of nitrogen. In this mixture, if carefully made, oxy-combustion cannot be maintained; hence, if there was no error in the above proportions, it follows that a man can breathe with safety and live in air in which a candle will not burn. Bernard’s carefully performed experiments are adverse to these statements. He found that animals died in atmospheres in which the proportion of carbonic acid varied from 12 to 18 per cent., while the amount of oxygen varied from 5 to 30 per cent. (‘Les Substances Toxiques,’ p. 140.) When it is asserted that a person can thus breathe with impunity proportions which are fatal to life, it would be desirable to know how such mixtures were made, and whether proper care had been taken to prevent the breathing of air by the mouth and nostrils, while the supposed poisonous mixture was being inhaled. Such statements, founded on imperfect experiments, are highly mischievous, for they may lead to death in cases in which the mixture is accurately made, and administered to a person whose mouth and nostrils are closed against the ordinary atmosphere. If air can be breathed simultaneously, there is an end of the alleged poisonous proportion.

Symptoms.—The symptoms of poisoning by carbonic acid vary according to the proportion contained in the air which is breathed. In a concentrated state there is sudden insensibility, followed by death, unless the person is immediately removed into pure air. When the air is gradually poisoned so as to acquire its lowest poisonous proportion, insensibility comes on more slowly; and as in ordinary
narcotic poisoning it is preceded by giddiness, somnolency and loss of muscular power. When the gas is in a fatal proportion, the symptoms commonly observed are as follows:—A sensation of great weight in the head, a sense of pressure in the temples, a singing in the ears, with a pungent sensation in the nose; a strong tendency to sleep, accompanied by giddiness, and so great a loss of muscular power that, if the person be at the time in an erect posture, he instantly falls to the ground as if struck. The breathing, which is observed to be at first difficult and stertorous (snoring), becomes suspended. The action of the heart, which on the first accession of the symptoms is very violent, soon ceases; sensibility is lost, and the person now falls into a profound coma, or state of apparent death. The warmth of the body still continues: the limbs are relaxed and flexible, but they have been observed in some instances to become rigid, or even occasionally convulsed. The countenance is livid or of a leaden colour, especially about the eyelids and lips, but on some occasions it has been pale and placid. The access of these symptoms is stated to have been sometimes accompanied by a pleasing sensation of delirium, while at others the most acute pains have been suffered. In some instances there appears to have been irritability of the stomach, for the affected person has vomited the contents of his stomach in a semi-digested state. Those who have been resuscitated have felt pain in the head, or pain and soreness over the body for several days; while, in a few severe cases, paralysis of the muscles of the face has supervened on recovery.

The following singular case of death from carbonic acid was communicated to me by Mr. Procter, of York. The deceased, an old woman, occupied a room, under one in which there was a quantity of nitric acid kept in store. Owing to some accident a carboy was broken; the acid ran through the ceiling into the room below, acting upon and corroding the bed-coverings of the deceased's bed. As the room was quite filled with the nitric acid fumes, a chemist was consulted, and he advised that whiting should be freely used for the purpose of neutralizing the acid. This advice was followed, and several persons, who were in the room witnessing the operation, felt oppressed and were obliged to leave it: they were observed to stagger as if intoxicated, on reaching the street. The room was then completely closed, and the whiting allowed to remain in contact with the acid. The deceased had suffered from diarrhoea for a few days previously, and was obliged to resort to the night-chair, which was in the room in which the accident had occurred. As she remained absent half an hour, some persons entered the apartment, and found her in the chair unable to move. She was taken into another room, and on a medical man being called to her, he found her sleepy and comatose and her mind confused: there was great difficulty of breathing,—extreme lividity of the face and lips; the arms and legs were cold, and the pulse was full. In spite of efforts made to save her, she died in about an hour from the time at which she had entered the room. Those who found her in the
CARBONIC ACID. POST-MORTEM APPEARANCES.

apartment do not appear to have suffered. This was a case of slow poisoning by carbonic acid, for no carbonic oxide could have been evolved from the action of the acid on chalk. Age and debility from previous illness may account for the unusual circumstances that the deceased did not recover on being removed to a pure atmosphere.

Post-mortem appearances.—In some instances the face has been found livid and swollen and the features distorted, but more generally it has been pale and placid, as if the person had died without a struggle in the position in which his body was found. The skin is sometimes livid, or presents patches of lividity, and the limbs are quite flaccid. The pupils have been found dilated. Internally, the venous system is filled with liquid blood of a dark colour. In death from carbonic acid as a result of combustion, the blood has sometimes had a light-red colour. The vessels of the lungs and brain are observed to be especially in a state of congestion. The tongue appears swollen, and sometimes the mucous membrane of the intestinal canal presents dark ecchymosed patches. The following appearances were met with thirty hours after death in the bodies of two adults, male and female, who died from the accidental introduction of carbonic acid into their bedroom from burning ashes. Externally there was nothing unnatural, excepting a few slight discolorations on the back of the man; internally there was congestion of the membranes and great vessels of the brain. Each lateral ventricle contained about half-an-ounce of clear serum: the lungs were gorged with dark blood; and the lining-membrane of the air-tubes (bronchi) was slightly reddened. The left sides of the heart were nearly empty: the right contained a quantity of dark half-coagulated blood. The stomachs were healthy. The bodies were found on the floor of the bedroom in easy positions. The deceased persons had had the power to get out of bed, but were unable to escape from the chamber. It will be perceived from this description that there is nothing very characteristic in the appearances, and thus it is always easy to ascribe death to apoplexy or some other cause; but it should be remembered that carbonic acid itself is a narcotic poison, inducing cerebral congestion and apoplexy.

Analysis.—Sometimes a medical jurist may be required to state, for the purposes of justice, the nature of the gaseous mixture in which a person may have died. There will be no difficulty in determining whether carbonic acid is or is not the deleterious agent in such a mixture. When it exists in a confined atmosphere its presence may be identified, if previously collected in a proper vessel, by the following characters:—1. It extinguishes a taper if the proportion be above 12 or 15 per cent. 2. Lime-water, or a solution of subacetate of lead, is instantly precipitated white when poured into a jar of the gas; and the precipitate thus formed may be collected by filtration, and proved to possess the well-known properties of carbonate of lime or lead. Air containing only 1 per cent. of
carbonic acid affects lime-water: if it amounts to 2 per cent, a few cubic inches will suffice to show its presence by the lime-water test. The proportion in which carbonic acid exists in a mixture may be determined by introducing a measured quantity, in a graduated tube over mercury, a strong solution of potash. Absorption will take place after a certain time, and the degree of absorption will indicate the proportion of carbonic acid present. When this gas exists in a confined spot as in a well or cellar, it may be got rid of by placing within the stratum, a pan containing the hydrate of lime loosely mixed with water; by exciting combustion at the mouth of the pit; or, what is better when available, by a jet of high-pressure steam. Lives are often successively lost on these occasions, in consequence of one person descending after another, in the foolish expectation of at least being able to attach a rope to the body of his companion. The moment that the mouth comes within the level of the invisible stratum of gas, muscular power is lost, and the person commonly sinks lifeless. Carbonic acid may be collected for the purpose of testing, by lowering a bottle filled with fine sand, by means of a string attached to the neck, and guiding the bottle by another string attached to its base. When the bottle is within the stratum, it should be turned with its mouth downwards; and when the sand has fallen out, it may be rapidly raised, with its mouth upwards, by pulling the string attached to the neck. The bottle should be immediately corked and the contents examined.

Combustion in mixtures containing carbonic acid.—In reference to suffocation by carbonic acid, there is one circumstance which requires attention. It is a matter of popular belief—and, in fact, it is generally asserted by writers on asphyxia—that the burning of a candle in a suspected mixture of carbonic acid and air, is a satisfactory proof that it may be breathed with safety. The results of some experiments on this subject have led me to the conclusion that a candle will burn in air which is combined with even 10 or 12 per cent. of its volume of carbonic acid gas; and although such mixtures might not prove immediately fatal to man, yet they would soon give rise to giddiness, insensibility, and ultimately death, in those who, after having been once immersed in them, did not hasten to quit the spot. In air containing a smaller proportion than this (5 or 6 per cent.), a candle will readily burn, but it is probable that such a mixture could not be long respired without causing serious symptoms; hence the burning of a candle can be no criterion of safety against the effect of carbonic acid. It is true that it would not be safe to venture into a gaseous mixture in which a candle is extinguished; but the converse of this proposition is not true—namely, that a mixture in which a candle burns, may be always breathed with safety. It has been observed on several occasions that the combustion of charcoal has been maintained in a room in which persons have been found in a state of insensibility from breathing the vapours.

Diffusion of carbonic acid.—Of late years some important medico-legal questions have arisen, relative to the diffusion of this gas in
air, when produced by combustion. It has been supposed that, owing to its great density (1·52), it would collect on the floor of an apartment, would gradually rise upwards and suffocate persons at different times, according to the level on which they might happen to be placed. Questions on this subject have been variously answered, and a great difference of opinion has arisen among witnesses. There are two important points on which a correct answer to this inquiry must be based:—1st. The law of the diffusion of gases; and 2ndly. The effect of heat in greatly diminishing the specific gravity of a gas naturally heavier than air. There is no doubt that in a narrow or confined vessel, exposed to air, carbonic acid is slow in escaping;—nevertheless it mixes with air, and passes off rapidly in proportion to the surface exposed. In the course of an hour or two, in spite of its great specific gravity, none will be contained within the vessel. The well-known Grotta del Cane at Pozzuoli, near Naples, has been referred to by those who hold that carbonic acid always tends to remain on the lowest level; but it has been forgotten that, in this and similar excavations, carbonic acid is continually issuing from crevices in the soil, so that that which is lost by diffusion is continually replaced; hence the illustration proves nothing. It may suffice to state, that air and carbonic acid mix readily on contact in all proportions, although they enter into no chemical union. Thus then, at common temperatures, carbonic acid has no tendency to remain on the floor or soil, when there is a free access of air or contact with other gases. The heat of combustion diminishes the specific gravity of the gas, and the carbonic acid therefore ascends with the heated current of air, and diffuses itself in the upper part of an apartment, when there are no means of carrying it off. This is a fact demonstrable by many simple experiments.

Charcoal-vapour. Carbonic Oxide.

The vapour extricated during the combustion of charcoal is not pure carbonic acid, but a mixture of gases. It operates fatally when breathed, partly in consequence of the carbonic acid contained in it, and partly from the presence of a variable proportion of carbonic oxide. The proportions of these gases, however, are subject to variation, according to whether the combustion is vivid or not. When the charcoal was burning vividly, the quantity of carbonic acid was found by Orfila to be less than when it was either nearly extinguished or, beginning to burn. In the former case the carbonic acid was in the proportion of about 11 per cent. by volume—in the latter the proportion amounted to about 14 per cent. Leblanc found that charcoal burning in the open air produced about ½ per cent. of carbonic oxide. There is no doubt that a low or imperfect combustion is more favourable to the production of this gas, and it is considered to operate more powerfully on the body than carbonic acid. According to Leblanc, a bird was killed instantly by breathing air.
containing 4 or 5 per cent. of carbonic oxide; only 1 per cent. sufficed to cause death in two minutes. ('Ann. d’Hyg.' 1843, vol. 2, p. 54.) Charcoal-vapour may be regarded as a mixture of carbonic acid, carbonic oxide, aqueous vapour, and air partially deoxidised. There is also associated with it, at a low temperature, a small quantity of carburetted hydrogen. This does not appear to take any part in the fatal effects produced by the vapour: these are owing to the action of carbonic acid and carbonic oxide, and according to Bernard a mixture of the two is more destructive than either gas separately. ('Les Substances Toxiques,' p. 212.) M. Leblanc endeavoured to determine the proportion of the gases in charcoal-vapour when this was in such a condition as to prove fatal to animal life. The vapour was conducted from some fully ignited fuel into an enclosed space in which there was a middlesized dog whose condition could be watched. In ten minutes the animal fell exhausted, and in twenty minutes it died, after some hard breathing. A candle burnt with its usual brightness in the closed room, and it was only ten minutes after the death of the dog, that the flame of the candle, from becoming paler and paler, was extinguished. The air of the chamber was at this time collected and analysed: it contained, in 100 parts—carbonic acid, 4.61; carbonic oxide, 0.54; carburetted hydrogen, 0.04; oxygen, 19.19; and nitrogen, 75.62. It would thus appear that less than 5 per cent. of carbonic acid is fatal to life when so little as 4 per cent. of carbonic oxide is mixed with it. (Bernard, op. cit. p. 159.) The burning of a candle under the circumstances will also show that oxy-combustion may be maintained in a mixture by which an animal is killed, and therefore that combustion can furnish no criterion of safety in apartments in which charcoal has been burnt.

Symptoms and appearances after death.—The following case, illustrating the effects of charcoal-vapour, occurred to Mr. Collambell. ('Med. Gaz.' vol. 27, p. 693.) In January 1841 a man was engaged to clean the windows of three small rooms on the basement-floor of a house. The first room had a door opening into a court-yard; the others merely communicated with each other by a central door, and there was no fire-place in any one of them. A brazier of burning charcoal had been placed in the outer room for the purpose of drying it, but it appeared that the deceased had shut the outer door, and had removed the brazier into the inner room of the three, leaving the communicating doors open. In two hours the man was found quite dead, lying on the floor of the middle room. The countenance was pale, as well as the whole of the skin: the eyes were bright and staring, the pupils widely dilated, the lips bloodless, the jaws firmly fixed, the tongue protruding; and the face and the limbs were cold. Some frothy mucus had escaped from the mouth. The person who discovered the deceased, found the ashes in the brazier still burning, and he experienced great oppression in breathing. An inquest was held, but without an inspection of the body, and a verdict of 'accidental death' returned. The body was afterwards privately inspected
by Mr. Collambell. On opening the head the vessels on the surface of the brain were found much distended with dark liquid blood; the pia mater was bedewed with serum. The brain was of unusually firm consistency, and numerous bloody points appeared on making a section of it. The lateral ventricles were distended with about an ounce and a-half of pale serum, and the vessels of the plexus choroides were much congested. The cerebellum was firm, and presented on section numerous bloody points. About two ounces of serum, tinged with blood, were collected from the base of the skull. The lungs had a slate colour. On the left side of the chest there were eight ounces of serum tinged with blood, and nearly an equal quantity on the right side. On cutting into the organs, a large quantity of serous fluid mixed with blood, escaped. The bronchial tubes were filled with a frothy fluid tinged with blood. The pericardium contained an ounce of pale serum; the heart was enlarged,—its cavities contained no blood: the liver and kidneys were, however, much gorged. There was no doubt that the cause of death was the inhalation of charcoal-vapour; and it is probable that the man died from respiring but a comparatively small proportion. The capacity of the chambers must have nearly reached two thousand cubic feet; the deceased had been there only two hours, and when the person who discovered him entered the rooms, the air was not so vitiated but that he could breathe, although with some oppression. The fuel was then in a state of combustion.

In a case of death from charcoal-vapour, which was referred to me for examination in 1851, there was a considerable effusion of blood in the submucous tissue of the stomach. This appearance led to a strong suspicion of irritant poisoning. A full investigation of the circumstances, however, showed that the suspicion was unfounded. The vapour had descended through a flue communicating with the bedroom in which the deceased slept with her husband: it destroyed the wife, and nearly killed the husband. A stove with burning charcoal had been placed in the room above that in which the couple slept, and an iron pipe conveyed the products of combustion into a flue, whence they descended into the bedroom and caused the fatal accident. It is sometimes difficult to account for the mode by which these gaseous mixtures find their way into an apartment. In the above-mentioned case we had great difficulty in procuring correct information. There was no fire in the bedroom, or any source of combustion, and this at first strengthened the suspicion that the husband must have poisoned the wife at their supper on the previous night. M. Devergie relates a somewhat similar case, in which the wife was found dead in bed, while the husband, lying by her side, was in a state of unconsciousness, from which he did not recover until the next day. In this case there was no stove or fire, or any source of combustion in the room. The noxious gases must have leaked into the room through fissures in a chimney adjoining it. (‘Ann. d’Hýg.’ 1871, 2, 441.) Dr. Parker met with two cases of suffocation by carbonic acid. A mother and daughter
went to bed. In the morning, the daughter was found on her face dead—the face livid, and there had been copious bleeding from the nose. The mother was insensible, and recovered only after many hours under treatment. The cause of the accident was traced to an imperfect joint in a furnace-flue, which passed through the bedroom to a chimney. This adjoined their bed, and the leakage took place directly upon them. The door was shut, and the smell, perceived at first, was supposed to come in from the outside. ('Med. Gaz.' vol. 47, p. 412.)

In one fatal case there was copious bleeding from the nose. ('Med. Gaz.' vol. 47, p. 412.) In a case which occurred to M. Guérard the liver and spleen were found gorged with a dark liquid blood; the heart was collapsed and its cavities were empty, but liquid and dark-coloured blood flowed from the large vessels. The windpipe and bronchi had a red colour, and were filled with frothy mucus. The membranes of the brain were congested, and the sinuses gorged with fluid blood. The face was pale, the eyelids were closed, and the pupils natural. There were livid patches over the body. ('Ann. d'Hyg.' 1843, vol. 2, p. 57.)

It often excites surprise on these occasions that no exertion is made to escape, when it would apparently require but slight efforts on the part of the person affected. The action of this vapour is very insidious: one of its first effects is to create an utter prostration of strength, so that even on a person awake and active, the gas may speedily produce a perfect inability to move or to call for assistance. For a case illustrative of the dangerous effects of the diluted vapour, see 'Ed. Med. and Surg. Journ.' vol. 1, p. 541. In this instance a charcoal brazier was left, only for a short time, in the cell of a prison. It was removed, and the prisoners went to sleep. They experienced no particular effects at first, but after some hours two were found dead. Thus, then, an atmosphere which can be breathed for a short time with impunity may ultimately destroy life.

M. Devergie has shown that the inhaled combustion of wood may lead to the evolution of a noxious vapour (carbonic oxide), and give rise to dangerous consequences. ('Ann. d'Hyg.' 1835, vol. 1, p. 442.) His remarks have been recently confirmed by two cases published by MM. Bayard and Tardieu. A man and his wife were found dead in bed. There was a smoky vapour in the apartment, but no fire had been lighted in the grate, and the chimney was blocked up. The planks of the floor were widely separated, and there was a large hole in the boards at the foot of the bed communicating with the apartment below. It was found, on examination, that some joists connected with the flue of an iron plate, which had been heated for making confectionery the previous day, were in a smouldering state; that the vapour had entered the bedroom of the deceased through the crevices in the floor, and not finding a vent by the chimney, had led to these fatal results. It is remarkable that the source of combustion was nearly nine yards distant, and one person who slept nearer to the flue of the iron plate, en-
tirely escaped. In the body of the husband the skin was of a reddish
tint, the blood liquid, the cavities of the heart empty, the lungs
gorged, and there were no subpleural ecchymoses. In the body of
the wife there was less redness of the skin, the blood was coagulated
in the cavities of the heart, principally on the right side extending
to the vessels; less engorgement of the lungs, and a great number
of subpleural ecchymoses, indicating that strong efforts had been
made to respire. There was at first a rumour of poisoning, which
was only removed by a close examination of the locality. (‘Ann.
d’Hyg.’ Oct. 1845, p. 369.)

Dr. Schauenburg has published the cases of two children who
were destroyed in an hour by the vapour of burning wood. The
mother had accidentally shut them up in a room into which the
vapour leaked from the wood employed to heat an oven. In each
case the brain and its membranes were found highly congested,
while the lungs were collapsed, and contained no more blood than
is usually found in them. (Eulenberg, ‘Vierteljahra.’ 1872, 1, 40.)

It may be observed in reference to this vapour, that when pro-
duced from burning charcoal or wood—in spite of the great density
of carbonic acid, the noxious gas is diffused rapidly throughout the
whole of an apartment. This is owing partly to the effect of the
heated current of air, and partly to the law of the diffusion of
gases, whereby heavy and light gases are soon uniformly intermixed.

Vapour of Gunpowder.—The vapour of exploded gunpowder is
chiefly a mixture of nitrogen with carbonic acid and sulphide of
potassium. When fired in a close place where there is no ventilation,
gunpowder expels the air containing oxygen and substitutes
for it a mixture of gases not fitted to support life.

The effects of such a mixture when breathed may be gathered
from the following cases communicated to me in August 1873, by
Dr. F. P. Smith, of Shepton Mallet. A boy, 14, went down
a well immediately after a considerable charge of powder had been
exploded in it. He dropped suddenly to the bottom of the well,
and a man who followed him also dropped apparently lifeless. They
were both drawn up as soon as possible. The man appeared
stupified but speedily recovered. The boy was quite unconscious,
was blue about the lips, almost pulseless, had epileptic convulsions,
and appeared to be dying. He vomited much biliary and mucous
fluid, and became worse after removal from the open air to the
hospital ward. His breathing was loud, but air entered the lungs
freely. The pupils were natural. He did not recover until after
thirty-six hours. Artificial respiration was used and warm water
baths were applied to the feet.

Carbonic Oxide.

The noxious effects of the vapour of burning charcoal are con-
sidered to be partly due to the presence of carbonic oxide. The
action of this gas upon animal life has been made a subject of
experiment by Bernard (‘Leçons sur les Substances Toxiques,’
An atmosphere containing from 5 to 6 per cent. of it will destroy life. The blood is brightened in colour by this gas, while it is darkened by carbonic acid. Bernard has observed that this bright colour has been retained for three weeks; and he considers the mode of action of this gaseous poison to be, that it prevents the arterial blood of the body from becoming venous, while carbonic acid operates by preventing the venous blood from becoming arterial. (Op. cit. pp. 182, 195.)

This condition of the blood as a result of the action of carbonic oxide may occasion some doubt of the cause of death, in cases of suffocation by fire. In April 1858 an inquiry took place into the cause of death of fourteen persons, owing to a fire in a house in Bloomsbury. The medical witness, on examining the bodies, found a redness of the muscles and a redness of the blood. He therefore thought that death was not caused by suffocation, but from the inhalation of arsenical vapours, owing to some minerals containing arsenic having been partially consumed during the fire. But there was a total want of evidence to show that the vapours of arsenic, when breathed, would cause death so speedily as the noxious gases evolved by fire, or that they would redden the blood and muscles. On the other hand, the respiration of carbonic oxide would explain these facts. It is worthy of remark that in many of the observed cases of death from charcoal-vapour, the blood has had a darker colour than natural: the greater solubility of carbonic acid, and the larger proportion in which it is produced, may account for this effect.

The action of carbonic oxide on the body is that of a pure narcotic poison. M. Tourde has ascertained that rabbits died in twenty-three minutes, when kept in an atmosphere containing 1-15th of its volume of pure carbonic oxide; when the proportion was 1-30th they died in thirty-seven minutes, and when 1-8th in seven minutes. Dr. Letheby states that in his experiments a mixture of 1 per cent. killed small birds in three minutes, and of 1 1/2 per cent. in about half this time. The animals showed no sign of pain: they fell in a state of insensibility, and either died at once without convulsions, or they gradually passed into a state of profound coma. He found, on inspection, that the blood was redder than usual, that the muscles of the heart were somewhat gorged, and that the brain was congested. (Lancet,' March 1, 1862, p. 219.) Dr. Hoppe-Seyler states that animals which had been made to breathe carbonic oxide were restored by continuing for some time artificial respiration, and under these circumstances, the gas was expired as carbonic acid, having undergone further oxidation in the blood. This writer has suggested a method for detecting the presence of carbonic oxide in the blood by spectral analysis (Chem. News,' Aug. 4, 1865, p. 58). According to some recent observations, carbonic oxide is eliminated from the lungs as such without being converted into carbonic acid (Lancet, 1873, 1, p. 741).
COAL AND COKE VAPOURS. Sulphurous Acid.

Products from burning coal and coke.—The gases extricated in the smothered combustion of coal or coke are of a compound nature. In addition to carbonic acid and carbonic oxide, we may expect to find in the atmosphere of a close room in which such a combustion has been going on, sulphurous acid gas; and from coal, in addition to this, the sulphuretted and carburetted hydrogen gases. These emanations are equally fatal to life; but in consequence of their very irritating properties they give warning of their presence, and are therefore less liable to occasion fatal accidents. From an accident which occurred at Colchester a few years since, in which two children lost their lives, it would appear that some persons are so ignorant as to believe that the vapour of coke is less fatal than the vapour of charcoal. The sulphurous acid gas, when existing in a small proportion in air, has the effect of irritating the air-passages so violently that, if accidentally respired, it would commonly compel the person to leave the spot before the vapours had become sufficiently concentrated to destroy life. Nevertheless, accidents from the combustion of coal and coke sometimes occur.

Symptoms and appearances.—The following cases will convey a knowledge of the symptoms and appearances which may be met with on these occasions. Some years since four persons, in a state of asphyxiation, were brought into Guy's Hospital. It appeared that on the previous evening they had shut themselves up in the forecastle of a coal-brig, and had made a fire. About six or seven o'clock on the same evening, some of the crew accidentally placed a covering over the flue on the outside, and thus stopped the escape of smoke from the fire, which was made of a kind of coal containing much sulphur. Early in the morning one of the crew, on opening the hatches, observed three of the inmates lying on the floor senseless and frothing at the mouth, and the fourth in his crib in a similar condition. The air in the place was most offensive. After the men were brought on deck one of them aged twenty-one, began to recover, and when brought to the hospital he seemed only giddy, as if intoxicated: he soon completely recovered. Another, aged forty, after breathing oxygen gas and having brandy and ammonia administered to him, showed no symptoms of recovery, but died in a few hours. A third, aged seventeen, soon began to rally, and in a short time he was able to answer questions; he declared that at the time of the accident he felt no pain, sense of oppression, or weight, either in his head or chest. The fourth, aged fifteen, died the following day, having shown no symptoms of rallying. Stimulants were administered and warm fomentations were used, but all efforts to produce reaction failed. The appearances presented by these persons when brought in, were as follows:—The lips were purple, the countenance was livid, and the surface of the body cold; the hands and nails were purple; the breathing was quick and short—
the pulse small, quick, and feeble; the pupils were fixed, and there was total insensibility. The body of the man aged forty was inspected four hours after death. The membranes of the brain were congested, and there was a large quantity of fluid under the arachnoid or middle membrane: the sinuses were gorged with blood; the lungs were in a state of great congestion, as were also the right cavities of the heart. It was remarked that, in its congested condition, this body was similar in appearance to that of an executed culprit. The body of the lad aged fifteen was inspected about thirty-three hours after death. Under the pia mater or inner membrane of the brain was observed one small ecchymosed spot; in the substance of the brain there were more bloody points than usual: a small quantity of fluid was found under the arachnoid membrane, and the sinuses were full of coagulated blood. The lungs showed no congestion, but the right cavities of the heart were much distended with blood. (For a report of cases of recovery from the effects of coal-vapour, see 'Med. Gaz.' vol. 9, p. 935; also 'Dub. Med. Press,' Jan. 31, 1849, p. 69, and 'Med. Gaz.' vol. 43, p. 937.)

A case showing the fatal effects of coal-vapour occurred to Dr. Davidson. A man lost his life from sleeping in a closed room with a fire to which there was no flue. The lungs were found gorged with blood, and the windpipe and bronchi were filled with a frothy muco-sanguineous fluid; the mucous membrane beneath was slightly injected; there was a small effusion in each pleural cavity; the right side of the heart was full of dark liquid blood; the dura mater was much injected; the sinuses of the brain and the veins of the pia mater were completely congested, and there was subarachnoid effusion. The substance of the brain, when cut, presented numerous bloody points. ('Ed. Month. Jour.,' April 1847, p. 763.)

In the 'Medical Times and Gazette' (April 3, 1852, p. 353) the reader will find an account of three cases of recovery from the effects of coal-vapour. (See also, for other cases which proved fatal, the same journal, March 31, 1860, p. 323.)

Analysis.—Sulphurous acid is immediately known by its powerful and suffocating odour, which resembles that of burning sulphur. The best test for its presence is a mixture of iodic acid and starch, which speedily acquires a blue colour when exposed to the vapour.

The products of the combustion of impure coal-gas are equally destructive to life: they consist of carbonic acid and sulphurous and nitric acids.

VAPOURS OF LIME, BRICK AND CEMENT KILNS.

Gaseous products from lime-burning.—In the burning of lime carbonic acid is given out abundantly, but, owing to the nature of the fuel used, carbonic oxide and sulphurous acid are mixed with it. Persons who have incautiously slept in the neighbourhood of a burning lime-kiln during a winter's night, have been destroyed by
the respiration of these vapours. The discovery of a dead body in such a situation would commonly suffice to indicate the real cause of death; but a practitioner ought not to be the less prepared to show that there existed no other apparent cause of death about the person. It is obvious that a person might be murdered, and the body placed subsequently near a kiln by the murderer in order to avert suspicion. If there are no marks of external violence, the stomach should be carefully examined for poison; in the absence of all external and internal injuries, medical evidence will avail but little; for a person might be criminally suffocated, and his body, if found under the circumstances above stated, would present scarcely any appearances upon which a medical opinion could be securely based. The vapours of brick-kilns are equally deleterious, the principal agent being carbonic acid mixed with carbonic oxide; although I have found that, according to the stage of combustion of the fuel, ammonia, hydrochloric acid, sulphuretted hydrogen, and sulphurous acid may be evolved. In September 1842 two boys were found dead on a brick-kiln near London, whither they had gone for the purpose of roasting potatoes. Although the cause of death in both cases was clearly suffocation, in one instance the body was extremely livid, while in the other there was no lividity whatever! Such accidents are frequent: in November 1844 an inquest was held at Manchester on the body of a man who had died under similar circumstances. The vapours of cement-kilns are quite as noxious as those of brick-kilns: carbonic and sulphurous acids predominate in them.

Confined Air.

Symptoms and effects.—An animal confined within a certain quantity of air, which it is compelled to breathe, will soon fall into a state of lifelessness. A human being in the same way may be suffocated, if confined in a close apartment where the air is not subject to change or renewal, while the products of respiration are accumulated; and the effects are hastened when a number of persons are crowded together in a small space. The change which air, thus contaminated by breathing, undergoes may be very simply stated. The quantity of nitrogen in 100 parts will remain nearly the same; the quantity of oxygen will probably vary from 8 to 12 per cent., while the remainder will be made up chiefly of carbonic acid. If many persons are crowded together the air will acquire a high temperature, and it will be saturated with aqueous vapour which contains decomposing animal matter derived from the lungs and skin. From this statement, it is evident that air which has been contaminated by continued breathing will operate fatally on the human body, partly in consequence of its being deficient in oxygen, and partly from the noxious effects of the carbonic acid contained in it. The proportion in which carbonic acid exists in respired air is subject to variation: according to the experiments of Allen and Pepys, it never exceeds 10 per cent. by volume of the mixture,
how frequently sooner it may have been received into and expelled from the lungs. The influence of respiration on air may be thus stated:—An adult consumes from one to two gallons of air per minute, and the air expired contains from 4 to 5 per cent. of carbonic acid; but it is a remarkable fact that, when a person continues to breathe the same air the proportion of carbonic acid expelled is reduced at each successive expiration. When the amount in air has reached 10 or 12 per cent. no more is thrown off by the lungs, and the blood is no longer depurated. For healthy existence a human being requires 20 cubic feet or 125 gallons of air per hour. A common candle will consume as much as two gallons of air per minute, or render that quantity of air unfit for respiration. Dalton found that the air in crowded rooms contained about 1 per cent. of carbonic acid, the atmospheric proportion being therefore increased more than twentyfold. It is certain that insensibility and death would ensue in a human adult before the whole of the oxygen of the confined air had disappeared: but the opportunity can rarely present itself of analysing such a contaminated mixture, and hence it is impossible to specify the exact proportion in which carbonic acid would exist when the confined air proved fatal to persons who had respired it. M. Lassaigne has shown, by direct experiment, that the carbonic acid in the air of close rooms is not collected on the floor, but equally diffused throughout. The whole mass of air is in fact vitiated, and requires renewal. (‘Med. Gaz.’ vol. 38, p. 351; see also ‘Report on Mines,’ 1864, App. B, p. 196, and ‘Chemical News,’ Feb. 17, 1865, p. 79.)

COAL-GAS. CARBURETTED HYDROGEN.

Coal-gas is a compound which acts directly as a poison when respired. Many fatal accidents have occurred from the respiration of air contaminated with it. Its composition is subject to much variation, according to circumstances. Mitscherlich found that it was principally composed of light carburetted hydrogen, hydrogen, and carbonic oxide, in the proportions of 66 per cent. of the first, 21.3 of the second, and 11 of the third. M. Tourdes found that the proportions of light carburetted hydrogen and carbonic oxide were nearly equal, i.e. about 22 per cent. An analysis of coal-gas as supplied to London shows that in 1,000 parts it contains—of hydrogen, 464.3; of light carburetted hydrogen, 389.3; carbonic oxide, 56.2; olefiant gas, 38.6; watery vapour, 24.8; nitrogen, 22.2; carbonic acid, 4.6. The difference in composition depends on the heat to which the gas has been submitted. Some consider that carbonic oxide is the poisonous principle; but there is no doubt that the hydro-carbons also have a specially noxious influence, although the use of the safety-lamp in mines proves that a mixture of light carburetted hydrogen with air in an explosive proportion, may be breathed for a certain time without producing serious effects.
Symptoms and appearances after death.—The symptoms produced by coal-gas, when mixed in a large proportion with air, are—giddiness, headache, nausea with vomiting, confusion of intellect, loss of consciousness, general weakness and depression, partial paralysis, convulsions, and the usual phenomena of asphyxia. The appearances after death will be understood from the following cases. In January 1841 a family residing at Strasburg breathed for forty hours an atmosphere contaminated with coal-gas, which had escaped from a pipe passing near the cellar of the house in which they lodged. On the discovery of the accident four of the family were found dead. The father and mother still breathed, but, in spite of treatment, the father died in twenty-four hours: the mother recovered. When the five bodies were inspected there was a great difference in the appearances; but the principal changes observed were, congestion of the brain and its membranes,—the pia mater (inner membrane) being gorged with blood, and the whole surface of the brain intensely red. In three of the cases there was an effusion of blood (coagulated) on the dura mater and in the spinal canal. The lining-membrane of the air-passages was strongly injected, and there was spread over it a thick viscid froth tinged with blood; the substance of the lungs was of a bright-red colour, and the blood in the vessels was coagulated. (‘Ann. d’Hgy.’ Jan. 1842.) In two cases communicated by Mr. Teale to the ‘Guy’s Hospital Reports’ (No. 8), there was found congestion of the brain and its membranes, with injection of the lining-membrane of the air-passages; the blood was remarkably liquid. An aged woman and her granddaughter, who had been annoyed by the escape of gas during the day, retired to bed, and they were found dead about twelve hours afterwards. In April 1873 four members of a family were found dead in their bedroom at Dundee. The mother, father, and two children had retired to rest quite well. There was a strong smell of coal-gas on entering the room, and they had undoubtedly died from the effects of this gas while sleeping. Gas had been formerly supplied to the house, but had been cut off for some time. This must have been carelessly done, for there was still a sufficient connexion to allow of its escape into the room. These facts show that life may be insidiously destroyed by the breathing of this gas without giving the slightest warning.

In the cases above related, the effects produced by coal-gas were owing to the long-continued breathing of it in a diluted state. The quantity contained in the air of the rooms must have been very small: in M. Tourdes' case it was probably not more than 8 or 9 per cent., because at a little above this proportion the mixture with air becomes explosive; and there had been no explosion in this case, although in the apartment in which the persons were found dead, a stove had been for a long time in active combustion, and a candle had been completely burnt out. In Mr. Teale’s cases who first entered the house perceived a strong smell of coal-gas, but still the air could be breathed.

Mr. Ramm has published a case of poisoning by coal-gas, which
shows how easily life may be destroyed by it. The appearances in
the body are more fully described than usual. In November 1861
Mr. Bloxam saw the deceased, who was a gasfitter; his body was
supported in a sitting posture on the floor. The man had acci-
dentally breathed coal-gas mixed with air while, connecting a tube
with a meter. The skin was cold, the cornea glazed, and the face
pale and placid: there was some froth about the mouth, the pupils
were rather dilated, and the limbs supple. There was a strong smell
of gas in the place. He was working in a closet, and he was found
insensible on the top of a pair of steps in a sitting posture,—his head
on one side, his arms hanging down, and his back leaning against
the wall, in the attitude in which he was engaged at his work. He
had evidently died quietly and placidly on his seat, and had made
no attempt to descend the steps. He was last seen alive an hour
before he was found dead, and he no doubt died rapidly from the
inhalaion of the gas. An inspection of the body was made twenty-
four hours after death. Externally the skin of the face and upper
part of the body was pale,—rigidity was well-marked, and there was
general lividity of the back of the body as well as of the limbs. The
blood was everywhere fluid. The brain and its membranes were not
congested, but were rather pale than otherwise; the ventricles con-
tained a pale serum. There was a strong odour of coal-gas on expos-
ing the brain. The lungs were of a dark-red colour, and did not
collapse on raising the chest-bone; they were dark at the back of the
lobes from gravitation of blood; their structure was healthy. The
windpipe and bronchi contained frothy mucus in some quantity. A
powerful odour of gas was perceived on compressing the lungs. The
heart was healthy; the right cavities were distended with blood—
the left were nearly empty; the blood was everywhere black. There
was congestion of the abdominal viscera, but no other unusual

Coal-gas therefore, like other aerial poisons, may destroy life if
long breathed, although so diluted as not to produce any serious
effects in the first instance! This gas owes its peculiar odour to the
vapour of naphtha: the odour begins to be perceptible in air when
the gas forms only the 1000th part, it is easily perceived when form-
ing the 700th part, but the odour is strongly marked when it forms
the 150th part (Tourses). In most houses in which gas is burnt,
the odour, owing to leakage, is plainly perceived; and it is a
serious question whether health and life may not often be affected
by the long-continued breathing of an atmosphere containing but
a small proportion. The odour will always convey a sufficient
warning against its poisonous effects. It should be known that this
gas will penetrate into dwellings in an insidious manner. In Mr.
Teale’s cases, the pipe from which the gas had escaped was situated
about ten feet from the wall of the bedroom where the women slept;
the gas had permeated through the loose earth and rubbish, and
had entered the apartment through the floor. I have notes of
several other cases in which coal-gas has thus destroyed life by slow leakage into bedrooms.

It is impossible to determine exactly what proportion of this gas in air will prove fatal. An atmosphere containing from 7 to 12 per cent. has been found to destroy dogs and rabbits in a few minutes; when the proportion was from $1\frac{1}{4}$ to 2 per cent. it had little or no effect. With respect to man, it may destroy life if long respired when forming about 9 per cent., i.e. when it is in less than an explosive proportion. (See 'British and Foreign Med. Rev.' vol. 20, p. 253; also, 'Ann. d'Hyg.' 1830, vol. 1, p. 457.) The late Dr. Aldis observed in his experiments that in ordinary coal-gas mixed with air, rats were rendered insensible in half a minute, and died in a minute and a-half to two minutes. There was before death a spasmodic action of the diaphragm. The gas was allowed to enter slowly into a bell-jar of air in which the animals were placed. ('Med. and Chir. Trans.' 1862, vol. 45, p. 100.)

NITROUS OXIDE.

A recent case of death from the inhalation of this gas as an anesthetic, renders a short notice of it necessary in this place. Sir Humphry Davy was the first to show by experiments on himself that, under certain precautions, it might be breathed when mixed with air without danger to life, and that it had the effect of producing an agreeable species of intoxication.

In January 1873 it was administered by a dentist at Exeter to a lady, aged 38, at her own desire, in order to annul pain during the extraction of a molar tooth. A physician carefully examined her before the operation, and found that there was nothing to preclude the use of the gas. The nitrous oxide was pure: it had been safely used for other patients from the same condenser, and an apparatus was so arranged as to secure the removal of the expired air. The total quantity administered was about six gallons. This could not be regarded as an overdose. Sir H. Davy himself breathed with safety five gallons in one of his early experiments. Soon after the commencement of the inhalation, it was observed that the pulse became rapid and less full, indicating an action on the heart; the patient was then sensible, and the apparatus was removed. The operation was commenced, but the lady insisted on having the gas again. She took it; insensibility came on, and the operation was completed. Immediately afterwards the face became livid, the features began to swell, and the tongue protruded. In spite of every effort to restore her, she did not recover from the state of insensibility; she breathed two or three times, and the pulse then ceased. No inspection of the body was made. The above-mentioned facts were given in evidence at the coroner's inquest, and the medical opinion was that death had been caused by the gas in producing paralysis of respiration, and that in this case no forethought could have prevented the result. The jury returned a
SULPHURETTED HYDROGEN.

verdict of homicide by misadventure. ('Lancet,' 1873, vol. 1, pp. 178, 245, 253.) It has been suggested that on this occasion death may have taken place from suffocation, by blood entering the air-passages; but while there were no symptoms indicative of this, all the facts appear to show that the gas operated as a blood-poison, and destroyed life.

According to the recent experiments of MM. Joylet and Blanche ('Archives de Physiologie,' Juillet 1873), this gas, when breathed, operates fatally by producing pure asphyxia. The insensibility which is a result of breathing the gas, is, in their view, owing to the non-oxygenation of the blood. It is dissolved in the blood and circulated with it, the blood not having the power to separate the combined oxygen from it. According to these physiologists, the anaesthetic state produced by this gas is owing to temporary asphyxia, which, in proportion to its duration and the time for which air is cut off, may end in recovery or death. ('Brit. Med. Jour.' Aug. 1873, p. 141.) There is not only a circulation of unëarated blood, but this liquid containing the nitrous oxide in solution, may produce some direct effect on the nerve-centres.

SULPHURETTED HYDROGEN.

This gas has a more powerful action on the body than either carbonic acid or charcoal-vapour. Persons are sometimes accidentally killed by it; but the very offensive odour which a small portion of it communicates to a large quantity of air is sufficient to announce its presence, and thus, with due caution, to prevent any dangerous consequences. Sulphuretted hydrogen gas, when breathed in its pure state, is instantaneously fatal. It exerts equally deleterious effects upon all animals, and through all the textures of the body, but especially through the lungs.

Symptoms.—The symptoms produced by sulphuretted hydrogen on the human body vary according to the degree of concentration in which it is breathed. When in a moderately diluted state, the person speedily falls inanimate. An immediate removal to pure air and the application of stimulants, with cold affusion, may, however, suffice to restore life. According to the account given by those who have recovered, this state of inanimation is preceded by a sense of weight in the stomach and in the temples; also by giddiness, nausea, sudden weakness, and loss of motion and sensation. If the gas in a still less concentrated state, be respired for some time, coma, insensibility, or tetanus with delirium supervenes, preceded by convulsions or pain and weakness over the whole of the body. The skin in such cases is commonly cold, the pulse irregular, and the breathing laborious. When the air is but slightly contaminated with the gas, it may be breathed for a long time without producing any serious symptoms; sometimes there is a feeling of nausea or sickness accompanied with pain in the head, or diffused pains in the abdomen. These symptoms are often observed to affect those who
are engaged in chemical manipulations with this gas. Sulphuretted hydrogen appears to act like a narcotic poison when highly concentrated, but like a narcotico-irritant when much diluted with air. It is absorbed into the blood, to which it gives a brownish black colour, and it is in this state circulated throughout the body. In all cases a noxious atmosphere containing this gas, is indicated by an offensive smell producing nausea and sickness. (For a case of poisoning by it, in which the person recovered, see 'Medical Gazette,' vol. 43, p. 871.)

Appearances after death.—On examining the bodies of persons who have died from the effects of sulphuretted hydrogen, when breathed in a concentrated form, and the inspection is recent, the following appearances have been observed:—The mucous membrane of the nose and throat is commonly covered by a brownish viscid fluid. An offensive odour is exhaled from all the cavities and soft parts of the body. These exhalations, if received into the lungs of those engaged in making the inspection, sometimes give rise to nausea and other unpleasant symptoms, and may even cause syncope or asphyxia. The muscles of the body are of a dark colour, and are not susceptible of the galvanic stimulus. The lungs, liver, and the soft organs generally, are distended with black liquid blood. There is also great congestion about the right side of the heart, and the blood has been found everywhere liquid and dark-coloured: the body rapidly undergoes the putrefactive process. When death has occurred from the breathing of this gas in a more diluted form, the appearances are less marked. There is then general congestion of the internal organs, with a dark and liquid state of the blood. In fact, in such cases the appearances can scarcely be distinguished from those produced by carbonic acid. Four men lost their lives in the Fleet Lane Sewer in February 1861; they were found dead, and there was no doubt that sulphuretted hydrogen was the cause of death. An account of the appearances presented by the bodies is reported in the 'Lancet' by Mr. Holden and Dr. Letheby (February 23, 1861, p. 187). The eyes and mouth were open, the lips and tongue livid, the pupils widely dilated, the blood black and fluid, the lungs congested, the heart full of black fluid blood, the right side gorged, and there was a bloody froth in the windpipe. In the brain the large vessels of the dura mater were full of black fluid blood.

In June 1857 six persons lost their lives, at Cleator Moor, near Whitehaven, by the respiration of sulphuretted hydrogen in a diluted form, by reason of their having slept in small close ill-ventilated rooms, into which the gas had penetrated. Three of the deceased persons—a husband, wife, and child, of one family (Armstrong)—had retired to rest, in their usual health, on the night of the 9th of June. Two of them were found the next morning dead in bed, and a third (the child) was found in a state of insensibility, and lingered until the afternoon of the same day, when she died. The fourth, a healthy adult, retired to sleep in his bed with his door
closed, and he was found dead in an hour. The fifth, a child, was
taken ill on the morning of the 11th, and died the same day. The
sixth was taken ill on the morning of the 10th, and died on the
12th of June.

The symptoms complained of by some who recovered were nausea,
sickness, giddiness and insensibility. On inspection of the body of
one child, the pupils were found dilated,—viscid mucus escaped from
the nostrils,—there was congestion of the lungs and kidneys, as well as
of the membranes of the brain. In the adult who died in an hour, the
pupils were natural, the jaws firmly clenched, the fingers contracted,
and the nails blue; there was great cadaveric lividity, and a quantity
of fluid with frothy mucus issued from the nostrils and mouth. The
lungs were much congested, and serum was effused in the cavity of
the chest. The heart contained a little fluid blood, and was some-
what flaccid. The mucous membrane of the windpipe and gullet was
redder than natural, and in the former there was frothy mucus. The
stomach, as well as the large and small intestines, were highly con-
gested but otherwise healthy. The brain and its membranes were
greatly engorged with blood, which, as in the body generally, was
very dark and fluid. Mr. J. B. Wilson, who examined the body
of the child, drew the conclusion, which was confirmed by the subse-
quently inquiry, that death had been caused by sulphuretted hydro-
gen. Dr. Thompson, who examined the body of the man, also
inferred that some noxious gas or gases had destroyed life. Having
been required by the Home Office to investigate the cause of
death in these cases, I visited Cleator on the 22nd of June, and
found that the cottages in which the accidents had occurred, were
built upon a heap of iron-slag, which also abutted on the premises
behind. The slag contained, among other matters, sulphide of iron
and sulphide of calcium. A foul smell, compared to that of cinders
extinguished by water, had for some time been perceived about the
rooms, chiefly at night when the doors and windows were closed;
and the day before the occurrence a heavy storm of rain had washed
through the slag-heap, and aggravated the effects. The heap of
slag was burning in certain parts, and sulphuretted hydrogen was
evolved in large quantities at a depth of a few feet below. At the
time of my visit, i.e. a fortnight after the deaths, on removing the
stone pavement in the lower rooms, the slag below was found damp,
and sulphuretted hydrogen was still issuing from it. The white-
lead paint in the closets was partly converted into black sulphuret,
and this chemical change was found in patches on the chamber-door
of one small room in which two persons had died.

The symptoms, so far as they were observed in the living, the
appearances in the dead bodies, and the chemical nature of the wet
slag beneath the foundation, left no reasonable doubt that during
the night, with the doors and windows closed, sulphuretted hydro-
gen had escaped in sufficient quantity to poison the air and destroy
life, and a verdict was returned to this effect. A suggestion was
made that carbonic acid might have caused the symptoms and death.
but there was no source of carbonic acid but the breath; and there
is, I believe, no instance known of any adult having breathed him-
self to death in an hour, in a room containing 600 cubic feet of
air,—not to mention that persons had slept in similar rooms in
the same row of cottages, at a distance from the slag-heap, without
perishing from such a cause. Another theory was put forward, to
the effect that carbonic oxide in the vapours of some blast-furnaces
had found its way into the rooms where these persons had died;
but the nature of the locality and the distance of the furnaces
rendered this impossible. Persons who had left their windows
open, whereby these vapours might have entered, escaped, while
the deaths occurred only in those houses in which the doors and
windows were completely closed. It is highly probable that the
sulphuretted hydrogen was mixed with other gases and vapours, as
it is never found pure except in a chemical laboratory; but the cir-
cumstances proved, left no doubt that this gas was the principal
agent of death. This seems to have been clearly established by the
fact, that after a channel for drainage had been cut through the slag-
heap and the slag removed, no casualty took place.

As in reference to carbonic acid, an atmosphere which may be
breathed for a short time with impunity will ultimately destroy life.
Sulphuretted hydrogen in a fatal proportion, however diluted or
mixed with other vapours, would always be indicated by a disagreeable
smell; although from habit, as well as probably from the effects of
the gas on the nervous system, this offensive smell might not be per-
ceived when a person had remained for a short time in the poisoned
atmosphere. In the cases of the Halls, which occurred at Shef-
field in 1852, there is reason to believe that the deaths of two per-
sons were caused by the smouldering of ashes in a cesspool (‘Asso-
ciation Medical Journal,’ April 1853, p. 280). Mr. Haywood con-
sidered that carbonic acid was the agent in this case, although it is
probable, from the nature of the materials in which combustion was
going on, that sulphuretted hydrogen and other gases and vapours
were simultaneously evolved.

Effluvia of drains and sewers.—The most common form of acci-
dental poisoning by sulphuretted hydrogen (for it is rare that a case
occurs which is not purely accidental) is witnessed among nightmen
and others who are engaged in cleaning out drains and sewers, or in
the removal of nightsoil. These accidents are much more frequent
in France than in England, the soil being often allowed to collect
in such quantities in Paris and other large Continental cities, as to
render its removal a highly dangerous occupation for the workmen.
According to the results of Thénard’s observations, there are two
species of compound gases, or mechanical mixtures of gases which
are commonly met with in the exhalations of privies. The first
compound consists of a large proportion of atmospheric air holding
diffused through it in the form of vapour, the hydroxysulphate of
ammonia (sulphide of ammonium). The hydroxysulphate is contained
abundantly in the water of the soil, and is constantly rising from it
in vapour, and diffusing itself in the surrounding atmosphere. It is this vapour which gives the unpleasant and pungent odour to the effluvia, and causes an increased secretion of tears in those who unguardedly expose themselves to such exhalations. The symptoms produced by the respiration of this gaseous mixture, when in a concentrated state, bear a close resemblance to those which result from the action of sulphuretted hydrogen gas. If a person is but slightly affected, he will probably complain of nausea and sickness: his skin will be cold, his respiration free but irregular; the pulse is commonly frequent, and the voluntary muscles, especially those of the chest, are affected by spasmodic twitchings. If more strongly affected he loses all power of sense and motion; the skin becomes cold, the lips and face assume a violet hue, the mouth is covered by a bloody and frothy mucus; the pulse is small, frequent, and irregular—the breathing hurried, laborious, and convulsive; and the limbs and trunk are in a state of general relaxation. If still more severely affected, death may take place immediately; or should the person survive a few hours, in addition to the above symptoms, there will be short but violent spasmodic twitchings of the muscles, sometimes even accompanied by tetanic spasms. (See 'Ann. d'Hyg.' 1829, vol. 2, p. 70.) If the person is sensible he will commonly suffer the most severe pain, and the pulse may become so quick and irregular that it cannot be counted. When the symptoms are of such a formidable nature, it is rare that a recovery takes place. The appearances met with on making an examination of the body are similar to those observed in death from sulphuretted hydrogen. The inspection should be made with caution, for a too-frequent respiration of the poisonous exhalations may seriously affect those who undertake it. (See a paper by Dr. Perrin, 'Ann. d'Hyg.' 1872, vol. 2, p. 73.)

Analysis.—The recognition of these gases and vapours is a simple operation. The odour which they possess is sufficient to determine their presence, even when they are diluted with a large quantity of atmospheric air. The sulphuretted hydrogen gas is at once identified by its action on paper previously dipped in a solution of a salt of lead: if present even in very small proportion (1-100,000th part), the moistened paper speedily acquires a brownish-black stain from the production of sulphide of lead. It must not be supposed that sulphuretted hydrogen, when it has proved fatal in a diluted form, can be detected in the lungs, stomach, or blood of a dead body. When the body is recently removed from a drain or sewer, the gas may be found pervading the whole of the tissues; but in other cases it will be as useless to look for it as for carbonic acid in poisoning by this gas. Noxious gases are not long retained by the tissues; a short exposure will suffice to remove all traces of them. The examination of the locality can alone throw a light upon the cause of death. The proportion of the gas found in an apartment will, however, rarely be a criterion of the actual quantity which has destroyed life. A person going into a room where the deceased
bodies are lying, may notice only a disagreeable or stifling smell, but he may be able to breathe for a longer or a shorter period with the door or window open. It is not the respiration of a few minutes, but the breathing of the diluted noxious atmosphere for many hours, that really destroys life. The best method of detecting sulphuretted hydrogen when present in a dead body (not putrefied) is to place a slip of card glazed with lead, in the muscles or soft organs: it will sooner or later be tarnished and acquire a brown colour, if the gas is present.

Sulphuretted hydrogen may be proved to exist by the lead-test in the vapour of *hydrosulphate of ammonia* when mixed with air, while the presence of ammonia in the compound, is indicated by its volatile alkaline reaction on test-paper—also by holding, in a vessel containing the vapour recently collected, a rod dipped in strong hydrochloric acid: the production of dense white fumes announces the formation of hydrochlorate of ammonia. The presence of this compound vapour in any mixture is at once indicated by introducing paper wetted with a solution of nitro-prusside of sodium. The hydrosulphate produces with it a rich crimson colour: if sulphuretted hydrogen alone is present, the nitroprusside paper undergoes no change. It is a fact which cannot be too universally known that a candle will readily burn in a mixture of either of these gases with air which, if breathed, would suffice to destroy life. (‘Ann. d’Hyg.’ 1829, vol. 2, p. 69.) The candle-test should be applied with caution in places where these effluvia are collected and confined in sewers or close cesspools. When sulphuretted hydrogen is diffused in a proportion of about 7 per cent. with air it forms a dangerously explosive mixture.

It is worthy of remark that the air of a cesspool may be often breathed with safety until the workmen commence removing the soil, when a large quantity of mephitic vapour may suddenly escape, which will lead to the immediate suffocation of all present. Several persons have been killed by trusting to the previous burning of a candle, in ignorance of this fact. In descending in order to render assistance to those who are lifeless, the person should on these occasions, whether sulphuretted hydrogen or carbonic acid be the cause, make a moderate inspiration of pure air and hold his breath while in the noxious mixture. In an accident which occurred in Whitechapel, in August 1857, three men died speedily from breathing the vapour of an old sewer, and two others nearly lost their lives in attempting to assist them. The best plan for getting rid of the gas is by a free exposure of the locality, or by exciting active combustion in it. According to Parent-Duchâtelet men can work in an atmosphere containing from 2 to 3 per cent. of sulphuretted hydrogen. The air of one of the principal sewers of Paris gave the following results, on analysis, in 100 parts:—oxygen, 13.79; nitrogen, 81.21; carbonic acid, 2.01; sulphuretted hydrogen, 2.99.

Another gaseous mixture in the form of deoxidized air was found
DETECTION OF SEWER GASES.

by Thénard in the sewers of Paris: it was composed, in 100 parts, of nitrogen 94, of oxygen 2, and of carbonic acid 4. Sometimes the carbonic acid is combined with ammonia, and then it may be regarded, chiefly as a mixture of nitrogen holding diffused through it the vapour of carbonate of ammonia, which is sufficient to render it highly irritating to the mucous membrane of the eyes and nose. Its action on the human body when breathed will be readily understood from its chemical composition. In its operation it is essentially negative, and destroys life by cutting off the access of oxygen. The small proportion of carbonic acid or of carbonate of ammonia existing in it cannot give rise to the asphyxia which so rapidly follows its inhalation. The chances of recovery are much greater in persons who become asphyxiated from the inspiration of this compound than in those who are exposed to the influence of the preceding. Commonly the immediate removal to a current of pure air is sufficient to bring about a recovery. Should death take place, it will be found on inspection that the internal appearances are the same as those which are met with in death from suffocation.

Analysis.—This compound has no offensive smell; it extinguishes a lighted candle: the carbonic acid contained in it may be removed by caustic potash, and then it will be seen that the great bulk of the mixture is formed of nitrogen—a gas which, by its negative properties, cannot be easily confounded with any other. In a mixed atmosphere of carbonic acid and sulphuretted hydrogen, the two gases may be separated by agitating the mixture with a solution of acetate of lead, and treating the precipitate with acetic acid, which dissolves the carbonate and leaves sulphide of lead.

LIGHTNING. COLD. HEAT. STARVATION.

CHAPTER 42.

EFFECTS OF THE ELECTRIC FLUID.—POST-MORTEM APPEARANCES.—COLD AN OCCASIONAL CAUSE OF DEATH.—SYMPTOMS.—CIRCUMSTANCES WHICH ACCELERATE DEATH.—POST-MORTEM APPEARANCES.—EFFECT OF HEAT.—STARVATION A RARE CAUSE OF DEATH.—SYMPTOMS.—APPEARANCES AFTER DEATH.—LEGAL RELATIONS.

LIGHTNING.

Deaths from lightning are more common than is generally supposed. Although they usually occur under circumstances in which the facts are known, yet cases may present themselves in which the marks of violence left upon the dead bodies may be suggestive of homicide. Few or no statistics of these deaths have been published in England; but in France the facts collected by M. Boudin show the following results. In twenty-eight years—from 1835 to 1863—
2,238 persons were killed by lightning. From 1854 to 1864 inclusive, 967 persons were killed, 698 being males, and 269 females. In the year 1864 alone there were 87 killed—61 males and 26 females. Of 34 persons killed by lightning in the open fields during the year 1853, 15 were struck while taking shelter under trees; and of 107 persons killed by lightning between 1841 and 1853, 21 are reported to have been killed under trees. Children appear to escape this mode of death more than adults. (‘Chemical News,’ 1865, July 7 and Dec. 8.) The latest return of the Registrar-General for 1871 shows that in 1871 there were 28 deaths by lightning in England and Wales.

Cause of death.—The electric fluid appears to act fatally by producing a violent shock to the brain and nervous system. In general there is no sense of pain; the individual falls at once into a state of unconsciousness. In a case which did not prove fatal, the person, who was seen soon after the accident, was found labouring under the following symptoms: insensibility; deep, slow, and interrupted respiration; entire relaxation of the muscular system; the pulse soft and slow; the pupils dilated, but sensible to light. (‘Med. Gaz.’ vol. 14, p. 654.) It will be seen that these are the usual symptoms of concussion of the brain. The effect of a slight shock is that of producing stunning; and when persons who have been severely struck recover, they suffer from noises in the ears, paralysis, and other symptoms of nervous disorder. (‘Med. Times,’ July 15, 1848.) Insanity has even been known to follow a stroke of lightning. (Conolly’s ‘Report of Hanwell,’ 1839.) In one case the person remained delirious for three days, and when he recovered he had completely lost his memory. (‘Lancet,’ August 3, 1839, p. 582.) A boy, aet. 4, received a severe shock on the 11th May, was seized with tetanus on the 13th, and died in four hours. (‘Med. Times and Gaz.’ May 26, 1855.) In another instance an old man who took shelter under a tree felt as if a vivid flash had struck him in the face: he did not fall, but he became almost blind. He suffered for some days from frontal headache, and loss of sight supervened. (‘Med. Times and Gaz.’ July 24, 1858.)

It may be observed of the effects of lightning, generally, that death is either immediate, or the individual recovers. A person may however linger, and die from the effects of severe lacerations or burns indirectly produced. In a case which occurred in July 1838, death was thus caused indirectly by the effects of electricity. The following case of recovery illustrates further the action of the electric fluid:—Three persons were struck by lightning at the same time. In one, a healthy man, aet. 26, the symptoms were severe. An hour and a-half after the stroke he lay completely unconscious, as if in a fit of apoplexy; his pulse was below 60, full and hard; his respiration apnoeic, his pupils dilated and insensible. There were frequent twitchings of the arms and hands; the thumbs were fixed and immovable, and the jaws firmly clenched. Severe spasms then came on, so that four men could scarcely hold the patient in
his bed; and his body was drawn to the left side. When these symptoms had abated he was copiously bled; cold was applied to the head, a blister to the nape of the neck, and mustard-poultices to the legs. Stimulating injections and opium were also administered: in the course of twenty-four hours consciousness slowly returned, and the man soon completely recovered. The only external injury discoverable was a red streak, as broad as a finger, which extended from the left temple over the neck and chest: this disappeared completely in a few days. ('Brit. and For' Med. Rev.' Oct. 1842.) These red streaks or marks sometimes assume a remarkable disposition over the skin. (See case by Dr. Horstmann, Casper's 'Vierteljahrs.' April 1863, p. 308.)

Appearance of death.—The suddenness of death is such that the body sometimes preserves the attitude in which it was struck. ('Med. Times and Gaz.' Feb. 18, 1860, p. 167.) Generally speaking there are externally, marks of contusion and laceration about the spot where the electric current has entered or passed out:—sometimes a severe lacerated wound has existed:—on other occasions there has been no wound or laceration, but an extensive ecchymosis, which, according to Meyer, is most commonly found on the skin of the back. In one instance, which occurred in London in May 1839, there were no marks of external violence; and several similar cases are quoted from American journals in the 'Medical Times' (May 3, 1845, p. 82.) The clothes are in almost all cases rent and torn, and partially singed, giving rise to a peculiar odour,—sometimes even rolled up in shreds and carried to a distance. They are occasionally found partially burnt, but this is not a frequent occurrence. Metallic substances about the person present traces of fusion, and articles of steel have been observed to acquire magnetic polarity. Dr. West has informed me, that in a case to which he was called, in which a boy sat 18, had been instantly struck dead by lightning, he observed that a knife in the pocket of the deceased had acquired strong magnetic polarity. This case further shows that which has frequently been noticed—namely, that while much violence has been done to the dress, the parts of the body covered by it have escaped injury. The deceased wore at the time of the accident a pair of strong leather boots: these were torn to shreds, probably owing to the presence of iron nails in the soles, but the feet of the deceased presented no mark of injury! An accident by lightning occurred in the presence of a friend of mine, by which a healthy man was instantaneously killed. A cap which the man wore had a hole through it; his hair was singed, his shoes were burst open, and his trousers torn. The woodwork of the building down which the electric fluid passed was merely split, and there was no mark of burning. I have examined, in several instances, the wood of trees which have been struck by the electric fluid: in each case it has presented only the appearance of rending by mechanical force.

Wounds and burns are sometimes met with on the body. The
wounds have commonly been lacerated punctures, like stabs produced by a blunt dagger. In the case of a person who was struck but not killed, a deep wound was produced in one thigh, almost laying bare the femoral artery. This person was struck, as many others have been, while in the act of opening an umbrella during a storm. Fractures of the bones have not been commonly observed: in a case mentioned by Pouillet, the skull was severely fractured and the bones were depressed. (‘Traité de Physique, Elect. Atmosph.’)

In May 1864 Dr. Mackintosh, of Littleport, was called to see three persons who had been struck by lightning about twenty minutes previously. They had taken shelter under a haystack, which had been set on fire by the same flash. 1. A boy, aged 10, was then able to walk, although unable to move his legs immediately after the occurrence. All that he remembered was—he saw the stack on fire and called to his father; he felt dizzy all over and unable to move. His hair and clothes were not singed, and the metallic buttons on his dress showed no signs of fusion. On removing his clothes a slight odour of singeing was perceptible. He complained of pain at the lower part of the abdomen. There were several red streaks, of about a finger’s breadth, running obliquely downwards and inwards on either side of the chest to the middle line in front of the abdomen; they then descended over the pubes, and were lost in the perineum. It does not appear that there was any abrasion of the skin. This boy perfectly recovered; the red streaks disappeared gradually, and could hardly be traced four days after the injury. 2. Another boy, aged 11, lay prostrate and unconscious, with an expression of grim terror and suffering; he frothed at the mouth, moaned piteously, and flung his legs and arms about in all directions. The breathing was deep, slow, and laborious; the heart palpitating, pulse weak and very irregular; the pupils were dilated, and insensible to light. There were in this case several red streaks converging from the neck and shoulders to the middle of the chest-bone, and passing over the abdomen until they were lost on the pubes. There were similar streaks radiating for a few inches from the tuber ischii on each hip in different directions, until they were lost in the skin. It appears that this boy was in a sitting posture when struck. The hair on the back of his head and neck was singed, and the peculiar odour of singeing was perceived, although his clothes showed no traces of burning, nor the metallic buttons, of fusion. The boy became conscious in five hours, and rapidly recovered. The red streaks gradually disappeared, leaving marks of a scaly glistening white appearance, which ultimately left no trace of their existence. 3. A man, aged 46. Like the two others, he was in a sitting posture, and he appeared to have been killed on the spot: he had not moved hand or foot. The countenance was placid, and the pupils were widely dilated. The electric fluid had produced a large lacerated wound of the scalp, at the junction of the occipital with
the parietal bones, but without producing any fracture. The electric fluid appeared to have passed down each side of the head, between the soft parts and the cranium. On the left side it had passed downwards in front to the left ear, and terminated on the side of the neck, rupturing bloodvessels and muscles, and causing swelling of the parts with effusion of blood. It presented the appearance of an extensive bruise caused by mechanical violence. On the right side the current had passed down to the space above the collar-bone, causing lividity and swelling of the right ear as well as of the adjacent skin; and it terminated in a dark-blue mangled patch of skin, in which there were several free communications with the surface. The hair on the back of the head was slightly singed, and that in front of the chest was singed quite close to the skin, but the hair which covered the wound in the scalp, where the current had entered, was uninjured. The clothes were neither torn nor burnt, and the metallic buttons were not fused. The clothes of all three were very wet. The hat was not examined. The left side-pocket of the trousers contained several lucifer-matches and a tin tobacco-box, which were unaffected by the electric discharge. The right pocket contained a knife, which had acquired strong magnetic polarity. The body was placed in a warm room, and it is worthy of remark that cadaveric rigidity came on in fourteen hours after death. (‘Lancet,’ July 30, 1864, p. 118.) It is to be regretted that no post-mortem examination was allowed. It is probable that the brain sustained severe injury, causing immediate death. These cases singularly present the effects of lightning in three degrees—the effect of a slight shock in No. 1, of a severe shock in No. 2, and of a fatal shock in No. 3. There was but little bodily injury in either case, and no appearance of burning. The marks on the skin in Nos. 1 and 2 could not have been mistaken for violence, but the wound to the scalp and the injuries to the neck in No. 3 might have been ascribed to the violence of another, had not the circumstances been fully known. The clothes probably escaped burning or tearing by reason of their being wet, and their readily conducting the electric fluid.

The burns occasionally found on the bodies of persons who have been struck by lightning have been hitherto ascribed to the ignition of the clothes. It appears, however, from the subjoined cases, that burns even of a severe kind may be the result of a direct agency of the electric fluid itself upon the body. The late Dr. Geoghegan met with the case of a girl who had been struck by lightning; there was burning of the thigh and buttocks to the first and second degrees, but the clothes did not show any signs of combustion. On the 16th of July 1852, a man, æt. 23, while engaged in milking a cow in a wooden shed, during a severe thunderstorm, suddenly observed a vivid flash of lightning, which killed the cow instantly, and inflicted serious injuries upon himself. He was seen sixteen hours after the accident, and a severe burn was found on his person, extending from the right hip to the shoulder, and covering
a large portion of the front and side of the body. His mind was then wandering, and there were symptoms of inflammatory fever. The man was confined to his bed for seventeen days, at the end of which time the injuries had not perfectly healed. On examining his dress, the right sleeve of his shirt was found burnt to shreds, but there was no material burning of any other part of the dress. The case is singular, inasmuch as it shows that the dress may be burnt without the surface of the body being simultaneously injured; and further, that a burn may be produced on the body, although the clothes covering the part may have escaped combustion.

Mr. Fleming has described the cases of eight persons who were struck by lightning, and on the bodies of some of these there were marks of severe burns. The dressings were in parts much singed. These cases show, in a remarkable manner, the intense heat evolved in the instantaneous passage of the electric fluid through the clothes and body. The persons struck were benumbed or paralysed in various degrees, but all ultimately recovered; but the burns were so severe that some months elapsed before they were entirely healed. (‘Glasgow Med. Journal,’ October 1859, p. 257.) A man was struck by lightning in July 1861. Externally there was a burn upon the nape of the neck, where the metallic watchguard rested; and from the point where the current of electricity left the chain, the skin was blistered in a straight line down to the feet, scorching the hair of the pubes in its course. The man’s intellect was confused, and his general condition was that of collapse. With the aid of stimulants he became sufficiently restored to communicate his feelings. There was paralysis of the lower extremities, with loss of sensibility (anesthesia), and retention of urine. He was deaf, and complained of a noise in his ears like thunder; he had some difficulty in articulating, and pain in swallowing with a peculiar metallic taste in his mouth. The anesthesia passed away in half-an-hour, but he did not completely recover the use of his limbs for four days; the bladder was paralyzed for twenty-four hours, and only relieved by the use of a catheter, the urine was high-coloured and contained an abundance of phosphates. The bowels were confined. All these symptoms gradually disappeared, excepting slight deafness, and the man was discharged convalescent.

The following complete account of the external and internal appearances found in the body of a healthy middle-aged labourer, who was killed by a stroke of lightning, has been published by Dr. Schaffer:—The man was working in the fields with several other labourers, just after a thunderstorm had passed over and had apparently subsided. He was endeavouring to kindle a light with a flint and steel, when the lightning struck him. For a moment after the shock he stood still, and then his body fell heavily to the ground. The electric fluid entered at the upper part of his forehead, perforating and tearing his hat at that part: it seemed then to have become divided into two currents, which passed down the sides of the body along the lower limbs and out at the feet. On the upper
part of the forehead was found a soft swelling, of a dark-blue colour, and about the size of the palm of a hand: the hair which covered it was uninjured. From this spot two dark-red streaks proceeded in different directions. One of these passed to the left, running over the temple in front of the left ear, down the neck to the surface of the chest, over which it passed between the left nipple and the armpit; and so made its way over the body to the left inguinal region, where it formed a large, irregular, scorched-looking (brandige) patch on the skin. From this point the dark-red streak again continued its downward course, passing over the great trochanter, then along the outer surface of the left leg to the back of the foot, where it terminated in several small dark-blue spots. The other streak, which proceeded from the ecchymosed swelling on the forehead, passed directly to the right ear, which was considerably swollen and of a dark-blue colour; from the ear it ran downwards and backwards along the neck, crossed the right border of the scapula, and eventually reached the right groin, where a scorched patch of skin, similar to that in the left groin, was found. From this part the discoloured streak continued down the outer side of the right leg, to its termination on the back of the foot, just on the left side. It is remarkable that although the hair on the forehead, as well as that which occurred in any part of the track taken by the electric current down to the groin, was not burnt, yet at the groin itself, and at every part hence to the foot over which the electric stream had passed, the hairs were completely burnt. The cause of the skin and hair in the groins being burnt is probably to be referred to the buckles of a belt which the man wore round his abdomen at the time of the accident: the belt was completely destroyed. Nothing further worthy of notice was observed on the exterior of the body, with the exception of the face being very red. The swelling of the head was found to be due to the presence of a large quantity of extravasated blood. The bone beneath was not injured. About four ounces of blood had been effused in other parts of the scalp corresponding to the swollen discoloured patches outside. The vessels of the cerebral membranes were greatly congested, and the brain itself contained much blood, especially observed in the choroid plexuses. A large quantity of reddish mucus was found in the larynx, wind-pipe and air-tubes. The lungs were loaded with dark blood; there was a great deficiency of blood in the cavities of the heart and in the large vessels. The blood vessels of the stomach and intestines were more than usually congested. The right lobe of the liver was of a dark-red colour, and loaded with blood, especially the part which corresponded to the burnt patch of skin at the lower part of the abdomen. The spleen also was large, and filled with blood. Much blood was found accumulated in the substance of the muscles of the abdomen, at those parts which lay beneath the burnt surfaces outside. (‘Oesterreich. Med. Wochenschrift,’ 6th June 1846.) It was formerly supposed that the blood was never found coagulated in persons killed by lightning, and that the body did not become
rigid after death. Experience has shown however that these state-
ments are not in accordance with observed facts.

Echymoses resembling those produced by mechanical violence
and of great extent are sometimes met with. A short, muscular
man was killed by lightning. There was a strong smell of burning
about the body. The hair was singed considerably at the back of
the head, at the nape of the neck, and slightly above the forehead,
at each corner of which there was a dark ecchymosis. The scalp was
greatly ecchymosed at the top and at the back of the head. There
was a large ecchymosis at the nape of the neck, and from this a livid
band half an inch broad, curved round the right side of the neck,
and terminated in a large ecchymosis at the sternal end of the right
clavicle. The left fore-arm was scorched in front, and along the
centre of the scorched surface ran a dark line about three or four
lines broad. There was a slight ecchymosis on the right thigh and
on the right side of the scrotum. About half-way down the right
leg was an extensive scorch encircling the leg, and a line of about
three-quarters of an inch in breadth, ran down the inner side of the
leg to the sole. The soles of both feet were extensively blistered,
and the cuticle charred. The clothing corresponding to the injured
parts was extensively scorched, and large holes were burnt in the
soles of the socks. The boots were scorched inside, but not injured
outside, although there were iron nails in the soles. Excepting
the nails in the boots, there was no metal about the body. The
pupils were widely dilated. Cadaveric rigidity was unusually
marked, requiring great force to overcome it. The inner surface of
the scalp was ecchymosed. The brain appeared bloodless and soft,
and there was but little fluid in the ventricles. The veins and
sinuses of the base were filled with dark fluid blood. The heart was
fiabby; the right ventricle contained a small quantity of dark fluid
blood: the great veins were distended with very dark blood, every-
where perfectly fluid. There was no coagulum or clot in any part,
and the blood showed no tendency to coagulate after its escape.
The lungs were very soft and much congested posteriorly. (‘Med.
Times and Gaz.’ Oct. 14, 1865, p. 418.)

The external injuries in these cases resemble those caused by
violence, but the peculiar form, extent and direction of the ecchy-
oses, as well as the presence of marks of burning, either on the
clothes or the body, were sufficient to distinguish them as injuries
produced by the electric fluid.

Legal relations.—Rare as the combination of circumstances must
be in which a medico-legal question can arise in reference to the
action of the electric fluid on the body, a case was tried in France,
in October 1845, in which medical evidence respecting the characters
of wounds caused by electricity was of considerable importance.
In August of that year some buildings were destroyed at Malauyne
near Rouen, as it was alleged on the one side, by a thunderstorm,
on the other, by a whirlwind; and as the parties were insured
against lightning, they brought an action for recovering the amount
insured. The evidence in favour of the accident having been due
to electricity consisted,—first, in the alleged carbonized appearance of the leaves of some trees and shrubs growing near; and secondly, in the characters of the wounds on the bodies of several persons who were injured at the time of the occurrence. M. Lesauvage stated at the trial that there was an appearance of dark stains scattered over the bodies, and that those who survived, suffered from torpor, pains in the limbs, and a partial paralysis of motion. He observed, also, that decomposition took place very speedily in the bodies of those who were killed. In one instance the muscles were torn and lacerated, and some small arteries divided. This witness attributed most of the wounds to the effects of electricity. M. Funel deposed, that in each of the dead bodies which he had examined, the face and neck were bloated and discoloured, as if death had taken place from asphyxia. It did not appear, however, that there were any circumstances decisively proving that the buildings had been destroyed by lightning. M. Pouillet gave an accurate description of the storm: he believed that although, as deposed to by some of the witnesses at the trial, it might have been attended with thunder and lightning, the buildings with the surrounding trees were really overthrown by the mere force of the wind, and not by the electric fluid. The description given bears out this view, but at the same time it is unusual that trees when struck, unless old or dry and withered, should present any marks of combustion about the leaves or trunk. (See 'Comptes Rendus,' Sept. 1846; also 'Med. Gaz.' vol. 36, p. 1133.) The scientific evidence was of the most conflicting kind. The Royal Court of Rouen decided that the disaster was occasioned by the atmosphere; and, without entering into the various theories of storms, condemned the Insurance companies to pay the amount claimed. ('Law Times,' March 14, 1846, p. 490.)

COLD.

Cause of death.—The protracted exposure of the human body to a low temperature may destroy life; and although in this country cases but rarely occur in which cold alone operates fatally, it is not unusual during a severe winter, to hear of persons in a state of misery and destitution, being found dead in exposed situations. On these occasions we may reasonably suspect that the want of proper food and nourishment has accelerated death. It is, however, convenient to make a distinction between the effects of cold and of starvation on the system, as the symptoms preceding death, and the rapidity with which it takes place, are different in the two cases.

Symptoms.—A moderate degree of cold is well known to have an invigorating effect upon the body; but if the cold be severe, and the exposure to it long-continued, while the calorific function is not maintained by warmth of clothing or exercise, the skin becomes pale, and the muscles become gradually stiff and contract with difficulty, especially those of the face and extremities. Sensibility is lost, a state of torpor ensues, followed by profound sleep from
which the person cannot be readily roused: in this state of lethargy the vital functions gradually cease, and the person finally perishes. Such are the general effects of intense cold upon the body: its influence on the nervous system is seen in the numbness, torpor, and sleepiness which have been described as consequences of a long exposure to severe cold. Giddiness, dimness of sight, tetanus, and paralysis have in some cases preceded the fatal insensibility. It has been found that temperature materially affects the amount of oxygen taken by the blood. At a low temperature this fluid takes less oxygen; hence it becomes less oxygenated, and this state of the blood affects the condition of the brain and nervous system. (Bernard, op. cit. p. 114.) It was observed during the retreat of the French from Moscow, that those who were most severely affected by cold often reeled about as if in a state of intoxication; they also complained of giddiness and indistinctness of vision, and sank under a feeling of lassitude into a state of lethargic stupor, from which it was found impossible to rouse them. Sometimes the nervous system was at once affected; tetanic convulsions, followed by rigidity of the whole of the voluntary muscles, seized the individual and he rapidly fell a victim. Symptoms indicative of a disturbance of the functions of the brain and nervous system have also been experienced by Arctic travellers during their residence within the Polar circle. The late researches of M. Pouchet on the effects of a freezing temperature on animals have led him to the conclusion that death is due to a physical change in the blood-globules, and not to any effect on the nervous system. The first phenomenon produced by cold is a contraction of the capillary vessels to such an extent that the blood-globules cannot enter them; these vessels, therefore, remain completely empty. The second phenomenon is an alteration of these globules, amounting to their complete disorganization. Under these circumstances an animal cannot be restored. ('Chemical News,' Dec. 1, 1865, p. 263.) A human being, may, however, perish from a degree of cold not sufficient to produce congelation.

Circumstances which accelerate death. — There are certain conditions which may accelerate death from cold. In all cases in which there is exhaustion of the nervous system, as in those who are worn out by disease or fatigue, in the aged and infirm, or, lastly, in persons who are addicted to the use of intoxicating liquors—the fatal effects of cold are more rapidly manifested than in others who are healthy and temperate. It has been uniformly remarked that whenever the nervous energy is impaired, either by intoxication or exhaustion from fatigue, a man dies quickly from cold. The exposure of drunken persons during a severe winter, may therefore suffice to destroy life, although the cold might not be so intense as to affect others who were temperate. Casualties of this nature sometimes occur during the winter-season in this metropolis; and a knowledge of the influence of intoxication in accelerating death under such circumstances, may occasionally serve to remove a doubt in the mind of a practitioner respecting the real cause. Infants, especially
when newly born, easily perish from exposure to cold. Cold, when accompanied by rain and sleet, appears to have a more powerfully depressing influence than when the air is dry,—probably from the effects of evaporation. The following case related by Dr. Currie shows the fatal effects of exposure to cold winds accompanied with humidity:—' Of several persons who clung to a wreck, two sat on the only part that was not submerged; of the others, all were constantly immersed in the sea, and most of them up to the shoulders. Three only perished, two of whom were generally out of the sea, but frequently overwhelmed by the surge, and at other times exposed to heavy showers of sleet and snow, and to a high and piercing wind. Of these two, one died after four hours' exposure; the second died three hours later, although a strong healthy adult, and inured to cold and hardship: the third that perished was a weakly man. The remaining eleven, who had been more or less completely submerged, were taken from the wreck the next day, after twenty-three hours' exposure, and they recovered. The person among the whole who seemed to have suffered least was a negro: of the other survivors, several were by no means strong men, and most of them had been inured to the warm climate of Carolina. The fatal action of extreme cold on animals has been lately examined by M. Crecchio. ('Ann. d’Hyg.' 1868, I, p. 436.)

Appearances after death.—Opportunities rarely occur of examining bodies when death results purely from exposure to cold. The skin is commonly pallid, and the viscera of the chest and abdomen as well as the brain are congested with blood. Dr. Kellie, of Leith, found in two cases which he examined, a redness of the small intestines from the congestion of the capillary vessels, and a great effusion into the ventricles of the brain. A sufficient number of cases have not yet been inspected, to enable us to determine how far these two last-mentioned appearances are to be regarded as consequences of death from cold; but all observers have found a general congestion of the blood-vessels and viscera. In consequence of the great congestion uniformly met with in the vessels and sinuses of the brain, some pathologists have regarded death from cold as resulting from an attack of apoplexy; but the symptoms which precede death do not bear out this view. Effusions of blood have not yet been observed, and a mere fulness of the cerebral vessels after death is not in itself sufficient to justify this opinion. It will be observed that, on the whole, these appearances are remarkably similar to those which are found in death from severe burns and scalds. In a case which occurred to Dr. Hilty, of Werdenberg, a man, 57, in a state of intoxication, died from exposure to cold during a severe winter's night. A minute description of the appearances is given, but the principal were, great congestion of blood in all the cavities of the heart and the large vessels, the blood fluid and of a dark crimson colour, a congested state of all the internal organs, especially of the liver and kidneys, numerous spots or patches of redness on the skin (frostarythemata) and the bladder
distended with urine. (Casper's 'Vierteljahresschrift,' 1865, 2, 140.) Thus then a medical jurist will perceive, that in order to come to a decision whether, on the discovery of a dead body, death has taken place from cold or not, is a task of some difficulty. The season of the year—the place and circumstances under which the body of the deceased is found,—together with the absence of all other possible causes of death (such as from violent injuries or internal disease), form the only basis for a medical opinion. Death from cold is not to be determined except by negative or presumptive evidence; for there is no organic change, either externally or internally, sufficiently characteristic of it to enable a medical man to give a positive opinion on the subject.

Heat.

Intense heat.—The effect of an intensely-heated atmosphere in causing death has been but little studied. Some years since I was consulted in one case in which the captain of a steam-vessel was charged with manslaughter, for causing a man to be lashed within a short distance of the stoke-hole of the furnace. The man died in a few hours apparently from the effects of this exposure. The engine-rooms of steamers in the tropics have been observed to have a temperature as high as 140°; and engineers after a time become habituated to this excessive heat, without appearing to suffer materially in health. In certain manufactories the body appears to acquire a power, by habit, of resisting these high temperatures—still it has been proved that many suffer severely. In a Report on the Employment of Children (1865), it is stated that in a glass-manufactory a thermometer held close to a boy's head stood at 130°, and, as the Inspector stood near to observe the instrument, his hat actually melted out of shape. Another boy had his hair singed by the heat, and said that his clothes were sometimes singed too; while a third worked in a temperature of no less than 150°. Amid this tremendous heat they carry on work which requires their constant attention: they are incessantly in motion. In the Turkish bath higher temperatures than this have been noted, but there is reason to believe that serious symptoms have been occasionally produced in persons unacustomed to them, and that in one or two cases death has resulted. In attempting to breathe humid air heated to temperatures varying from 180° to 200°, there is a sense of suffocation with a feeling of dizziness and other symptoms indicative of an effect on the brain: the circulation is enormously quickened.

In July 1861, an inquest was held in London on the body of a stoker of an Aberdeen steamship. He had been by trade a grocer, and was not accustomed to excessive heat. While occupied before the engine-furnace he was observed to fall suddenly on the floor in a state of insensibility; when carried on deck it was found that he was dead. All that was discovered on a post-mortem examination
was an effusion of serum into the ventricles of the brain; death had been caused by sudden apoplexy. In some cases a person may sink from exhaustion as a result of long exposure. Intense heat appears generally to operate by inducing congestion of the brain (heat-apoplexy). It has now become one of the recognized causes of death in this country in the Registrar-General’s reports. In 1870, 112 deaths from sunstroke were registered in England; and from the returns just published for 1871, it appears that throughout England and Wales, 66 persons died from sunstroke in that year. In some cases a person may sink and die suddenly from exhaustion, or symptoms of cerebral disturbance may continue for some time, and the case ultimately prove fatal.

Death from sunstroke, when not immediately fatal, is preceded by some well-marked symptoms, such as weakness, giddiness, headache, disturbed vision, flushing of the face, followed by oppression and difficulty of breathing, and in some cases stupor passing into profound coma. The skin is dry and hot, and the heat of the body is much greater than natural. (‘Ann. d’Hyyg.’ 1867, 1, 423.) In one case, observed by Dr. Sieveking, the patient, a boy, aged 13, remained in a state of semi-consciousness for four days, and then had a cataleptic seizure. (‘Lancet,’ 1870, 2, 184.) Dr. Passauer has fully considered this subject in reference to armies in Horn’s ‘Vierteljahrschrift,’ 1867, 1, 185. The symptoms in cases of sunstroke have not been always accurately recorded. In one instance a medical man, who suffered from an attack while on a voyage in the tropics, was able to note and describe his symptoms from the commencement of the attack up to the eighth day, when he recovered. (See ‘Lancet,’ 1872, 1, 464; also 2, 128.)

Starvation.

A rare cause of death.—Death from the mere privation of food is a rare event, although, if we were to form an opinion from the verdicts of coroners’ juries, its occurrence would not appear to be uncommon in this and other large cities. In one of the Annual Registration Returns it is stated that 130 persons died from starvation. Such cases must, however, be received with some distrust, as care is rarely taken to ascertain precisely how far bodily disease may have been concerned in causing death. Still it cannot be denied that starvation should be classed among the forms of violent death, being sometimes the result of criminal neglect or inattention in the treatment of children or of infirm and decrepit persons, and thus constituting homicide: or at other times, although rarely, arising from an obstinate determination to commit suicide in those from whom all other means of self-destruction are cut off.

Symptoms.—The symptoms which attend on the privation of food, or the supply of improper food, have been variously described. Referring to cases which occurred during the Irish famine of 1847, Dr. Donovan states that the persons who suffered, described the pain-
of hunger as at first very acute, but said that after twenty-four hours had been passed without food, the pain subsided and was succeeded by a feeling of weakness and sinking, experienced principally in the region of the stomach; accompanied with incontinent thirst, a strong desire for cold water, and a distressing feeling of coldness over the entire surface of the body. In a short time the face and limbs became frightfully emaciated; the eyes acquired a peculiar stare; the skin exhaled an offensive smell; and was covered with a brownish, filthy-looking coating, almost as indelible as varnish. This he was at first inclined to regard as encrusted filth, but further experience convinced him that it was a morbid secretion poured out from the exhalants on the surface of the body. The sufferer tottered in walking like a drunken man: his voice was weak, like that of a person affected with cholera; he whined like a child, and burst into tears on the slightest occasion. In respect to the mental faculties, their prostration kept pace with the general wreck of bodily power; in many there was a state of imbecility, in some almost complete idiocy; but in no instance was there delirium or mania, which has been described as a symptom of protracted abstinence among shipwrecked mariners. (‘Dub. Med. Press,’ Feb. 1848, p. 67.)

Among the symptoms there is severe pain in the region of the stomach, a suppression of the feces, or, if discharged, they are in small quantity, dry, and dark-coloured; the urine is scanty, high-coloured and turbid: the intellect is dull. The person may be exhausted, and remain without motion in one position, or be seized with a furious delirium, which may drive him to acts of violence. In the last stage the body is reduced to an extreme state of emaciation, and before death it evolves an offensive odour, like that of incipient putrefaction. The excretions have also a putrescent odour. The surface of the skin may be covered with spots (petechiae), and the person finally dies, in some cases slightly convulsed. (Op. cit. p. 415.) M. Chassat found, in his experiments on animals, that in some instances the animal died after having had successive attacks of convulsions. (Beck’s ‘Med. Jur.’ vol. 2, p. 80.)

In a case which fell under the notice of Dr. Sloan, a healthy man, aged 65, was by an accident shut up in a coal-mines for twenty-three days without food. When found he was conscious, and he recognized and named his deliverers. He was so weak that he could scarcely raise his hand to his mouth, and so much emaciated as to excite the surprise of his fellow-workmen by the extreme lightness of his body. Under careful treatment he so far recovered as to give an account of his feelings. For the first two days, hunger was his most urgent symptom. This passed off, and he then began to suffer from severe thirst, which he allayed by drinking some foul water. After ten days he became so weak that he was unable to move from the spot where he had lain down. He slept but little, and not soundly—never entirely losing the consciousness of his situation. His bowels acted only once, but he passed urine freely. The matter brought
from his bowels by injections, was dark-coloured like meconium, and very festid. He died on the third day after his removal, in spite of every effort to save him, and on the day of his death he was in the following state:—his features were sharp and pale, his eyes sunk; the skin of the abdomen seemed to touch the backbone, which could be distinctly felt through it; his body presented more emaciation than Dr. Sloan had ever seen produced by disease; he had altogether a dried appearance, very much like that of natural mummies found in catacombs; his pulse was gone; his voice was in a whisper, like the vox cholerae; there was uneasiness, increased by pressure, in the region of the stomach; his intellect was sound, and remained so until death. ('Med. Gaz.' vol. 17, p. 265.) This case confirms the observation of Dr. Donovan, that delirium is not a necessary attendant on protracted abstinence; and it proves incontestably that a person may die from the effects of abstinence or starvation, in spite of the best-directed efforts for recovery.

Mr. Thornhill reports, in the same journal, the cases of eight men and a boy who were shut in a coal-mine for eight days without food ('Med. Gaz.' vol. 17, p. 390); but the symptoms here noted were rather those of hunger than of long abstinence. They all suffered from excessive thirst; they were all troubled with ocular illusions, showing cerebral excitement. The occurrence of ocular spectre, and other symptoms indicative of a depressed state of the nervous system, have also been noticed by Casper. ('Handbuch der Ger. Med.' 1857, vol. 1, p. 374.) According to Dr. Martin, the emaciation in starvation is characteristic; it is a withering or shrivelling up of the skin, which has lost its elasticity, giving to youth the aspect of age. Death, when not hastened by disease, is slow and imperceptible, or it is precipitated by syncope from sudden effort, or by exposure to severe cold. Delirium is not, according to him, a symptom of starvation. ('Med. Times and Gaz.' March 30, 1861, p. 344.) The period which it requires for an individual to perish from hunger is subject to variation; it will depend materially upon the fact whether a person has had it in his power or not to take at intervals a portion of liquid, to relieve the overpowering thirst which is commonly experienced. The smallest portion of liquid, thus taken occasionally, is found to be capable of prolonging life. It is probable that in a healthy person, under perfect abstinence, death would not commonly take place in a shorter period than a week or ten days. This opinion appears to derive support from the results of those cases in which there has been abstinence owing to disease in the throat and difficulty of swallowing food. Age, sex, state of health, and the effects of exposure to cold, may accelerate or retard a fatal termination.

Appearances after death.—There are but few details of the appearances presented by the bodies of those who have died from starvation, and the cases themselves are too rare to enable us to decide with certainty upon the accuracy of the reports which have hitherto appeared on the subject. The body is shrunk and ema-
cated, and remarkable for its lightness. The skin is dry, shrivelled, and free from fat. The muscles are soft, deprived of fat, and much reduced in size. The stomach and intestines are usually found collapsed, contracted, and empty,—the mucous membrane being thinned and sometimes ulcerated. The liver, lungs, heart, kidneys, and the great vessels connected with these organs are collapsed and destitute of blood; the heart and kidneys free from any surrounding fat—the gall-bladder distended with bile—the omentum shrunk and destitute of fat. In Dr. Sloan’s case (supra) the body was observed to be extremely emaciated; the intestines were collapsed, the stomach was distended with air, and slightly reddened at its greater extremity. The omentum had almost disappeared: it was entirely destitute of fat. The liver was small, and the gall-bladder distended with bile. The other viscera were in their normal state. (‘Med. Gaz.’ vol. 17, p. 389.) Mr. Tomkins, of Yeovil, inspected the body of a man who died from starvation in February 1838. The face was much shrunk and emaciated; the eyes were open, and presented a fiery red appearance, as intense as in a case of acute ophthalmia during life. This red appearance has been met with by Dr. Donovan in death from exposure to cold. (‘Dublin Med. Press,’ Feb. 2, 1848, p. 66.) The skin was tough, and there was scarcely any cellular membrane to be seen. The tongue, lips, and throat were dry and rough. A peculiar odour was exhaled from the body. The lungs were shrunk and contracted; the investing membrane was slightly inflamed. The stomach and intestines were empty, but quite healthy; the gall-bladder was nearly full of bile, and the surrounding parts were much tinged by this liquid. The urinary bladder was empty and contracted. (‘Lancet,’ March 1838.) In some cases inspected during the Irish famine, Dr. Donovan states that the appearances which he witnessed were extreme emaciation, total absorption of the fatty matter on the surface of the body, total disappearance of the omentum, and a peculiarly thin condition of the small intestines, which in such cases were so transparent that, if the deceased had taken any food immediately before death, the contents could be seen through the coats of the bowel: on one occasion (at an inquest) he was able to recognize a portion of raw green cabbage in the duodenum of a man who had died from starvation. This thin condition of the coats of the intestines, he looks upon as the strongest proof of death from (chronic) starvation. The gall-bladder was usually full, and the parts in the vicinity of it were much tinged by the cadaveric exudation of bile; the urinary bladder was generally contracted and empty, and the heart pale, soft, and flabby; there was no abnormal appearance in the brain or lungs. Dr. Martin assigns as a condition of the intestines diagnostic of starvation, that they are not only contracted, but shrunken and diminished in size, shortened in length as well as in calibre, and, like a mere cord, as if the canal was obliterated. (‘Med. Times and Gazette,’ March 30, 1861.) He met with this state in three cases: once in starvation from want of food, and twice from total obstruc-
tion to its ingestion. Mr. Fletcher found the following appearances in the cases of two children, named Aspinall, who died from starvation—the elder aged one year and ten months, the younger four months. In the body of the elder there was extreme emaciation, without the slightest trace of disease in any of the viscera. Some dirty creamy fluid and four cherry-stones were found in the small intestines, but no distinctly fecal matter, a few grains of which, however, were found in the large intestines: scarcely a trace of fat was visible. In the infant the same appearances were presented, although the emaciation had not proceeded to the same extent. The evidence produced on the trial proved that the mother had spent in drink the money given to her for household expenses, and that the children's food and clothing were neglected. The prisoners were tried for wilful murder, in accordance with the verdict of the coroner's jury. The judge ruled that the wife was in law the husband's servant, and if it were proved that he had supplied her with sufficient money, he must be acquitted; if he had not, the wife must be acquitted. The jury acquitted the man and brought in a verdict of manslaughter against the woman, who was sentenced to two years' imprisonment. ('Proceedings of Liverpool Medical Society,' 1855-56.) In some of these alleged deaths by starvation, ulceration of the bowels is met with. This has been considered to arise from want of food; but Dr. Donovan did not meet with it in the bodies of those who died of lingering or chronic starvation. ('Dublin Med. Press,' Feb. 2, 1848, p. 66.)

These appearances, in order to throw any light upon the cause of death, should be accompanied with an otherwise healthy state of the body; since, as it is well known, they may be produced by many organic diseases, and death may be due to disease and not to the mere privation of food. It will not be always easy to say whether the emaciation depends on disease, or want of food, unless we are put in possession of a complete history of the case. On this account, in all charges of homicidal starvation, the defence generally turns upon the co-existence of disease in the body, and the sufficiency of this to account for death.

Voluntary starvation. Pretended fasting.—There are a few cases recorded in which persons have voluntarily abstained from food, liquid or solid, for the purpose of self-destruction. Suicide, as a result of perfect abstinence, is, however, exceedingly rare: the person cannot resist the intolerable thirst, or the desire for food, when placed within his reach. As it requires a period of about eight or ten days for the destruction of life under these circumstances, i.e., in the acute form of starvation, the resolution to abstain can be rarely maintained, and for the purpose of self-destruction starvation would never be resorted to, except where all other means of destroying life were removed.

Pretended fasting has been a subject of imposture at various times. The case of Sarah Jacobs, the Welsh Fasting Girl (December 1869), shows how it may be detected by strict watching. This girl, aged 12, was stated to have voluntarily abstained from any kind of food for a
period of two years. She had kept her bed during that time—lying in it decorated as a bride, visited by hundreds of persons—in fact, she was thus publicly exhibited by her parents as a girl of miraculous powers. Her lips were moistened with water once a fortnight, but according to the parents, no food was given to her. Four professional nurses from Guy's Hospital were set to watch the girl, and the result was, that after passing through the usual stages of actual starvation, she died on the ninth day! She refused to take food at any time during the strict watching, and voluntarily accepted a lingering death rather than reveal the imposture. Her parents and those around her allowed her to die! An inquest was held, and a post-mortem examination presented the following appearances: The body was plump and well-formed; the membranes of the brain were much injected, the brain itself was healthy and of proper consistency. There was a layer of fat from half an inch to an inch thick beneath the skin of the chest and abdomen. The contents of the chest were healthy. The stomach contained three teaspoonfuls of a semi-gelatinous substance of the consistency of syrup, having a slightly acid reaction. The small intestines were empty, and presented no attenuation or thinning of the coats. In the colon and rectum there was half a pound of solid excrement in a hardened state, which might have been there, according to the medical witness, a fortnight or longer. The liver was healthy and the gall-bladder was greatly distended with bile; the kidneys and spleen were healthy, and the urinary bladder was empty.

The medical evidence at the inquest was to the effect that the child had died from exhaustion as the result of starvation, and the jury returned a verdict of death from starvation owing to the criminal neglect of the parents in not administering food. They were tried on a charge of manslaughter, at the Carmarthen Summer Assizes, 1870. (Reg. v. Jacobs and wife.) An attempt was made in the defence to refer death to shock, and not to the want of food. The medical facts relied upon in support of this theory, were the presence of fat in the body, and the absence of any thinning of the coats of the intestines; but, as Dr. Fowler very properly pointed out ('Lancet,' 1870, 2, p. 150), the absence of fat and the thinning of the intestines are only likely to be met with after long or chronic fasting, when the person has survived many weeks on insufficient or innutritious food. In the case of this girl, the only proved abstinence from food was during the last eight days of her life, and this period of time would not suffice for the entire removal of the fat and the thinning of the coats of the intestines. The prisoners were convicted of causing the death of their child by criminal negligence. The father was sentenced to twelve months' imprisonment, and the mother to six months. ('Lancet,' 1872, 2, 132.)

The desire of a section of the public to know whether a human being could live two years without food has thus been gratified at the cost of life! Anyone acquainted with the rudiments of physiology would know that the application of the test of watching, if really efficient, could only end in death! A writer justly remarks,
in reference to this case of lamentable credulity: 'It is not science, but superstition, even to inquire into the possibility of any human being living a conscious life without food. The very profession to do so is either disease, fanaticism, or imposture, and should be treated as such.'

PREGNANCY.

CHAPTER 43.

SIGNS OF PREGNANCY.

Suppression of the menses.—It is well known that in the greater number of healthy women, so soon as conception has taken place, this secretion is arrested. But there are certain abnormal conditions which must not be overlooked. There are some cases recorded which show that women in whom the menses have never appeared may become pregnant. This, however, is allowed by all accoucheurs to be rare; and when it occurs, which we may readily learn from the account of the woman, it will be necessary to search for other signs in order to determine the fact of pregnancy. Irregularity as to the period at which the function takes place is common among females. This irregularity may depend upon the age of the person, or upon disease, either of which causes it will not be difficult to recognize. The continuance of the menses after conception, may make a pregnancy appear short. A case is reported in which a woman was married in the summer of 1856, and the menses continued after as before marriage. In October 1857 they ceased for the first time, and in the following December the woman was delivered of a full-grown child: as the abdomen was not much enlarged, she thought that she was only two months pregnant. (‘Med. Times and Gaz.’ April 30, 1859.)

It is well known that there are numerous disorders of the uterus under which, irrespective of pregnancy, the menses may become suppressed. The continuance of the menstrual discharge, when once set up, is not a necessary condition for impregnation. Dr. Murphy has reported the case of a woman who for sixteen years went on bearing children, eight in number, without having had during that period any appearance of the menses. The late Dr. Reid, who quotes this case, mentions five instances that fell within his own knowledge in which females became pregnant notwithstanding a long previous cessation of the discharge. (‘Lancet,’ September 10, 1853. p. 236.) The absence of the menses as a consequence of pregnancy is gene-
rally indicated by the good health which a female enjoys: and although disease may coincide with pregnancy, yet a careful practitioner will be able to estimate from the general symptoms the probable cause to which the suppression is due. On the other hand, a discharge perfectly analogous to the menstrual sometimes manifests itself, not merely for several periods in a pregnant woman, but during the whole course of pregnancy. (Dr. Murphy's 'Obstetric Report,' 1844, p. 9; also Henke's 'Zeitschrift der S. A.,' 1844, p. 265.) (See 'Ann. d'Hyg.,' 1873, 2, p. 140.) Mr. Whitehead has collected seven well-marked instances of menstruation during pregnancy. ('On Abortion,' p. 218.) These facts show that we should be cautious in forming an opinion; we must not assert that, because a discharge continues, pregnancy cannot possibly exist, or because there is no discharge, a female must be pregnant. The retention of the menses within the uterus from any cause, may produce enlargement of the abdomen, and give rise to some of the external symptoms of pregnancy.

Feigned menstruation.—The menses may be either suppressed or retained; but if there be any strong motive for the concealment of her condition, a woman may feign menstruation. Dr. Montgomery detected a case of this kind, by the examination of the areole of the breasts. The woman had stained her linen with blood in order to make it appear that the menses continued, but she subsequently admitted that this was an imposition. It has been stated that there are differences between menstrual and ordinary blood, but there are no certain chemical means of distinguishing them.

Prominence of the abdomen.—A gradual and progressive enlargement of the abdomen is a well-marked character of pregnancy: the skin becomes stretched, and the navel almost obliterated. This enlargement in general begins to be obvious about the third month, although there are some women of peculiar structure in whom the enlargement may not become perceptible until the fifth or sixth month, or even later: still it may be detected on examination. In fact, this sign can never be absent in pregnancy, although it may not be so apparent in some women as it is in others. The objection which exists to it is, that numerous morbid causes may give rise to prominence of the abdomen. This is undoubtedly the fact, as we have occasion to witness in the various kinds of dropsy, or in suppressed and retained menses—diseases which, in several instances, have been mistaken for pregnancy by eminent practitioners. On the other hand, instances are not wanting, in which, owing to the persistence of menstruation and the absence of quickening, the gravid uterus has been actually tapped by mistake for an ovarian tumour: the operation being speedily followed by the birth of a full-grown child! (Whitehead 'On Abortion,' p. 186;) but the history of a case will in general enable a practitioner to form a correct opinion. ('Ann. d'Hyg.,' 1873, 2, pp. 142 and 144.)

A change in the breasts.—These organs in a pregnant woman are full and prominent, and the areolas around the nipples undergo changes of colour which Dr. Montgomery and others regard as highly
characteristic of the pregnant state. A mere fulness or pain in the breasts, and even in some rare instances the secretion of milk, may arise from other causes than pregnancy. Severe uterine or ovarian irritation may cause the breasts to become painful and swollen. The fulness of the breasts from pregnancy is not commonly observable until about the second or third month. A more or less transparent fluid is secreted by the gland-tissue of the breast, and can be expressed from the nipples. This secretion of milk may occur in a non-pregnant female as a result of uterine or ovarian disease. Such cases, however, are not very common; but after a woman has once secreted milk, the secretion may be reproduced in the breasts by very slight causes quite independently of pregnancy.

The areola is generally observed during pregnancy to become considerably darker in colour and larger in diameter. The skin of which the areola is formed is soft, moist, and slightly humid. The little glandular follicles about it are prominent, and often bedewed with a secretion: the change of colour has been chiefly attended to. The areola are commonly well marked in from the second to the fourth month of pregnancy—the intensity of colour being the last condition of the areola to appear. The prominence of the glandular follicles does not always exist in pregnancy, and the areola may become large and dark-coloured from other causes: consequently these signs are only to be looked upon as corroborative. In females of dark complexion, the areola are naturally dark irrespective of pregnancy; and in some advanced cases these changes in the areola are entirely absent. (Edin. Month. Jour. March 1848, p. 693.) Dr. Montgomery has described as a sign of pregnancy the existence of a brown line extending from the pubes to the navel, especially in women of dark complexion, and a dark-coloured but not raised areola of about a quarter of an inch in breadth around the navel; but this also may be produced by uterine or ovarian disease.

Quickening.—The signs above given are applicable to the early as well as to the late stages of utero-gestation; but that which we have here to consider is one which is rarely manifested until about the fourth or fifth month. Quickening is the name applied to peculiar sensations experienced by a woman about this stage of pregnancy. The symptoms are popularly ascribed to the first perception of the movements of the foetus, which occur when the uterus begins to rise out of the pelvis; and to these movements, as well as probably to a change of position in the uterus, the sensation is perhaps really due. The movements of the foetus are perceptible to the mother before they are made evident by an external examination. The term is derived from the old Saxon word ‘quick,’ signifying living; as, at the time when medical science was in its infancy, it was considered that the foetus only received vitality when the mother experienced the sensation of its motion! On the occurrence of quickening there is generally a great disturbance of the system, indicated by syncope, nausea, and other distressing symptoms. After a short time the woman recovers; and if sickness has hitherto at-
tended the pregnant state, it has been frequently observed to disappear when the period of quickening has passed.

No evidence but that of the woman herself can satisfactorily establish the fact of quickening, and this it is necessary to bear in mind; since, in some cases in which pregnancy is an object of medico-legal importance, proof of quickening may be demanded by law. Dr. Reid remarks (‘Lancet,’ September 10, 1853, p. 237), with respect to this sign, that few women can tell the exact day on which they first feel it; and a large proportion cannot place it within a range of fourteen days, which is of little assistance in the calculation of the probable date of delivery. Women who profess to be most exact in noting the period of quickening differ from each other as to the time. There is much self-deception as to this symptom. The discovery of the movements of a child by an examiner is really a proof that the usual period of quickening is past, but their non-discovery at the time of examination is no proof whatever that the woman has not quickened; since the movements are by no means constant, and may be accidentally suspended even at several successive examinations. Besides, cases are now and then occur in which well-formed healthy women do not experience the sensation of quickening during the whole course of pregnancy; and, what is of more importance, the movements of the child may be at no time perceptible to the examiner. The uncertainty of quickening as a sign of pregnancy is too well known to require more than advertizing to. Women have been known to mistake other sensations for it, and in the end it has been proved that they were not pregnant. A woman may declare that she has felt quickening when she has not; and unless the movements of the child are perceived by the examiner at the time, how is he to confirm or disprove her statement? Quickening, then (so far as it concerns the statement of the woman), cannot be relied on as a proof of pregnancy; but if the movements of a child can be felt by the examiner through the abdomen, this is clear evidence not only of the woman being pregnant but of her having passed the period of quickening. According to the general experience of accoucheurs, quickening takes place from the tenth to the twenty-fifth week of pregnancy; but the greater number of instances occur between the twelfth and sixteenth week, or between the fourteenth and eighteenth week after the last menstruation.

From these observations, it will be seen that an examiner may sometimes detect the movements of the child about the third or fourth month, at others not until the fifth or sixth, and in other instances not at all throughout pregnancy. Dr. Ahlfeld found that in forty-three cases in which the day of its occurrence was noted it ranged from 103 to 134 days,—the average being 132.7 days (‘Amer. Jour. Med. Sci.’ Oct. 1870, p. 567.) Even in those cases in which the movements of the child have indisputably existed, they are not at all times to be perceived; hence several examinations should be resorted to, before any opinion can be fairly expressed from their absence. The best mode of examining the abdomen for fetal move-
SOUNDS OF THE FETAL HEART.

movements is to allow the hand to remain at rest on the abdomen. If the patient has quickened recently, the impulse is slight, and generally at only one spot, which, however, is seldom the same. Should she have advanced further, then the movements will be more rolling, and the parts of the child be detected at the same time. In making these examinations a diagnosis may be facilitated by previously immersing the hand in cold water and then suddenly applying it to the abdomen. When the movements of the child are distinctly perceived through the skin of the abdomen, they constitute a certain sign of pregnancy; but their non-discovery at a particular time is no proof that a female is not pregnant. The jury of matrons probably trust to this sign; hence their verdicts commonly turn out to be erroneous. There is another source of fallacy which may present itself when an artful woman is desirous of making it appear that she is pregnant—namely, that a woman may simulate the movements of a child by a peculiar action of the abdominal muscles. Medical practitioners of repute have been deceived for a time by this artifice, but this occurred before the discovery of chloroform or the stethoscope.

Sounds of the fetal heart.—Another sign is that which is derived from auscultation. By the application of the ear or a stethoscope to the abdomen, at or about the fifth month of pregnancy (rarely earlier), the pulsations of the fetal heart may be recognized and counted. These pulsations are not synchronous with those in the arteries of the mother: they are much more rapid, and thus it is impossible to mistake them. Their frequency, according to Dr. Hope, is in an inverse ratio to the stage of gestation, being 160 at the fifth and 120 at the ninth month. Sometimes, however, the fetal pulse may descend to 80 or even 60 beats in a minute. This sign, when present (like the fetal movements), not only establishes the fact of pregnancy beyond all dispute, but shows that the child is living. The sound of the fetal heart is, however, not always perceptible: when the child is dead, of course it will not be met with; but its absence is no proof of the death of the child, because the hearing of the pulsations by an examiner will depend very much upon the position of the child’s body, the quantity of liquor amnii, the presence of disease, and other circumstances. Thus the sounds may be distinctly heard at one time and not at another; they may be absent for a week or fortnight, and then will reappear; so that, although their presence affords the strongest affirmative evidence, their absence furnishes uncertain negative evidence; and several examinations should be made, in the latter case, before an opinion is formed. The earliest time at which the pulsations may be heard, has been stated to be about the fourth month, but they will be best heard after the sixth month. The reason why the sounds of the fetal heart are not always perceived, is owing not only to changes in the position of the child, but to the vibrations having to traverse the liquor amnii and the soft layers of the skin of the abdomen. The presence of much fat in these layers intercepts them.
PREGNANCY. CHANGES IN THE

The point where the sounds can be most readily perceived is in the
centre of a line drawn from the navel to the anterior inferior spinous
process of the ilium on either side—perhaps most commonly on the
right. When clearly detected, they furnish an unequivocal sign of
the pregnant state. Besides the sounds of the foetal heart, there
are other sounds to which the name of 'placental murmur' or
uterine sounds has been given. These are heard from an earlier date,
i.e., at any time after the third month. As they may occur in con-
nection with fibroid tumours of the uterus, they do not necessarily
indicate pregnancy. (See a paper on this subject by Dr. Druiit,
'Med. Times and Gaz.' Jan. 21, 1860.)

In reference to these signs of the pregnant state it may be observed,
that if the motions of the child or sounds of the heart be perceptible,
no other evidence of pregnancy need be sought for. The mere
suppression of the menses, prominence of the abdomen, and fullness
of the breasts, cannot alone establish the fact; but unless the morbid
causes of these abnormal states of the system be clearly and satisfac-
torily obvious to the examiner, it is a fair presumption from
these symptoms that the woman is pregnant. In any case in which
a doubt exists we should require sufficient time to form a correct
opinion.

Changes in the mouth and neck of the uterus.—The signs hitherto
mentioned are chiefly relied on in medical practice; but it must be
remembered that no case can occur in civil or criminal jurispru-
dence in which it will not be in the power of a medical witness to
make an examination of the woman. He may then form a safe
judgment from the changes which take place in the neck of the
uterus, and from the sensation imparted to the finger by the presence
of a rounded body (like the foetus) floating in a liquid, when an
impulse is given to the uterus from below. Up to the fifth or sixth
month of pregnancy, the neck of the uterus may be commonly felt
projecting into the vagina; it is of its usual length, hard and firm.
After that period, the uterus rises into the pelvis, and the neck is
spread out, and is shorter and softer, the aperture increasing in size
and becoming rounder. Towards the end of gestation, the neck of the
uterus appears to be lost, becoming like a thin membrane, and
sometimes no aperture can be felt.

A well-marked test of pregnancy is the motion perceptible to the
finger on giving a sudden impulse to the child through the neck of
the uterus. Capuron calls this the touchstone in the distinction of
the pregnant state: without it, he considers a medical jurisprud-
ence may be easily deceived. To this passive motion of a child, the name of
ballottement is given. It cannot be easily determined before the fifth
or sixth month; but after the latter period, especially as pregnancy
becomes advanced, it is always available. In the French schools,
the method of applying the toucher and ballottement to pregnant
females is systematically taught, and by a little practice it may be
required. This motion to the child can also be given through
the maternal side, the hand placed on the most depending
part of the uterus, or by placing the patient on her elbows and knees: the uterus will then fall forwards, the child also will fall in contact with the front wall of the uterus, and its presence thus be made more perceptible. This latter mode is best adapted for the early stages of pregnancy.

If we find amenorrhoea or suppressed menses and a tumour distended to a size consistent with the duration of the amenorrhoea—if the tumour be more or less central, alternately relaxing and contracting, containing an irregularly-shaped body, which is freely moved within, and also self-moving, we have clear indications of a living fetus; and if we add to these the fetal heart-sounds, with the other minor symptoms, we have a condition which, if clearly made out, must be considered complete proof of pregnancy. Of course we may have certainty with the fetal heart-sounds and movements if well-marked, and a strong suspicion from the other symptoms.

As most of these signs refer to an advanced stage, a witness may be asked, what are the unequivocal indications of pregnancy before the fifth and sixth month? The answer to this question is of little moment to a medical jurist, since he is rarely required to give an opinion under these circumstances. In all legal cases, when pregnancy is alleged or suspected, it is the practice for a judge or magistrate, on a representation being made by a medical witness, to postpone the decision one, two, or three months, according to the time required for obtaining certain evidence. This evidence will consist in plainly distinguishing—1. A rounded body floating freely in a tumour, which alternately relaxes and contracts; 2. The movements of a fetus; and 3. The sounds of the fetal heart. The most experienced men agree, that before the sixth month the changes in the neck and mouth of the uterus are of themselves too uncertain to enable an examiner to form a safe opinion; and, a fortiori, it is impossible to trust to external signs alone. Mr. Whitehead dissents from this view, and considers that a specular examination of the mouth of the uterus is not only more satisfactory than any other mode of exploration, but that it will enable a person to determine with certainty the existence of pregnancy during its earlier stages—from a few days after conception to the middle or end of the fourth month, when auscultation first becomes available. In the fourth week the lips of the mouth of the uterus at the centre of their margins are permanently separated to the extent of one or two lines; and the os tinece (the aperture) itself, which was before a mere chink with parallel boundaries, forms an elliptical or sometimes rounded aperture, which is occupied by a deposit of transparent gelatinous mucus. At six or eight weeks it is decidedly oval or irregularly circular, with a puckered or indented boundary having a relaxed and lobulated character. The whole circumference of the neck is enlarged, and the commissures or angles of the mouth are obliterated. The mouth continues of this irregular form throughout the whole period of gestation; but from the time of quickening to
the end of the seventh month, the progressive changes are not so marked as to form a guide for determining the period of pregnancy. ("On Abortion," p. 204.) This condition of the mouth of the uterus must not be confounded with its menstrual state in the early stages, nor with a diseased state in the latter stage of gestation.

Feigned pregnancy.—Pregnancy has been sometimes feigned or simulated for the purpose of extorting charity, of obtaining a settlement in a parish, or of compelling marriage; but it is scarcely necessary to observe that an impostor may be easily detected by a well-informed practitioner, since a woman always feigns an advanced stage of pregnancy. It is more easy to prove in most cases that a woman is not pregnant than that she is. ("Ann. d'Hyg." 1873, 2, p. 145.) Although she may state that she has some of the symptoms depending upon pregnancy (and, unless she has already borne children, she will not be able to sustain a cross-examination even respecting these), yet it is not possible for her to simulate without detection a distension of the abdomen or the state of the breasts. If she submits to an examination, the imposition must be detected; if she refuses, the inference will be that she is an impostor. Women have been known to possess the power of giving apparent prominence to the abdomen, and even of simulating the movements of a child by the aid of the abdominal muscles. By placing them under the influence of chloroform, the abdomen at once collapses, and the imposture is detected. These cases of spurious or feigned pregnancy are sometimes met with in hysterical females. (See case by Dr. Simpson, 'Edin. Month. Journ.' 1854, 9, 473. See also 'Lancet,' April 14, 1855, p. 381; April 28, 1855, p. 429; and May 26, 1855, p. 533.) Pregnancy may be feigned by a woman in order to avoid being sent by a magistrate's order to a distant parish, or to escape the punishment of hard labour, to which she may have been sentenced. If in the latter case the slightest doubt should exist whether the woman is really pregnant or not, an affirmative opinion should be given, at least for a time, since great and even irreparable mischief might result by taking an opposite course.

In civil cases of feigned pregnancy, an examination should always be made before giving an opinion, or the reputation of a medical man may suffer by his forming a hasty conclusion on the subject from insufficient data. In this respect the case of *Devonald v. Hope* (Q. B., December 1838) is of some interest. A medical man having given an opinion that a female patient was pregnant, subsequently brought an action against her for medical attendance. It turned out, however, that she was not pregnant, and that there were no satisfactory medical grounds upon which his opinion was based. The plaintiff complained of having been deceived by the defendant as to her condition: but it is obviously in the power of any medical man to prevent such a deception being practised on him. An external examination only will not suffice either to affirm or negative the allegation of pregnancy, except when it is stated to be far advanced. For a singular case in which, on a charge of assault,
evidence of this kind was tendered, see 'Med. Gaz.' vol. 36, pp. 1083, 1169. (On the fallacy of the signs of pregnancy, and the simulation of this state, see a paper by M. Tardieu, 'Ann. d'Hyg.' 1845, 2, 429; also 1846, 1, 83; also the same journal 1873, 2, p. 145.)

Concealed pregnancy.—By the law of Scotland, if a woman conceals her pregnancy during the whole period thereof, and if the child of which she was pregnant be found dead, or is missing, she is guilty of an offence, and is liable to prosecution. Evidence is sometimes given as to outward appearances indicative of pregnancy; but the main proof of a woman having been pregnant, and that which is relied on for conviction, is clear and distinct evidence of the actual delivery of a child. This is generally furnished by medical witnesses. The Scotch law, by making the concealment of pregnancy under the circumstances above mentioned, an offence, proceeds on the principle that every pregnant woman is bound to make preparations for the safe delivery of a child; and it is therefore assumed that if a child be born clandestinely without preparation, and is found dead or is missing, its death is owing to the want of such preparation.

Impregnation in a state of unconsciousness.—It was formerly a question whether a woman could become pregnant without her knowledge. This may undoubtedly happen, when intercourse has taken place during profound sleep (lazhargy), or when a woman has been thrown into this state by narcotic drugs or vapours. But it is difficult to admit that any woman should remain pregnant up to the time of her delivery, without being conscious of her condition, if the intercourse took place during the waking state. A woman endowed with ordinary intellect could not avoid suspecting her condition after the fourth or fifth month: and this alone would be sufficient to induce her to seek advice whereby the fact would become known to her. When a woman is impregnated in a lethargic state, it is unlikely that she should go beyond the sixth month without being fully aware of her pregnancy; and if her motives were innocent, she would undoubtedly make some communication to her friends. Capuron mentions a case of this kind, in which the fact of pregnancy was first ascertained at the end of the fourth month, by the woman having complained to one of her sisters of a strange sensation which she experienced in the lower part of her abdomen. ('Méd. Lég. des Accouchemens,' p. 86.) In a case related by the late Mr. Skey, a young woman who had had intercourse knowingly, was supposed not to have been aware of her pregnancy until the seventh month; there is reason to believe that this woman was guilty of deception. ('Med. Gaz.' vol. 39, p. 212.) There are generally, in these cases, strong motives for falsehood; hence such stories require close investigation before they are allowed to influence the opinion of a practitioner. A case occurred in September 1867, in which a woman, set. 22, described as modest and decorous in her behaviour, then advanced to the sixth month of pregnancy, asserted that she
UNCONSCIOUS PREGNANCY.

had not consciously had connection with any one, although she specified a date at which she remembered she had lost her consciousness—at which date intercourse might have been had! On being questioned, she denied that she had had at any time any soreness or pain in her private parts. Although there may be unconscious intercourse and pregnancy, it is not probable that in the case of a virgin there should be such intercourse without the production of pain, soreness, or laceration; and these symptoms, if not perceived at the time, should be felt subsequently and create a suspicion, if not an actual knowledge, of what had happened. This rendered the account which the woman gave wholly improbable. The fact that she was able to fix a date for her unconsciousness, with an accuracy in accordance with her condition, was also a suspicious circumstance.

Unconscious pregnancy.—It is quite possible that women who are living in consensual intercourse may become pregnant without being conscious of it. Dr. Rittel mentions the case of a woman, st. 41, who had been married upwards of sixteen years, and who, while returning from a neighbouring village, was suddenly delivered of her first child, when only a few days before she had been complaining that she was not likely to have any children. The child was born living and mature. (Henke, 'Zeitschrift der S. A.' 1844, p. 264.) Mr. Long met with a case in which a married woman, st. 24, subject to irregular menstruation, consulted him for an attack of spasms. On his arrival, he found that she had suddenly given birth to a seven months' child. Neither her husband nor herself had the slightest idea that she was pregnant. She had noticed that she had become somewhat stout, and that her breasts were more full than natural. She attributed her condition to improved health, and the cessation of the menstrual discharge was set down to some accidental cause. ('Mod. Times and Gazette,' June 13, 1857, p. 592. See also a case at full term by Dr. Tanner, 'Obstet. Trans.' vol. 4, p. 113.) I am indebted to a distinguished judge for the following fact in reference to unconscious pregnancy:—A married lady, who had not had a child for a period of nineteen years, found herself, as she thought, getting unusually stout. She was moving about with her family to different places. At last her size alarmed her, and she thought she was suffering from dropsey: she consulted a physician, who informed her that she was in an advanced state of pregnancy. She treated this opinion with great contempt. In travelling with her daughter, they arrived at a miserable inn: on the night of their arrival, this lady was seized with the pains of labour, and was delivered of a child. She had made no preparation for the birth, and, up to the moment when she was seized with labour-pains, she had not, with all her former experience, the slightest idea that she was pregnant. (For other cases in which married women have had no consciousness of pregnancy, see 'Lancet,' June 16, 1860, p. 609, and June 30, 1860, p. 643.) Instances of this kind are important in reference to alleged unconscious
delivery in women charged with infanticide. At the same time, all cases in which there are motives for pleading unconscious intercourse or pregnancy require close examination: they will frequently be found to be quite unworthy of belief. This remark especially applies to unmarried women who often consult a medical man on their condition with a full knowledge that they have exposed themselves to the chances of pregnancy. Up to the time at which the foetal movements are perceptible, a woman may honestly attribute her condition to other causes. Dating from the middle period of pregnancy, however, she must be aware of her state, but she endeavours to dissemble this even to herself. (‘Ann. d’Hyg.’ 1873, 2, p. 148.)

Pregnancy in the dead.—There is no special case in law wherein the fact of pregnancy requires to be verified after the death of a woman: but an examination may be necessary in order to determine the identity of a body, or to rescue the reputation of a woman from a charge of unchastity. The discovery of an embryo or fetus with its membranes in the uterus, would of course at once solve the question when the necessity for an examination occurred; and the practitioner will remember that, even supposing many years to have elapsed since interment, and the body to have been reduced to a skeleton, still if the fetus had reached the period at which ossification takes place, traces of its bones will be found amidst the bones of the woman. In examining the body of a woman long after death, for the purpose of determining whether she was or was not pregnant at the time of death, it may be proper to bear in mind that the unimpregnated uterus undergoes decomposition much more slowly than other soft organs. In the case of a woman who had been missing for a period of nine months,—whose body was found in the soil of a privy, so decomposed that the bones separated from the soft parts,—the uterus was of a reddish colour, hard when felt, and its substance was firm when cut. The fact was of importance. It was alleged that the deceased was pregnant by a young man, and that in order to conceal her condition he had murdered her. From the state of the uterus, Casper was able to affirm that this organ was in its virgin condition, and that the deceased was not pregnant at the time of her death. On this representation the accused was liberated. (‘Ger. Leich.-Oeffn.’ vol. 1, p. 93.) In examining bodies many months after interment, and in one case upwards of a year, I have been surprised to find, that while other soft organs were decomposed, the uterus had scarcely undergone any change: its substance was still firm and hard.

It may happen that the appearances in the uterus are sufficient to create a strong suspicion that a woman has been pregnant, but the ovum, embryo, or fetus may have been expelled: in this case several medico-legal questions will arise in reference to delivery.

Legal relations.—There are two cases in English jurisprudence in which proof of the pregnancy of a woman may be required. It
is impossible that a medical opinion can be given in either case until the woman has undergone examination. If she is acting bona fide, it is to her interest to submit to this, and the medical man incurs no responsibility. Assuming that an opinion is required on the pregnancy of a woman who refuses to be examined, a medical man would be acting illegally in compelling her to undergo an examination, and he might bring on himself a charge of indecent assault. It is only by the free consent of the woman that such an examination can be at any time made. (See 'Infanticide,' post, p. 512.)

In the two cases in which opinions are usually required, a woman alleges that she is pregnant, but she would not be benefited by the allegation until she had undergone an examination. One of them relates to the civil, and the other to the criminal law. 1. Under a writ de ventre inspiciendo. When a woman asserts that she is pregnant and is likely to give birth to a posthumous child, the heir-at-law to the estate may claim a right to have her statement verified and proof given that she is really pregnant. The object of this proceeding is to prevent the possibility of the heir being defeated of his rights, by the fraudulent substitution of the child of another person. Formerly, the proof of pregnancy in such cases was entrusted to matrons nominated by the sheriff, but now the matter is more considerately left to skilled medical practitioners. There will be no difficulty in such a case, provided the pregnancy is at all advanced. Examinations may be made at intervals, until the motions of a fetus are clearly perceived, with the other concomitant signs above described. An examination of this kind should be made completely. No woman should be able so to feign pregnancy as to deceive a skilled medical man. 2. The other case, referring to criminal law, is where a woman, after a capital conviction, pleads her pregnancy in bar of execution. If she is pregnant, the execution of the sentence is postponed until after her delivery. The strict letter of the law requires that married women taken from any who may be in Court, should be empaneled to examine the convict and report on her condition. They are required to decide whether she has or has not passed the stage of quickening. It is however the practice with some learned judges to direct the examination to be made by medical men, for the purpose of avoiding those mistakes into which a jury of ignorant matrons has frequently fallen.

These are, I believe, the only cases in which pregnancy has any direct relation to medical jurisprudence; and it is remarkable that, with respect to them, the law of England has expressly provided that they should be left to the decision of non-medical persons! The following conclusions may therefore be drawn:—1. That the cases in which the signs of pregnancy become a subject of legal inquiry in England are rare. 2. That there is no case, in English law, in which a medical man will not have an opportunity of performing an examination per vaginam, but this can only be made
PLEA OF PREGNANCY. DELIVERY.

with the consent of the woman. 3. That a medical opinion is never required by English law authorities, until the pregnancy is so far advanced as to render its detection certain. Hence discussions concerning areoles, the condition of the breasts, the presence of kiesstein in the urine, &c., are, in a practical point of view, unnecessary to a medical jurist. By these remarks I do not intend to undervalue the importance of an accurate knowledge of the signs of pregnancy to a medical practitioner. Cases which may never come before a Court of law will be referred to him, and the serious moral injury which he may inflict on an innocent woman by inaccuracy, should make him cautious in conducting an examination and in expressing his opinion. The medico-legal questions connected with the pregnant state have been recently comprehensively examined by M. Stolz. (See ‘Ann. d’Hyg.’ 1873, 2, p. 137.)

DELIVERY.

CHAPTER 44.

Delivery is a subject which much more frequently requires medico-legal intervention than pregnancy. It will be sufficient to state that the concealment of birth, the crimes of abortion and infanticide, with questions relative to supposititious children, are closely dependent on the proof of parturition. This subject will admit of being considered under two heads:—1. As it relates to delivery in the living;—2. As it relates to delivery in the dead. In undertaking the investigation, we ought, if possible, to ascertain, either from the female herself or from those around her, whether there was reason to suspect that she had been pregnant. If we can acquire any knowledge on this point it will materially facilitate our inquiry; but this is not always possible. It has generally happened, that previous pregnancy has been so concealed that few who saw the woman suspected her condition; then again, as the admission of her delivery may be the strongest proof of her criminality, she will perhaps resolutely deny it; and a medical practitioner has no right to extort this admission from her. From this it will be seen that a medical witness must often be prepared to prove the fact of delivery, against the woman who is criminally charged.

Delivery in the living. Concealed delivery.—The signs of delivery
in a living woman vary materially, according to the time at which this event has taken place. In common language, if the contents of the uterus are expelled before the sixth month, the woman is said to miscarry, or to have an abortion; if after the sixth month, she is said to have a premature labour. The law does not admit any such distinction; the expulsion of the ovum, foetus, or child by criminal violence, at any period of utero-gestation, is regarded as a miscarriage or abortion. It has been well observed that the signs of delivery are indistinct in proportion to the immaturity of the ovum. Thus, when it takes place at the second or third month, there are scarcely any proofs which can be derived from an examination of the woman. All the ordinary signs of delivery at the full period will be absent,—the development of the embryo not having been sufficient to cause any prominence in the abdomen, or to give rise to those changes in the system which take place previously to the birth of a mature child: e.g. enlargement of the breasts and dilatation of the mouth of the uterus. Abortion at this period (the second or third month) is generally accompanied by loss of blood, which may manifest itself by its effects on the body. This, however, can only give rise to a suspicion. At a later period of gestation there may be a discharge resembling the lochia, and the mouth of the uterus may be found enlarged and soft; but from the small size of the foetus, the outlet may present no positive evidence of delivery. The quantity of blood lost may be greater, and may have a more decided effect on the system. Of course, if the ovum, foetus, or any of its membranes be found, then the presumption of abortion will be strongly supported: but women who designedly conceal their condition, will commonly take effectual means to prevent the examiner from obtaining evidence of this kind.

Signs of recent delivery in the living.—The woman is weak, the countenance pale, the eyes are surrounded by livid areole, and there is an appearance of general indisposition. Any severe illness may, however, give rise to similar symptoms. Their sudden occurrence from a state of previous good health, especially when pregnancy is known or suspected, will create a strong suspicion. The breasts are large and full, especially about the third or fourth day after delivery; the nipples are enlarged, and the areola around them present all the characters of advanced pregnancy. If the appearances described are not well marked at the first examination, they may be seen at a later period; and in a doubtful case, when the embryo or foetus is not forthcoming, a second examination should be made before a final opinion is given.

1. The skin of the abdomen is relaxed, sometimes thrown into folds; the cuticle interrupted by light-coloured broken streaks, passing especially from the groins and pubes towards the navel, which is more or less stretched and altered in appearance. Any disease which has caused enlargement of the abdomen may give rise to a similar appearance in the skin, so that when taken alone much confidence cannot be placed in these lines or streaks as proofs of
delivery. The round form of the enlarged and semi-contracted uterus may be felt at the lower part of the abdomen, generally lying towards one or the other side. The apparent size of this organ will depend upon the degree to which it has contracted, and therefore greatly upon the time at which an examination is made. Dr. Montgomery has pointed out the existence of a dark line extending from the pubes to the navel, with a dark areola around the latter, in cases of recent delivery; but he has found this line to exist independently of pregnancy and delivery—in one case in a girl aged 10, and in another instance in a lady labouring under an ovarian tumour.

2. The organs of generation will be found externally swollen, confused, or even lacerated, with clots of blood about them. The outlet is much dilated, the vagina relaxed, the mouth of the uterus considerably open, and its margin completely relaxed. The neck of the uterus is shortened, and scarcely perceptible; and the body of this organ is from two to four times the size which it has in the unimpregnated state. It occasionally happens that the neck of the uterus is lacerated on one side during the passage of the head in primipara; should a laceration or a cicatrix be found, it will much assist in proving delivery.

3. The presence of the lochia (from λαγος, child-birth).—This is a discharge, at first of a sero-sanguineous liquid, but which afterwards appears as a brown or green-coloured serum. It commences soon after delivery, and continues from a week to a fortnight, or even longer; it may be absent after the third day. The discharge has so peculiar an odour that some have regarded this alone as furnishing strong evidence of recent delivery.

The signs which have been here enumerated are found only when no delay has taken place in making the examination, and the woman has been recently delivered. In some strong and vigorous women the body resumes its natural state within a few days, and the traces of parturition may have wholly disappeared or have become so ambiguous as to furnish no satisfactory evidence. In others again, proofs of delivery will be obtainable for a fortnight or three weeks afterwards. In most cases, however, it is difficult, if not impossible, to say, after the lapse of eight or ten days, that delivery has certainly taken place, the signs having commonly by that time disappeared. In all cases the earlier the period at which an examination is made, the more satisfactory will be the evidence obtained. Dr. Montgomery once examined a woman five days after her delivery at the full time, and he was particularly struck with the degree to which the parts had become restored to their ordinary condition, especially the mouth and neck of the uterus, which hardly differed from their natural and unimpregnated form. ('Cyc. Pr. Med.') loc cit.) This inquiry becomes of considerable importance in a case of alleged child-murder. When the body of a child is not found until after two or three weeks from the time of its birth, and the suspected woman denies that she has been delivered of a child, she will probably not deny
her pregnancy, but may assert that she has had an abortion at an early period. (See a case by Dr. Walther of Labiau in Casper’s ‘Vierteljahresschrift,’ Oct. 1863, p. 275.) In cases of abortion at an early period, the placenta is not always discharged at the time at which the embryo or foetus is expelled from the uterus. (‘Med. Times and Gaz.’ March 12, 1859.) A microscopical examination of the discharges might reveal placental or chorionic structures. In a case which occurred to Dr. Paxton of Kilmarnock, all the usual signs of delivery were present in a woman aged 20: she had evidently lost much blood, and was much reduced. From the state of the organs, Dr. Paxton considered that she had been delivered of a child within three days. There was no lochial discharge at the date of examination. The woman had previously denied her pregnancy when charged with concealment of it, but after the medical examination she altered her statement, and said that she had not only been pregnant, but was so at that time. On a further examination, the uterus was found to contain a foetus advanced to about the sixth month, and in three months more she was delivered of a child. What caused the appearances of delivery, the condition of the breasts, &c. ? Either she had shortly before been delivered of a child, or of a blighted ovum or foetus. Neither foetus nor placenta was ever seen or could be found, but the woman had had ample opportunity to dispose of them. This may have been a case of twin conception or of superfoetation. It shows that in charges of concealment of pregnancy or delivery, it must not be inferred when the appearances of delivery clearly exist, that the uterus is empty. The organ should always be examined in order to determine whether it does not contain another foetus.

Signs of delivery at a remote period.—A question may arise whether it is in the power of a medical practitioner to determine the period at which delivery took place, i.e. how long a time has elapsed. This becomes necessary when, in cases of concealed birth, abortion, or infanticide (some time after suspected parturition), a child is found, and it is required to determine whether the time which has elapsed since the birth of the child, either dead or living, corresponds with the supposed delivery of a suspected woman. An opinion may be given within eight or ten days after delivery, from the state of the breasts,—of the discharges (lochia), and of the mouth of the uterus; but it becomes difficult after the sixth day: and when the tenth or twelfth day has passed it is still more difficult. After two or three months it may be regarded as impossible to assign the period of delivery with any degree of precision. (See Devergie, ‘Méd. Lég.’ vol. 1, p. 446.)

In a case of pretended delivery, contested legitimacy, or disputed chastity, a medical jurist may be required to say whether a woman has, at any antecedent period of her life, been delivered of a child. This question, it must be remarked, can be raised only in respect to delivery at the full period, since there is no doubt that abortion in the early stages of pregnancy may take place, and leave no
traces of such an event discoverable in after-life. Indeed, a few
days or weeks are sometimes sufficient to obliterate all evidence of
the fact. With respect to delivery at the full term, certain signs
have been mentioned, which by some are considered indelible.
These are: shining streaks on the skin of the abdomen, a brown
mark reaching from the navel to the pubes, and the state of the
mouth of the uterus, which is said never to close so effectually as
in the virgin. In regard to the appearance of the skin of the
abdomen, it may be remarked, that any morbid cause giving rise
to a distension of the cavity—as ovarian enlargement or dropsy—
will produce the same effect: so, also, to a certain extent, extreme
emaciation from a state of obesity. (See 'Med. Times and Gaz.'
April 17, 1861, p. 450, on False Cicatrices.) Then, again, these
marks on the skin are not always persistent throughout life. Besides,
a woman, according to the statements of good observers, may be
not only once but repeatedly delivered, without having these marks
produced. ('Med. Times and Gaz.' June 9, 1860, p. 583, also
Ann. d'Hyy.' 1873, 2, p. 139.)

With regard to the state of the mouth of the uterus it is liable to
vary in different women, and to be affected by disease—so that a
certain judgment cannot always be formed from its condition. In
a woman who has not borne children the mouth of the uterus is in
the form of a slit, the angles being bent down, and giving to it the
appearance of the os tinece (trench's mouth). Mr. Whitehead has
observed that, in a woman who has borne children, the mouth becomes
elongated, and loses the slight bend at each of its extremities; the
labia are thickened, and more nearly of equal size; the commissures
are less clearly defined, and the whole of the neck is enlarged, and
not so compact in texture. ('On Abortion,' p. 195.) It must be
remembered, however, that the condition of the mouth of the uterus,
even in the virgin, varies at each menstrual period. Should there
be congenital occlusion of the vagina or the hymen be found imper-
forate, this will at once negative a previous delivery; but the latter
condition will not negative a previous pregnancy, since a woman
may have been impregnated, and have had an abortion in an early
stage of pregnancy, without a necessary destruction of the hymen.
This sort of negative evidence may however be sometimes of great
value. There is a total want of good affirmative evidence of de-

delivery at a remote period in the living, if we except that which is
furnished by the presence of cicatrices in the vagina or of a cicatrix
as a result of a lacerated perineum. It is rare, however, that any
decision on this subject is required in medical jurisprudence. It
might be demanded, either in a case of infanticide, when a woman
was accused of having destroyed her alleged offspring some months
or years before; or in a case of contested legitimacy, when a female
is accused of having substituted a child of which she pretends she
has been delivered at some remote period of time.

Feigned delivery.—Delivery has often been feigned by women for
the purpose of extorting charity, compelling marriage, or dis-

UNCONSCIOUS DELIVERY.

Heriting parties who have claims to an estate, and in other cases without any assignable motive. Of course, an imposition of this kind could not be sustained before a medical practitioner: and detection is rendered easy, because it is recent, and not remote delivery which is assumed. The latter would, if pretended, be generally cleared up by an examination, as well as by circumstantial evidence. (See case, "Med. Gaz." vol. 19, p. 251; also another by Capuron, "Méd. Lég. des Accouchemens," p. 110.)

Can a woman be delivered unconsciously?—Another important question relative to delivery in the living, is whether a woman can be delivered without being conscious of it. The signs of delivery may be discovered by a practitioner; the offspring may also be found. The woman may admit the fact of her delivery, but allege that she was totally unconscious of it. The only medico-legal case in which this plea is occasionally raised is in infanticide; and as the possibility of the occurrence may be questioned, the practitioner must be provided with a knowledge of those facts which medico-legal writers have accumulated respecting it. There is no doubt that a woman may be delivered unconsciously during profound sleep—while labouring under coma, apoplexy, asphyxia, syncope, or when suffering from the effects of narcotic poisons—e.g. the vapours of chloroform and ether, or intoxicking liquors. It is said, also, that delivery has taken place spontaneously while a woman was in the act of dying. This, however, has no bearing on the present question. It is in those cases where, after her recovery, a woman pleads unconsciousness of delivery that medical practitioners are chiefly consulted. Besides the cases enumerated, hysteria when accompanied by loss of sense and motion, has been mentioned as a state in which parturition is liable to occur unconsciously. We need not be surprised at delivery taking place under these circumstances, when we consider that the contractile power of the uterus is altogether independent of volition; but, unless the morbid states already mentioned are accompanied by the most profound lethargy and entire loss of sensation, it can rarely happen that the contractions of this organ in its efforts to expel the child, should not at once rouse a woman into consciousness. We ought particularly to expect this in primipares, i.e. in those who have never before borne children. At the same time it must be remembered that parturition in some women, especially when the pelvis is wide and the child small, may take place with such rapidity and ease as scarcely to be accompanied with pain.

It has been observed that, when a woman has frequently borne children, delivery sometimes takes place without effort, and without any consciousness on her part. On other occasions a woman may lie in a kind of torpor or stupor, or suffer from eclampsia (puerperal convulsions), and have no recollection of her delivery. The following case is possible:—A woman may be delivered while under the influence of eclampsia, which might have attacked her during labour; and after delivery, but before complete recovery,
she might become maniacal—a not unfrequent condition—during which interval she may have killed or injured her child; or the child may have been born dead, or suffering from some accidental injury. She would with truth assert her entire ignorance of it. Her statement would be verified by a bitten tongue, a congested conjunctiva or face. Should albumen be found in the urine this fact would be still more confirmative. Of course eclampsia might occur without these results. The statement might be disproved by finding that her actions had shown care and design in other circumstances at the time she said she was unconscious. Mr. King has described the case of a woman, aged 36, the mother of nine children. She received his assistance in her tenth labour: when summoned, she was lying calmly and placidly in bed, and was perfectly insensible. He found that the child had been expelled with the placenta. The woman did not recover her sensibility for ten or twelve hours, and then stated that she had no recollection either of the birth of a child, or of any circumstances connected with this event: she suffered no pain or uneasiness. Another case is mentioned by this gentleman, in which sensation appeared to be entirely paralysed during labour. (‘Med. Times,’ May 15, 1847, p. 234.) It is beyond doubt that profound lethargy occasionally makes its appearance about the time of delivery. Dr. Schulze met with a case in which a woman remained in a state of sleep for three days, and was delivered while in this unconscious condition: on awaking, she had no recollection of having suffered any pain during delivery. (‘Ann. d’Hyg.’ 1845, vol. 1, p. 216; ‘Med. Gaz.’ vol. 36, p. 40.) Dr. Montgomery relates the case of a lady, the mother of several children, who, on one occasion, was unconsiously delivered during sleep. (‘Cyc. Pr. Med.’; see also case in ‘Brit. and For. Med. Rev.’ No. 9, 256.) Dr. Palfrey describes a case in which labour commenced and progressed in a woman to the second stage during sleep. (‘Lancet,’ 1864, vol. 1, p. 36.)

The results obtained by the use of the vapours of chloroform and ether show that the expulsive efforts of the uterus are often as energetic in the unconscious as in the conscious state. It may appear extraordinary, however, that a primiparous woman, unless rendered unconscious by narcotic substances, should be delivered without suffering pain: nevertheless, a case of this kind is recorded by Dr. Wharrie. The woman’s age was 21; she had been in labour about six hours; she complained of no pain, and the child was born without effort or consciousness. The child was healthy but small, weighing rather more than four pounds. (‘Cormack’s Journal,’ January 1846, p. 12.) Notwithstanding this case, it is in the highest degree improbable that any primiparous female should be delivered during ordinary sleep, without being roused and brought to a sense of her condition.

There is another condition in which a woman may state that her delivery took place unconsciously; and this, from its being one of the most common species of defence set up by a female charged with
child-murder, must here claim our attention. Thus she will allege
that, while suffering from pain, she felt a strong desire to relieve
her bowels; that she went to the closet for that purpose, and
was there delivered without knowing anything of the occurrence
until it was too late to save the child. This kind of desire is a
very common symptom of the parturient state; and in private
practice it is often difficult to restrain a woman from yielding to the
feeling, when it certainly would be attended with hazard to the
child. ('Med. Times and Gaz.' April 4, 1857, p. 347.) We must
therefore admit that an accident of this kind can occur; although
here, as in every other instance in which unconscious delivery is
pledged, a medical witness ought to inform himself, or be informed,
of all the particulars which are stated to have attended delivery,
before he gives an answer applicable to the case. As a general
rule, it cannot be denied that delivery may take place under
these circumstances, and a woman not be conscious of it; but before
we make this admission in regard to any particular instance, we
ought to have a statement of all the facts from the female herself.
It is thus that we shall avoid the risk of seeing a premature medical
opinion set aside by the subsequent production of circumstantial
evidence. Besides, it has been properly observed that, after an
accident of this kind, a woman cannot be ignorant of her having
been delivered. Women who have raised this plea in cases of
child-murder have often been known to maintain that they were
unconscious of their pregnancy, and thus have attempted to excuse
themselves for not having prepared the articles necessary for child-
birth. It is possible that a woman, especially one who is pregnant
for the first time, may not be aware of her pregnancy in the earlier
stage; but it is rare for one to advance to the full term without
being conscious of it. Women who have borne children have not
unfrequently consulted medical men; and although nearly at full
term they have been unconscious of their state. In the majority
of instances, it may be presumed that a woman thus situated, must
have some reason to suspect her condition; and if only a sus-
picion existed in the mind of one who did not contemplate the
destruction of her offspring, there would assuredly be many cir-
cumstances forthcoming which would at once establish her inno-
cence. If this remark applies to married women, it applies with
still greater force to those who are unmarried, since the fact of
illicit connection, and the fear of its consequences, must render
them peculiarly alive to all those changes which, by common repute,
take place in the female system during pregnancy.

Signs of delivery in the dead.—It will now be proper to examine
the signs of delivery which are derivable from an examination of
the body of a woman after death. Occasionally we may obtain some
history of the case during life, by which our labour will be much
facilitated; but, on the other hand, every fact may be studiously
concealed from us, and then we may be required to prove not only
the delivery, but the previous pregnancy. These investigations re-
lative to pregnancy and delivery in the dead body, are almost exclusively confined to cases of criminal abortion, where the contents of the uterus have been expelled at the sacrifice of the life of the woman. Death commonly ensues in these cases within two or three days after delivery, and then satisfactory proofs are obtainable by a post-mortem examination; but if the woman has survived three or four weeks, it will be as difficult to determine delivery in the dead as in the living subject. This remark applies to delivery at the full period; for if the uterus have expelled its contents in the first months of pregnancy, the traces of this expulsion will have generally disappeared in the course of a few days.

The following may be taken as the chief appearances when the body of a woman is examined soon after delivery at the full period. The uterus is like a large flattened pouch from nine to twelve inches long, its mouth being wide open. The cavity contains coagula of blood or a sanguineous fluid: and its surface is covered with the remains of a decidua—the outermost membrane of the embryo or fetus. In the part to which the placenta has been attached, the substance of the organ appears exposed, presenting several large semilunar or valvular openings. This portion of the uterus has been found of a very dark colour, which has given rise to a suspicion that the organ was gangrenous. The vessels are extremely large and numerous. The Fallopian tubes, round ligaments, and ovaria are so vascular (full of blood) that they have a purple colour. The spot whence the ovum has escaped is more congested than the rest of the ovarian surface. Obstetric writers differ greatly in their statements respecting the size of the uterus at different periods after parturition; and these differences may be explained, partly by the fact that the uterus contracts more rapidly in some women than in others, and partly perhaps by the circumstance of the birth having been in some instances, premature. M. Toulmouche has reported some instructive cases of delivery at different periods, showing the influence of time on the appearances. (‘Ann. d’Hys.’ 1864, 2, p. 349.)

Dr. Montgomery states that after delivery at the full period, and under perfect contraction of the uterus, if the body be examined within a day or two, the uterus will be found seven inches long and four broad. Its substance, on making a section, will be from an inch to an inch and a half in thickness, and will present the orifices of a great number of large vessels. At the end of a week the uterus is between five and six inches, and at the end of a fortnight about five inches in length; the density of its structure has during this period increased, but its substance has considerably diminished. The inner surface is still bloody, and covered partially with a pulpy membrane resembling the decidua. The orbicular direction of the fibres around the internal orifices of the Fallopian tubes is at this time very distinct. In about a month the uterus will have become fully contracted; but the mouth rarely, if ever, closes so completely as in the virgin state. In a case examined by Dr. Barnes, in which
a primiparous woman, aged 26, died from puerperal fever on the sixth day after delivery, the following appearances were met with in the uterus. The internal surface was blackened and congested, especially in those parts to which the placenta had been attached. There was the appearance of suppurative action in this part. The substance of the uterus was healthy: there was no pus in the sinuses. The os uteri showed considerable ecchymosis. The vagina was healthy: the iliac veins contained nothing but loosely coagulated blood. There was in the left ovary a small well-marked corpus luteum, having a central cavity. ('Med. Gaz.' vol. 41, p. 294.) This condition of the uterus must not be confounded with the appearances which are observed when death takes place during menstruation. Dr. Judes found in the bodies of three women who died during menstruation that the uterus was somewhat enlarged—its walls being thickened and its interior lined by a reddish gelatinous layer about 1-12th of an inch thick consisting of a capillary network of vessels, enclosed in a mucous-like membrane. When this was removed the uterus below was found to be white and firm. The interior of the neck was of a greyish colour: the lips were swollen, of a dull-red, bluish, or even black colour. On compressing this part small drops of blood issued. This was not observed either in the neck or body of the vagina. A section of the uterus presented only the normal fibrous tissue: but at the level of the mouth (os uteri) there was a mass of tissue resembling a portion of apoplectic lung. The blood during menstruation, according to this gentleman, issues entirely from the highly congested mouth of the uterus. ('Gaz. des Hôpitaux,' No. 39. and 'Med. Times and Gaz.' June 25, 1855.) An ecchymosed condition of the neck of the uterus is very commonly found as the result of even an easy labour, and therefore forms a good guide where present. This point must be borne in mind in reference to criminal abortion, inasmuch as the neck may present an appearance as if violence had been employed.

From the statement of appearances given above, it will be seen that there must be considerable difficulty in determining the period prior to death at which delivery took place. The difficulty is increased when a woman has been prematurely delivered, or when death has not taken place until some time after delivery. A medical opinion may be then in some degree strengthened by searching for those signs which have been described as characteristic of delivery in the living. These, if present, will always furnish strong corroborative evidence, not only of the fact of delivery, but of the period at which it had probably occurred.

Corpora lutea.—The condition of the ovaries has been considered to furnish strong evidence, not so much of delivery as of previous pregnancy. These organs, as it has been already stated, when examined soon after delivery, are found of a deep purple colour, owing to their extreme vascularity. If the woman has really been pregnant, we may expect to find, on one of the ovaries, the appearance which is denominated a corpus luteum. The accounts given by ob-
stetric writers of the characters of corpora lutea, and the evidence which they are capable of furnishing in legal medicine, are very conflicting. According to Dr. Montgomery, in a true corpus luteum (i.e. of pregnancy) the ovary presents a protuberance with a distinct cicatrix on the part whence the ovum has escaped. The protuberant portion will be found on section to have an oval form and to be of a dull yellow colour—hence the name corpus luteum. It is full of blood, and in texture resembles the section of a kidney. It is of its greatest size in the early stage of pregnancy, and gradually diminishes as gestation advances. In the centre of this section, there may be either a cavity or a radiated white cicatrix (scar), according to the period at which the examination is made. The cavity remains for about three or four months after conception, and is surrounded by a strong white cyst: as gestation advances, the opposite sides approximate, and a radiated white cicatrix results. The size and vascularity of the corpus luteum are considerably diminished by the time gestation is completed, and in about five or six months afterwards—i.e. fourteen months after its first formation,—it disappears altogether from the ovary; so that the corpus luteum of one conception is not found with that of another, unless a premature expulsion of the contents of the uterus has taken place. ('Cyc. Pr. Med.' Pregnancy, p. 496; see also 'Edinburgh Monthly Journal,' Jan. 1845, p. 58.) The presence of a corpus luteum, as it is here described, does not prove that a woman has borne a child. In the opinion of some obstetric authorities, it establishes that conception had taken place; but the embryo may have been converted into a mole or a blighted fetus, and expelled at an early period.

The late Drs. Baly and Kirkes, who investigated the subject of true and false corpora lutea, concluded from their researches, that cases seldom occur in which the mere presence of a corpus luteum can be taken as a proof of previous impregnation; and they consider the following rules to be deducible from the facts which they have collected:—1. A corpus luteum in its early stage (that is, a large vesicle filled with coagulated blood, having a ruptured orifice, and a thin layer of yellow matter within its walls) affords no proof of impregnation having taken place. 2. From the presence of a corpus luteum, the opening of which is closed, and the cavity reduced or obliterated (only a stellate cicatrix remaining), no conclusion as to pregnancy having existed can be drawn, if the corpus luteum be of small size, and does not contain so much yellow substance as would form a mass the size of a small pea. 3. A similar corpus luteum of larger size than a common pea, would furnish strong presumptive evidence, not only of impregnation having taken place, but of pregnancy having existed during several weeks at least; and the evidence would approximate more and more to complete proof, in proportion as the size of the corpus luteum was greater. (Op. cit. p. 57.)

From these considerations, therefore, it appears to me that the
in a living woman vary materially, according to the time at which this event has taken place. In common language, if the contents of the uterus are expelled before the sixth month, the woman is said to miscarry, or to have an abortion; if after the sixth month, she is said to have a premature labour. The law does not admit any such distinction; the expulsion of the ovum, fetus, or child by criminal violence, at any period of utero-gestation, is regarded as a miscarriage or abortion. It has been well observed that the signs of delivery are indistinct in proportion to the immaturity of the ovum. Thus, when it takes place at the second or third month, there are scarcely any proofs which can be derived from an examination of the woman. All the ordinary signs of delivery at the full period will be absent,—the development of the embryo not having been sufficient to cause any prominence in the abdomen, or to give rise to those changes in the system which take place previously to the birth of a mature child: e.g. enlargement of the breasts and dilatation of the mouth of the uterus. Abortion at this period (the second or third month) is generally accompanied by loss of blood, which may manifest itself by its effects on the body. This, however, can only give rise to a suspicion. At a later period of gestation there may be a discharge resembling the lochia, and the mouth of the uterus may be found enlarged and soft; but from the small size of the fetus, the outlet may present no positive evidence of delivery. The quantity of blood lost may be greater, and may have a more decided effect on the system. Of course, if the ovum, fetus, or any of its membranes be found, then the presumption of abortion will be strongly supported; but women who designly conceal their condition, will commonly take effectual means to prevent the examiner from obtaining evidence of this kind.

Signs of recent delivery in the living.—The woman is weak, the countenance pale, the eyes are surrounded by livid areoles, and there is an appearance of general indisposition. Any severe illness may, however, give rise to similar symptoms. Their sudden occurrence from a state of previous good health, especially when pregnancy is known or suspected, will create a strong suspicion. The breasts are large and full, especially about the third or fourth day after delivery; the nipples are enlarged, and the areoles around them present all the characters of advanced pregnancy. If the appearances described are not well marked at the first examination, they may be seen at a later period; and in a doubtful case, when the embryo or fetus is not forthcoming, a second examination should be made before a final opinion is given.

1. The skin of the abdomen is relaxed, sometimes thrown into folds; the cuticle interrupted by light-coloured broken streaks, passing especially from the groins and pubes towards the navel, which is more or less stretched and altered in appearance. Any disease which has caused enlargement of the abdomen may give rise to a similar appearance in the skin, so that when taken alone much confidence cannot be placed in these lines or streaks as proofs of
delivery. The round form of the enlarged and semi-contracted uterus may be felt at the lower part of the abdomen, generally lying towards one or the other side. The apparent size of this organ will depend upon the degree to which it has contracted, and therefore greatly upon the time at which an examination is made. Dr. Montgomery has pointed out the existence of a dark line extending from the pubes to the navel, with a dark areola around the latter, in cases of recent delivery; but he has found this line to exist independently of pregnancy and delivery—in one case in a girl aged 10, and in another instance in a lady labouring under an ovarian tumour.

2. The organs of generation will be found externally swollen, contused, or even lacerated, with clots of blood about them. The outlet is much dilated, the vagina relaxed, the mouth of the uterus considerably open, and its margin completely relaxed. The neck of the uterus is shortened, and scarcely perceptible; and the body of this organ is from two to four times the size which it has in the unimpregnated state. It occasionally happens that the neck of the uterus is lacerated on one side during the passage of the head in primiparæ; should a laceration or a cicatrix be found, it will much assist in proving delivery.

3. The presence of the lochia (from λοχία, child-birth).—This is a discharge, at first of a sero-sanguineous liquid, but which afterwards appears as a brown or green-coloured serum. It commences soon after delivery, and continues from a week to a fortnight, or even longer; it may be absent after the third day. The discharge has so peculiar an odour that some have regarded this alone as furnishing strong evidence of recent delivery.

The signs which have been here enumerated are found only when no delay has taken place in making the examination, and the woman has been recently delivered. In some strong and vigorous women the body resumes its natural state within a few days, and the traces of parturition may have wholly disappeared or have become so ambiguous as to furnish no satisfactory evidence. In others again, proofs of delivery will be obtainable for a fortnight or three weeks afterwards. In most cases, however, it is difficult, if not impossible, to say, after the lapse of eight or ten days, that delivery has certainly taken place, the signs having commonly by that time disappeared. In all cases the earlier the period at which an examination is made, the more satisfactory will be the evidence obtained. Dr. Montgomery once examined a woman five days after her delivery at the full time, and he was particularly struck with the degree to which the parts had become restored to their ordinary condition, especially the mouth and neck of the uterus, which hardly differed from their natural and unimpregnated form. (‘Cyc. Pr. Med.’ loc cit.) This inquiry becomes of considerable importance in a case of alleged child-murder. When the body of a child is not found until after two or three weeks from the time of its birth, and the suspected woman denies that she has been delivered of a child, she will probably not deny
her pregnancy, but may assert that she has had an abortion at an early period. (See a case by Dr. Walther of Labiau in Casper's 'Vierteljahrschrift,' Oct. 1863, p. 275.) In cases of abortion at an early period, the placentas is not always discharged at the time at which the embryo or foetus is expelled from the uterus. ('Med. Times and Gaz.' March 12, 1859.) A microscopical examination of the discharges might reveal placental or chorionic structures. In a case which occurred to Dr. Paxton of Kilmarnock, all the usual signs of delivery were present in a woman at 20: she had evidently lost much blood, and was much reduced. From the state of the organs, Dr. Paxton considered that she had been delivered of a child within three days. There was no lochial discharge at the date of examination. The woman had previously denied her pregnancy when charged with concealment of it, but after the medical examination she altered her statement, and said that she had not only been pregnant, but was so at that time. On a further examination, the uterus was found to contain a foetus advanced to about the sixth month, and in three months more she was delivered of a child. What caused the appearances of delivery, the condition of the breasts, &c.? Either she had shortly before been delivered of a child, or of a blighted ovum or foetus. Neither foetus nor placentas was ever seen or could be found, but the woman had had ample opportunity to dispose of them. This may have been a case of twin conception or of superfoetation. It shows that in charges of concealment of pregnancy or delivery, it must not be inferred when the appearances of delivery clearly exist, that the uterus is empty. The organ should always be examined in order to determine whether it does not contain another foetus.

Signs of delivery at a remote period.—A question may arise whether it is in the power of a medical practitioner to determine the period at which delivery took place, i.e. how long a time has elapsed. This becomes necessary when, in cases of concealed birth, abortion, or infanticide (some time after suspected parturition), a child is found, and it is required to determine whether the time which has elapsed since the birth of the child, either dead or living, corresponds with the supposed delivery of a suspected woman. An opinion may be given within eight or ten days after delivery, from the state of the breasts,—of the discharges (lochia), and of the mouth of the uterus; but it becomes difficult after the sixth day: and when the tenth or twelfth day has passed it is still more difficult. After two or three months it may be regarded as impossible to assign the period of delivery with any degree of precision. (See Devergie, 'Méd. Lég.' vol. 1, p. 446.)

In a case of pretended delivery, contested legitimacy, or disputed chastity, a medical jurist may be required to say whether a woman has, at any antecedent period of her life, been delivered of a child. This question,* it must be remarked, can be raised only in respect to delivery at the full period, since there is no doubt that abortion in the early stages of pregnancy may take place, and leave no
traces of such an event discoverable in after-life. Indeed, a few
days or weeks are sometimes sufficient to obliterate all evidence of
the fact. With respect to delivery at the full term, certain signs
have been mentioned, which by some are considered indelible.
These are: shining streaks on the skin of the abdomen, a brown
mark reaching from the navel to the pubes, and the state of the
mouth of the uterus, which is said never to close so effectually as
in the virgin. In regard to the appearance of the skin of the
abdomen, it may be remarked, that any morbid causes giving rise
to a distension of the cavity—as ovarian enlargement or dropy—
will produce the same effect: so, also, to a certain extent, extreme
emaciation from a state of obesity. (See 'Med. Times and Gaz.'
April 17, 1861, p. 450, on False Cicatrices.) Then, again, these
marks on the skin are not always persistent throughout life. Besides,
a woman, according to the statements of good observers, may be
not only once but repeatedly delivered, without having these marks
produced. ('Med. Times and Gaz.' June 9, 1860, p. 583, also
'Ann. d'Hyy.' 1873, 2, p. 139.)

With regard to the state of the mouth of the uterus it is liable to
vary in different women, and to be affected by disease—so that a
certain judgment cannot always be formed from its condition. In
a woman who has not borne children the mouth of the uterus is in
the form of a slit, the angles being bent down, and giving to it the
appearance of the os tinnæ (tench's mouth). Mr. Whitehead has ob-
served that, in a woman who has borne children, the mouth becomes
elongated, and loses the slight bend at each of its extremities; the
labia are thickened, and more nearly of equal size; the commissures
are less clearly defined, and the whole of the neck is enlarged, and
not so compact in texture. ('On Abortion,' p. 195.) It must be
remembered, however, that the condition of the mouth of the uterus,
even in the virgin, varies at each menstrual period. Should there
be congenital occlusion of the vagina or the hymen be found imper-
furate, this will at once negative a previous delivery; but the latter
condition will not negative a previous pregnancy, since a woman
may have been impregnated, and have had an abortion in an early
stage of pregnancy, without a necessary destruction of the hymen.
This sort of negative evidence may however be sometimes of great
value. There is a total want of good affirmative evidence of de-

Feigned delivery.—Delivery has often been feigned by women for
the purpose of extorting charity, compelling marriage, or disin-
UNCONSCIOUS DELIVERY.

Heriking parties who have claims to an estate, and in other cases without any assignable motive. Of course, an imposition of this kind could not be sustained before a medical practitioner; and detection is rendered easy, because it is recent, and not remote delivery which is assumed. The latter would, if pretended, be generally cleared up by an examination, as well as by circumstantial evidence. (See case, ‘Med. Gaz.’ vol. 19, p. 281; also another by Capuron, ‘Méd. Lég. des Accouchemens,’ p. 110.)

Can a woman be delivered unconsciously?—Another important question relative to delivery in the living, is whether a woman can be delivered without being conscious of it. The signs of delivery may be discovered by a practitioner; the offspring may also be found. The woman may admit the fact of her delivery, but allege that she was totally unconscious of it. The only medico-legal case in which this plea is occasionally raised is in infanticide; and as the possibility of the occurrence may be questioned, the practitioner must be provided with a knowledge of those facts which medico-legal writers have accumulated respecting it. There is no doubt that a woman may be delivered unconsciously during profound sleep—while labouring under coma, apoplexy, asphyxia, syncope, or when suffering from the effects of narcotic poisons—e.g. the vapours of chloroform and ether, or intoxicating liquors. It is said, also, that delivery has taken place spontaneously while a woman was in the act of dying. This, however, has no bearing on the present question. It is in those cases where, after her recovery, a woman pleads unconsciousness of delivery that medical practitioners are chiefly consulted. Besides the cases enumerated, hysteria when accompanied by loss of sense and motion, has been mentioned as a state in which parturition is liable to occur unconsciously. We need not be surprised at delivery taking place under these circumstances, when we consider that the contractile power of the uterus is altogether independent of volition: but, unless the morbid states already mentioned are accompanied by the most profound lethargy and entire loss of sensation, it can rarely happen that the contractions of this organ in its efforts to expel the child, should not at once rouse a woman into consciousness. We ought particularly to expect this in primipare, i.e. in those who have never before borne children. At the same time it must be remembered that parturition in some women, especially when the pelvis is wide and the child small, may take place with such rapidity and ease as scarcely to be accompanied with pain.

It has been observed that, when a woman has frequently borne children, delivery sometimes takes place without effort, and without any consciousness on her part. On other occasions a woman may lie in a kind of torpor or stupor, or suffer from eclampsia (puerperal convulsions), and have no recollection of her delivery. The following case is possible:—A woman may be delivered while under the influence of eclampsia, which might have attacked her before labour set in; and after delivery, but before complete recovery,
she might become maniacal—a not unfrequent condition—during which interval she may have killed or injured her child: or the child may have been born dead, or suffering from some accidental injury. She would with truth assert her entire ignorance of it. Her statement would be verified by a bitten tongue, a congested conjunctiva or face. Should albumen be found in the urine this fact would be still more confirmative. Of course eclampsia might occur without these results. The statement might be disproved by finding that her actions had shown care and design in other circumstances at the time she said she was unconscious. Mr. King has described the case of a woman, aged 36, the mother of nine children. She received his assistance in her tenth labour: when summoned, she was lying calmly and placidly in bed, and was perfectly insensible. He found that the child had been expelled with the placenta. The woman did not recover her sensibility for ten or twelve hours, and then stated that she had no recollection either of the birth of a child, or of any circumstances connected with this event: she suffered no pain or uneasiness. Another case is mentioned by this gentleman, in which sensation appeared to be entirely paralysed during labour. (Med. Times,' May 15, 1847, p. 234.) It is beyond doubt that profound lethargy occasionally makes its appearance about the time of delivery. Dr. Schulze met with a case in which a woman remained in a state of sleep for three days, and was delivered while in this unconscious condition: on awaking, she had no recollection of having suffered any pain during delivery. (Ann. d'Hyg.' 1845, vol. 1, p. 216; Med. Gaz.' vol. 36, p. 40.) Dr. Montgomery relates the case of a lady, the mother of several children, who, on one occasion, was unconsciously delivered during sleep. ('Cyc. Pr. Med.'; see also case in 'Brit. and For. Med. Rev.' No. 9, 256.) Dr. Palfrey describes a case in which labour commenced and progressed in a woman to the second stage during sleep. ('Lancet,' 1864, vol. 1, p. 36.)

The results obtained by the use of the vapours of chloroform and ether show that the expulsive efforts of the uterus are often as energetic in the unconscious as in the conscious state. It may appear extraordinary, however, that a primiparous woman, unless rendered unconscious by narcotic substances, should be delivered without suffering pain: nevertheless, a case of this kind is recorded by Dr. Wharrir. The woman’s age was 21; she had been in labour about six hours; she complained of no pain, and the child was born without effort or consciousness. The child was healthy, but small, weighing rather more than four pounds. ('Cormack’s Journal,' January 1846, p. 12.) Notwithstanding this case, it is in the highest degree improbable that any primiparous female should be delivered during ordinary sleep, without being roused and brought to a sense of her condition.

There is another condition in which a woman may state that her delivery took place unconsciously; and this, from its being one of the most common species of defence set up by a female charged with
child-murder, must here claim our attention. Thus she will allege that, while suffering from pain, she felt a strong desire to relieve her bowels; that she went to the closet for that purpose, and was there delivered without knowing anything of the occurrence until it was too late to save the child. This kind of desire is a very common symptom of the parturient state; and in private practice it is often difficult to restrain a woman from yielding to the feeling, when it certainly would be attended with hazard to the child. ('Med. Times and Gaz.' April 4, 1857, p. 347.) We must therefore admit that an accident of this kind can occur; although here, as in every other instance in which unconscious delivery is pleaded, a medical witness ought to inform himself, or be informed, of all the particulars which are stated to have attended delivery, before he gives an answer applicable to the case. As a general rule, it cannot be denied that delivery may take place under these circumstances, and a woman not be conscious of it: but before we make this admission in regard to any particular instance, we ought to have a statement of all the facts from the female herself. It is thus that we shall avoid the risk of seeing a premature medical opinion set aside by the subsequent production of circumstantial evidence. Besides, it has been properly observed that, after an accident of this kind, a woman cannot be ignorant of her having been delivered. Women who have raised this plea in cases of child-murder have often been known to maintain that they were unconscious of their pregnancy, and thus have attempted to excuse themselves for not having prepared the articles necessary for childbirth. It is possible that a woman, especially one who is pregnant for the first time, may not be aware of her pregnancy in the earlier stage; but it is rare for one to advance to the full term without being conscious of it. Women who have borne children have not unfrequently consulted medical men; and although nearly at full term they have been unconscious of their state. In the majority of instances, it may be presumed that a woman thus situated, must have some reason to suspect her condition; and if only a suspicion existed in the mind of one who did not contemplate the destruction of her offspring, there would assuredly be many circumstances forthcoming which would at once establish her innocence. If this remark applies to married women, it applies with still greater force to those who are unmarried, since the fact of illicit connection, and the fear of its consequences, must render them peculiarly alive to all those changes which, by common repute, take place in the female system during pregnancy.

Signs of delivery in the dead.—It will now be proper to examine the signs of delivery which are derivable from an examination of the body of a woman after death. Occasionally we may obtain some history of the case during life, by which our labour will be much facilitated; but, on the other hand, every fact may be studiously concealed from us, and then we may be required to prove not only the delivery, but the previous pregnancy. These investigations re-
ATIVE to pregnancy and delivery in the dead body, are almost exclusively confined to cases of criminal abortion, where the contents of the uterus have been expelled at the sacrifice of the life of the woman. Death commonly ensues in these cases within two or three days after delivery, and then satisfactory proofs are obtainable by a post-mortem examination; but if the woman has survived three or four weeks, it will be as difficult to determine delivery in the dead as in the living subject. This remark applies to delivery at the full period; for if the uterus have expelled its contents in the first months of pregnancy, the traces of this expulsion will have generally disappeared in the course of a few days.

The following may be taken as the chief appearances when the body of a woman is examined soon after delivery at the full period. The uterus is like a large flattened pouch from nine to twelve inches long; its mouth being wide open. The cavity contains coagula of blood or a sanguineous fluid; and its surface is covered with the remains of a decidua—the outermost membrane of the embryo or fetus. In the part to which the placenta has been attached, the substance of the organ appears exposed, presenting several large semilunar or valvular openings. This portion of the uterus has been found of a very dark colour, which has given rise to a suspicion that the organ was gangrenous. The vessels are extremely large and numerous. The Fallopian tubes, round ligaments, and ovaria are so vascular (full of blood) that they have a purple colour. The spot whence the ovum has escaped is more congested than the rest of the ovarian surface. Obstetric writers differ greatly in their statements respecting the size of the uterus at different periods after parturition; and these differences may be explained, partly by the fact that the uterus contracts more rapidly in some women than in others, and partly perhaps by the circumstance of the birth having been in some instances, premature. M. Toulmouche has reported some instructive cases of delivery at different periods, showing the influence of time on the appearances. ('Ann. d'Hyg.' 1864, 2, p. 349.)

Dr. Montgomery states that after delivery at the full period, and under perfect contraction of the uterus, if the body be examined within a day or two, the uterus will be found seven inches long and four broad. Its substance, on making a section, will be from an inch to an inch and a half in thickness, and will present the orifices of a great number of large vessels. At the end of a week the uterus is between five and six inches, and at the end of a fortnight about five inches in length; the density of its structure has during this period increased, but its substance has considerably diminished. The inner surface is still bloody, and covered partially with a pulpy membrane resembling the decidua. The orbicular direction of the fibres around the internal orifices of the Fallopian tubes is at this time very distinct. In about a month the uterus will have become fully contracted; but the mouth rarely, if ever, closes so completely as in the virgin state. In a case examined by Dr. Barnes, in which
a primiparous woman, aged 26, died from puerperal fever on the sixth day after delivery, the following appearances were met with in the uterus. The internal surface was blackened and congested, especially in those parts to which the placenta had been attached. There was the appearance of suppurrative action in this part. The substance of the uterus was healthy: there was no pus in the sinuses. The os uteri showed considerable ecchymosis. The vagina was healthy: the iliac veins contained nothing but loosely coagulated blood. There was in the left ovary a small well-marked corpus luteum, having a central cavity. ('Med. Gaz.' vol. 41, p. 294.) This condition of the uterus must not be confounded with the appearances which are observed when death takes place during menstruation. Dr. Judee found in the bodies of three women who died during menstruation that the uterus was somewhat enlarged—its walls being thickened and its interior lined by a reddish gelatinous layer about 1-12th of an inch thick consisting of a capillary network of vessels, enclosed in a mucous-like membrane. When this was removed the uterus below was found to be white and firm. The interior of the neck was of a greyish colour: the lips were swollen, of a dull-red, bluish, or even black colour. On compressing this part small drops of blood issued. This was not observed either in the neck or body of the vagina. A section of the uterus presented only the normal fibrous tissue: but at the level of the mouth (os uteri) there was a mass of tissue resembling a portion of apoplectic lung. The blood during menstruation, according to this gentleman, issues entirely from the highly congested mouth of the uterus. ('Gaz. des Hôpitaux,' No. 39. and 'Med. Times and Gaz.' June 23, 1855.) An ecchymosed condition of the neck of the uterus is very commonly found as the result of even an easy labour, and therefore forms a good guide where present. This point must be borne in mind in reference to criminal abortion, inasmuch as the neck may present an appearance as if violence had been employed.

From the statement of appearances given above, it will be seen that there must be considerable difficulty in determining the period prior to death at which delivery took place. The difficulty is increased when a woman has been prematurely delivered, or when death has not taken place until some time after delivery. A medical opinion may be then in some degree strengthened by searching for those signs which have been described as characteristic of delivery in the living. These, if present, will always furnish strong corroborative evidence, not only of the fact of delivery, but of the period at which it had probably occurred.

Corpora lutea.—The condition of the ovaries has been considered to furnish strong evidence, not so much of delivery as of previous pregnancy. These organs, as it has been already stated, when examined soon after delivery, are found of a deep purple colour, owing to their extreme vascularity. If the woman has really been pregnant, we may expect to find, on one of the ovaries, the appearance which is denominated a corpus luteum. The accounts given by ob-
stetric writers of the characters of corpora lutea, and the evidence which they are capable of furnishing in legal medicine, are very conflicting. According to Dr. Montgomery, in a true corpus luteum (i.e. of pregnancy) the ovary presents a protuberance with a distinct cicatrix on the part whence the ovum has escaped. The protuberant portion will be found on section to have an oval form and to be of a dull yellow colour—hence the name corpus luteum. It is full of blood, and in texture resembles the section of a kidney. It is of its greatest size in the early stage of pregnancy, and gradually diminishes as gestation advances. In the centre of this section, there may be either a cavity or a radiated white cicatrix (scar), according to the period at which the examination is made. The cavity remains for about three or four months after conception, and is surrounded by a strong white cyst: as gestation advances, the opposite sides approximate, and a radiated white cicatrix results. The size and vascularity of the corpus luteum are considerably diminished by the time gestation is completed, and in about five or six months afterwards—i.e. fourteen months after its first formation,—it disappears altogether from the ovary; so that the corpus luteum of one conception is not found with that of another, unless a premature expulsion of the contents of the uterus has taken place. ('Cyc. Pr. Med.' Pregnancy, p. 496; see also 'Edinburgh Monthly Journal,' Jan. 1845, p. 58.)

The presence of a corpus luteum, as it is here described, does not prove that a woman has borne a child. In the opinion of some obstetric authorities, it establishes that conception had taken place; but the embryo may have been converted into a mole or a blighted fetus, and expelled at an early period.

The late Drs. Baly and Kirkes, who investigated the subject of true and false corpora lutea, concluded from their researches, that cases seldom occur in which the mere presence of a corpus luteum can be taken as a proof of previous impregnation; and they consider the following rules to be deducible from the facts which they have collected:—1. A corpus luteum in its early stage (that is, a large vesicle filled with coagulated blood, having a ruptured orifice, and a thin layer of yellow matter within its walls) affords no proof of impregnation having taken place. 2. From the presence of a corpus luteum, the opening of which is closed, and the cavity reduced or obliterated (only a stellate cicatrix remaining), no conclusion as to pregnancy having existed can be drawn, if the corpus luteum be of small size, and does not contain so much yellow substance as would form a mass the size of a small pea. 3. A similar corpus luteum of larger size than a common pea, would furnish strong presumptive evidence, not only of impregnation having taken place, but of pregnancy having existed during several weeks at least; and the evidence would approximate more and more to complete proof, in proportion as the size of the corpus luteum was greater. (Op. cit. p. 57.)

From these considerations, therefore, it appears to me that the
only conclusion which we can draw is, that medical evidence res-
pecting the nature of a corpus luteum in an unknown case, if re-
ceived by a Court of law at all, should be received with the greatest
cautions, and only from a witness of great experience. The old doctrine
on this subject, that the presence of such a body on the ovary affords
certain and undeniable evidence of impregnation, may be regarded
as completely subverted.

Characters of the ovum or embryo to the sixth month.—Hitherto the
examination has been confined to the woman, but it is now neces-
sary to describe the characters of the ovum or embryo and its en-
veloping membranes at the early stages of pregnancy, since when
this can be procured, it may furnish good medical evidence. The
‘ovum’ signifies the embryo and its membranous coverings; the
‘embryo’ is the body which is afterwards converted into the foetus;
the term ‘fœtus’ is applied to the embryo after the third or fourth
month of gestation. If the ovum be expelled within a month after
conception, it is scarcely possible to detect it, owing to its small
size and its being enveloped in coagula of blood. Burns examined
three uteri, within the first month, where no expulsion had taken
place, but even under these favourable circumstances he failed in
discovering the ovum. At first the ovum contains no visible embryo,
but it appears merely to consist of vesicular membranous
coverings. According to this authority, when first distinctly seen
through its membranes, it is of an oblong form and about a line
(the twelfth of an inch) in length. At the sixth week it is slightly
curved, resembling, as it floats, a split pea. In the seventh week, it
is equal in size to a small bee; and by the end of the second month
it is bent, and as long as a kidney-bean. After the second month
development goes on rapidly; the features are in part well-marked,
and the limbs are gradually formed. At the third month, the fœtus
weighs from one to two ounces; when stretched out it measures
about three inches, and the genital organs, although the sex is not
then distinguishable, are large in proportion to the rest of the body.
The membranes are larger than a goose’s egg. At the fourth month
the fœtus is from five to six inches long, and weighs from two to
three ounces; at the fifth month it measures from six to seven
inches, and weighs from five to seven ounces; and at the sixth month,
its length is from eight to ten inches, and its weight about a pound.
(For the characters of the child beyond this period, see ‘Infan-
ticide.’) The great difficulty will consist in determining the
nature of the supposed ovum or embryo between the second and
third months. In making the examination, it should be placed in
water, and all coagula gently washed away from the membranous
coverings or removed by some blunt instrument. Alcohol may be
used as a substitute for water after the blood has been removed.
If the embryo cannot be found, the decidua and chorion or portions
of them may be recognized:—the former by its forming the outer
investment with its smooth internal and rough external or uterine
surface; the latter, by the villous or shaggy appearance of that
portion of it which would have become the placenta. Between the third and fourth month the foetus may be commonly identified without much difficulty. The ovum in many instances escapes first, leaving the decidua behind. This comes away after a time, but it is important to remember that in some states of the virgin, decidua-like structures are thrown off from the uterine mucous membrane, which, when examined by the microscope, resemble the true decidua. Both are constituted of the innermost portion of the uterine mucous membrane, and contain all its elements. Dr. Keiller (‘Ed. Med. Jour.’ July 1865, p. 82) and Dr. C. Bell in the same journal (Aug. 1865, p. 120,) have called attention to the fact that an erroneous medical opinion on the date of pregnancy, may be formed by trusting too much to the appearance of the ovular membranes. The ovum or foetus may die and the membranes afterwards continue to grow, thus giving the appearance of a longer date to pregnancy. An examination of the embryo alone can give any satisfactory results on this point. The membranes may be also enlarged as the result of dropical accumulation, and this may be set down to pregnancy of some duration, when it may not actually have extended beyond the second or third month.

A mole is the result of conception, the foetus of which has died in consequence of the effusion of blood into the decidua and the various membranes; and should a placenta exist, into its structure. The symptoms accompanying a mole resemble those of pregnancy: and the appearances produced by its expulsion are not to be distinguished from those attending the abortion of a foetus at an early period of gestation. The only means of distinction would be derived from an examination of the expelled matters. The local effects produced by the expulsion of these bodies on the organs of generation, are by no means so great as those arising from delivery at the full period.

When from some accident the foetus dies at any time before the complete formation of the placenta, the villi of the chorion, instead of completely dying, retain a certain amount of vital force; the consequence of which is that in some parts growth goes on imperfectly, serous fluid is effused within and the part is distended into a globular form. This is called a vesicular mole. In the early stage of pregnancy a decidual covering will always be found more or less complete around this mole, but if the size of the mass be great, then, although present, it will be less observable, being spread over a larger surface. A corpus luteum will also be found, but not so perfectly formed as in normal pregnancy. The ordinary symptoms of pregnancy accompany this state, although in all forms of mole-pregnancy it is either imperfectly marked or it only proceeds to a certain point. (See case, ‘Obstetric Record,’ vol. 1, p. 21.) It is also to be remembered that the effects produced by the expulsion of a mole, are very similar to those of an abortion. These facts may have an important bearing on medico-legal practice.

Concealment of Birth.—Medical evidence respecting delivery is
required in two cases: 1st, when the birth of a child is wilfully concealed; and 2ndly, when the contents of the uterus have been prematurely expelled by criminal means. The concealment of pregnancy is no offence in the English law; but the concealment of delivery or of the birth of a child is a misdemeanour by the 24 & 25 Vict. c. 100, sec. 60, the words of which are to the following effect:—

'If any woman shall be delivered of a child, every person who shall by any secret disposition of the dead body of the said child, whether such child died before, at, or after its birth, endeavour to conceal the birth thereof, shall be guilty of a misdemeanour, and being convicted thereof shall be liable at the discretion of the Court to be imprisoned for any term not exceeding two years, with or without hard labour.' A proviso is added to the effect that any person tried for the murder of any child, and acquitted thereof, may be found guilty of concealment of birth, if it shall appear in evidence that the child had been born recently, and that such person did by some secret disposition of the dead body, endeavour to conceal the birth. Various interpretations have been put upon the terms 'concealment' or 'secret disposition' of the body. This part of the evidence does not affect a medical witness, unless he himself has found the dead body or was present when it was found. It will rest with the judge to determine whether the body has been so disposed of as to constitute legally a misdemeanour. (Reg. v. Clarke, Chelmsford Summer Assizes, 1864.)

This is an offence of which women charged with child-murder are commonly convicted in England: while the Scotch law punishes women for the concealment of pregnancy if the child be dead or amissing. (Alison's 'Criminal Law,' p. 153.) The medical evidence on trials for this misdemeanour is exclusively derived from an examination of the mother; and thus, much will depend upon the time at which this is made. With respect to the child, its body need not even be produced, provided there be satisfactory evidence of its death: the body may have been secretly buried or burnt, and in the latter case it may be necessary to examine the bones or ashes.

According to the statute the child must be dead—the concealment of the birth of a living child not being any offence, unless it should happen to die before its birth was made known. In the case of the Queen v. Woodman (Kingston Lent Ass. 1845), the woman was acquitted because the child was living when concealed. Mr. Chitty says that, in order to constitute the offence, the child must have advanced to the end of the seventh month ('Med. Jur.' p. 412); but it is to be presumed that the concealment of the birth of a dead child at the sixth or under the seventh month, would be as much an infringement of the statute as if it were more advanced. The concealment of the aborted but undeveloped ovum or embryo—of a monster, i.e. a child without human shape, a mole or other morbid growth—would not probably be considered a contravention of the statute. I am not aware that there has been any judicial decision
on this point. Mr. Lane communicated to the 'Medical Times' (Aug. 1846) a case in which a charge of concealed birth was dismissed by the magistrates of Surrey, because the concealment referred to a child born at the eighth month in its membranes. The woman stated that she did not consider it to be a child. If this decision is correct, the main object of the statute (i.e. to prevent secret delivery, so often leading to murder) may be effectually evaded. The case, being entirely new, should have been sent for trial, and the decision left to the proper interpreters of the law; a magisterial decision can furnish no precedent on a question of this kind. This woman must have been delivered of a child, fetus, or embryo, or of course there would have been no pretence for the charge. That a child may be thus born and removed from the membranes alive, is a fact established by experience. Dr. Brunton reported to the Obstetrical Society a case in which the entire ovum was expelled at the seventh month of gestation, and the child was rescued alive, although born fifteen minutes before being taken out of the membranes. ('Med. Times and Gaz.' 1871, 1, 412). In another case of sudden delivery the child in its membranes with the placenta were discharged into a bucket. It was not rescued in time to save life. ('Amer. Jour.' April 1870, p. 430.)

From some observations made by the Recorder of London at the Central Criminal Court, October 1865, there appears to be great uncertainty on this point. It is difficult to suggest a proper legal definition of a 'child.' In reference to the case of Reg. v. Knight, a woman charged with concealment of birth, the prisoner admitted to a policeman that she had been delivered of a 'something' (not forthcoming.) 'Now, was she delivered of a child, and had she disposed of the body in such a way as to conceal the fact of her having been so delivered? Then, what was 'a child'? for those were the words used in the Act of Parliament. He felt himself a little debarred from expressing his own opinion in reply to this question, because two of the learned judges had given decisions directly contrary the one to the other upon this subject. One of them said it was not a child unless it had attained that state in which it could live, supposing it had been born alive. If it had attained that state, then he was of opinion that it was a child. The other judge said that this was not his idea of a child; but that if it had the outward form of a child, it was a child according to the Act of Parliament. The one contended that it ought to have attained to a state in which it had a capability of living (viability); and the other that at any rate, it should have the outward form of a child. Was there any proof of this kind here? The prisoner herself said she did not know whether she had been in the family way for three months. Taking the widest view of the learned judges,—Had what was born in this case the outward form of a child? If it had not, then the prisoner was not guilty of the offence charged against her.'

It will be perceived that it is not material here, as in a case of
alleged infanticide, to prove when the child died—whether before, during, or after its birth; and thus those subtleties and technicalities which are met with in cases of child-murder are avoided. In regard to proof of concealment, and what constitutes it, these are essentially legal points; but a medical practitioner may sometimes benefit an accused person, if he can prove that the woman had made application to him on the subject of her pregnancy and delivery. The law is especially lenient under such circumstances. A very strict interpretation appears to be put upon this term concealment. There must be a 'secret disposition' of the dead body. In a case tried before the Recorder (Reg. v. Honeycombe, C. C. C. August 1871), a woman indicted under the statute was acquitted, because the evidence showed that the body of the infant was found on a rising ground in a field which was visible from a public highway. This was held not to be concealment. In another case, a girl, who was far advanced in pregnancy, went into a recess by the side of the road and was there delivered. The body of a child was afterwards found on this spot by a boy who was passing. This case was reserved as to whether this was such a secret disposition of the body as to constitute the legal offence of concealment of birth. But the medical witness may have to deal not with the body but with the remains in a mutilated state, or burnt. He must be able to prove that they really are human remains. In a case tried at the Cornwall Summer Assizes, 1871, the prisoner, a married woman, was charged with the murder of her illegitimate child. The body was found mutilated and partly burnt. The woman had concealed the mutilated body of the child, and had tried to get rid of it by burning. She said the burnt bones found, and some blood on a rug, were those of a fowl. Mr. Hudson (of Redruth), however, proved that they were the bones of a child, and that the blood was not that of a fowl.

Questions connected with concealment of birth do not fall under the jurisdiction of a coroner:—the medical evidence is therefore required by a magistrate. Medical witnesses were formerly exposed to much trouble and inconvenience in giving their evidence on these occasions (see 'Med. Gaz.' 19, 287); but the defect has been remedied by statute (1 Vict. c. 44.)
ABORTION. NATURAL CAUSES.

CRIMINAL ABORTION.

CHAPTER 45.

ABORTION FROM NATURAL CAUSES.—CRIMINAL CAUSES.—MECHANICAL MEANS.—MEDICINAL SUBSTANCES.—SIGNS OF ABORTION.—SPECIFIC ABORTIVES.—LOCAL APPLICATIONS.—FEIGNED ABORTION.—MEANING OF THE WORD NOXIOUS AS APPLIED TO DRUGS.—ON INDUCING PREMATURE LABOUR.—PROOF OF PREGNANCY NOT NECESSARY.—ABORTION OF MONSTERS.—MOLES AND HYDATIDS.

By abortion is commonly understood, in medicine, the expulsion of the contents of the uterus before the sixth month of gestation. If the expulsion take place between the sixth and ninth month, the woman is said to have a premature labour. The law makes no distinction of this kind, but the term abortion is applied to the expulsion of the fetus at any period of pregnancy before the term of gestation is completed; and in this sense it is synonymous with the popular term miscarriage. Criminal abortion is rarely attempted before the third month:—it is perhaps most common between the fourth and fifth month; because then a female begins for the first time to acquire a certainty of her pregnancy. The causes of abortion may be either natural or violent. The latter only fall under the cognizance of the law—but a medical witness should be well acquainted with the causes which are called natural, in contradistinction to others which depend on the application of violence. These natural causes are sometimes very obscure, and the real cause is often overlooked. They are so frequent, that—according to Mr. Whitehead's observation,—of 2,000 pregnancies, one in seven terminated in abortion. These causes are commonly ascribable to peculiarities in the female system,—to the presence of uterine or other diseases, or to some moral shock sustained by a woman during pregnancy. Any diseases which strongly affect the uterus or general system of a woman may give rise to abortion. An attack of smallpox has been known to produce it; and it has been suggested by Mr. Acton that the presence of constitutional syphilis in the father, is not only a cause of infection in the offspring, but of repeated abortion in the woman. ('Med. Gaz.' vol. 36, p. 164; Ramsbotham's 'Obstetric Medicine,' p. 655.) These facts deserve attention, when it is proved that a woman has really aborted, and an attempt is unjustly made to fix an alleged act of criminality on another. For further information on the numerous natural and accidental causes which may give rise to abortion, the
reader may consult the work of Mr. Whitehead ('On Abortion and Sterility,' p. 252); and, for the effects of undue lactation and diseases of the placenta, in causing abortion, the 'Med. Times and Gaz.' Dec. 4, 1852, p. 580, and March 19, 1853, p. 302. In considering the operation of these causes, it is proper to bear in mind that during pregnancy, the uterus is subject to a natural periodical excitement, corresponding to what would have been the menstrual periods dating from the last cessation. Hence comparatively trivial causes operating at these periods, may lead to an expulsion of the foetus. Dr. Salomon has reported two cases in which premature delivery followed the mercurialization of the system. ('Med. Gaz.' vol. 36, p. 658.)

The violent causes of abortion may be of an accidental or criminal nature. In general the distinction will not be difficult: the kind of violence, and the adequacy of the alleged cause to produce abortion, will be apparent from the evidence. In reference to criminal cases, the causes may be referred either, 1st, to the use of mechanical means; or 2ndly, of irritating medicinal substances acting upon the uterus or bowels. They operate with greater certainty just in proportion as the pregnancy is advanced.

Mechanical means.—Among the mechanical causes may be mentioned—severe exercise, the violent agitation of the body, as by riding or driving over a rough pavement, in which case no marks of violence would be apparent. Any physical shock, sustained by the body, may operate indirectly on the uterus. Violent pressure or blows on the abdomen are sometimes resorted to; but in these cases the marks of violence will be commonly perceptible. Instruments have been devised for the purpose of piercing the membranes, destroying the child, and thereby leading to its expulsion. Devereux speaks of such instruments being well known in England, and of English midwives deriving a living from the practice of this crime. (Op. cit. vol. 1, p. 286.) Although this must be regarded as an exaggerated statement, it cannot be denied that cases have occurred which show that the crime is frequently perpetrated by persons who basely derive a profit from the practice: and for one case that comes to light, probably a dozen are effectually concealed. In the evidence given on four trials within a recent period, the cases presented no feature of novelty or interest. Instruments were employed, and drugs in large doses were proved to have been administered.

Mechanical means are undoubtedly more effectual in producing abortion than medicinal substances; yet, from the fact of such attempts being made by ignorant persons, the woman generally dies from inflammation of the womb or peritoneum, or other serious after-consequences. A case was tried some years since, in which the evidence showed that the prisoner had attempted to produce abortion in the deceased by thrusting wooden skewers into the substance of the uterus. Inflammation and gangrene took place, and the woman died. The prisoner was convicted, and executed.
for murder. (For a similar case by Mr. McPherson, see 'Med. Gaz.' vol. 36, p. 102; also another case in the same journal, vol. 45, p. 693.) This kind of injury to the uterus always implies the interference of some other person in the perpetration of the crime. Mechanical means can seldom be applied to the uterus without leaving marks of violence on this organ, as well as on the body of the child. If the mother should die, a result which generally takes place, an inspection will at once settle the point. ('Ann. d’Hyg.' 1834, 191; 1838, vol. 1, p. 425; 1839, vol. 2, p. 109. An important case of this kind was the subject of a criminal trial in Scotland in 1858 (case of Reid, 'Medical Gazette,' December 11, 1858.) The uterus near its mouth presented two openings in its substance, described as punctured wounds by the medical witnesses for the prosecution who made the examination,—and as the openings of torn blood-vessels by others who were called for the defence. There was also a rupture of one ovary. The prisoner was convicted; but the medical man who was supposed to have been the principal agent in the crime, committed suicide. The case is chiefly important in showing that any apparent mechanical injury to the uterus should be minutely examined at the time of inspection, so that no doubt of the cause may afterwards be entertained by any present. If, in a case of this kind, the mother survive and the child be expelled, then marks of violence will be found on its body. These marks may not be sufficient to account for its death; but this is not here the question. If it can be proved that they have not resulted from accidental causes during gestation or subsequently to delivery, then their presence may furnish strong corroborative evidence of the actual means by which abortion was attempted. It is said that abortion has been in some instances accomplished by frequent bleeding from the arm. This effect may follow as a result of shock produced by the loss of a large quantity of blood. An examination of the veins of the arms would show whether any such attempt had been made.

There can be no doubt that of all the exciting causes of abortion, the most effectual and that which most certainly brings on the explosive action of the uterus, is the destruction of the ovum or embryo. If by accident or design the ovular membranes should become ruptured, gestation is arrested, and abortion necessarily ensues. At any period of pregnancy, therefore, a puncture through the membranes will sooner or later occasion the evacuation of the uterus. (Ramsbotham's 'Obstetric Medicine,' p. 665.)

This author remarks that the performance of the operation demands a most accurate knowledge of the anatomy of the ovum and the maternal structures, as well as of the state of development which the neck of the uterus assumes at different periods of pregnancy. In medical practice, for the induction of premature labour, the membranes are ruptured either by the use of a female catheter, or by an instrument of this shape, but including a blade like a tonsil-lanceet. Unless the inner membrane or amnion be opened,
gestation may still proceed, and abortion will not take place. When the membranes are completely penetrated and the waters are discharged, uterine action is invariably induced, but the time which elapses from the performance of the operation to the commencement of labour, is subject to great variation. Dr. Ramsbotham states that he has known the uterus begin to act in ten hours after the rupture, but in another case a week elapsed before its action commenced. As a rule, uterine action is in general fully established in from fifty to sixty hours. In Reg. v. Sharpe (Notts Lent Assizes, 1873), the prisoner, who was a charwoman, but said by profession to be an abortion-monger, was convicted of this crime. It was proved by the evidence of the prosecutrix and others that she ruptured the membranes with an ivory crochet-needle on the 8th November, and on the 11th, three days afterwards, the prosecutrix was delivered of a still-born child. Another woman, proved to be an accessory to the act, was sentenced to fifteen months' imprisonment. (Lancet,' March 22, 1873, p. 422.)

It must not be supposed, however, that where a criminal intention exists, a long period is required for removing the contents of the uterus. The cases above referred to, were cases of obstetric practice in which there was no desire to expose the woman to the slightest risk, and premature labour was openly induced. In a criminal attempt by a medical practitioner in which the woman would be a consenting party to the act, the removal of the embryo or fetus might be effected in a much shorter period of time. At any rate the time for the completion of abortion, could not be measured by cases in which the uterus has been left to undergo spontaneous contraction after the membranes had been punctured, and the waters had escaped. There would, however, be great danger to a woman in the necessary manipulations required. The reader will find reports by M. Tardieu, of numerous cases of abortion as a result of mechanical means applied to the uterus, in the 'Annales d'Hygiène,' 1855, vol. 1, p. 406; and some good practical remarks by the same writer, on the mode in which these inquiries should be conducted, in the 'Annales d'Hygiène,' 1856, vol. 1, p. 141. On the mechanical means for procuring abortion and the results, see a paper by Dr. Lex (Horn's 'Vierteljahres.' 1866, 1, p. 253).

It is obvious that this mode of perpetrating abortion is only likely to succeed in the hands of persons who have a complete anatomical knowledge of the parts. The certain death of the woman will convert the crime into murder, if instruments are introduced into her body by persons who are ignorant of anatomy. It is to be regretted that members of the medical profession have on several occasions misused their professional knowledge, and have exposed themselves to proceedings for this crime. Sometimes it is probable the charge has been raised falsely, or through misapprehension on the part of the woman; at others, the evidence has left it very clear that the charge was well founded. Of late years medical men have rather freely used the speculum.
USE OF MEDICINAL SUBSTANCES.

When this instrument has been improperly or unnecessarily used on a pregnant woman, a charge of attempted abortion by instruments, may be easily raised against a medical practitioner. A trial took place at the Exeter Lent Assizes, 1854 (Reg. v. Griffin and Venn), in which it was charged that the accused Venn (a surgeon), had feloniously used an instrument with the intent to procure the miscarriage of the prosecutrix. According to the evidence, Venn had on several occasions passed a round polished instrument into the body of the woman, once in a coppice and at another time in a field. The defence was, that the surgeon had merely used a speculum to ascertain whether the girl was pregnant, in order to know how to prescribe for her; and that it was absurd to suppose that he had ever intended to procure abortion, for this had not followed, and it might have been easily produced by him at any period of pregnancy if the medical man had wished it. The prisoners were acquitted. Admitting the statements of the prosecutrix and the prisoner to be correct, it may be remarked that medical practitioners, in the lawful exercise of their profession, do not commonly use a speculum in open fields or coppices to determine whether a woman is pregnant or not; and it is a well-known fact that a speculum is not necessarily required for determining the question of pregnancy. This case conveys a serious caution to members of the medical profession.

Medicinal substances. Emmenagogues. Ecbolics.—These are more frequently resorted to for inducing criminal abortion than other means; but they rarely answer the intended purpose, and when abortion follows, it is generally at the expense of the life of the woman. Mineral poisons have been ignorantly employed for this nefarious object, and often with a fatal result. Among these substances may be mentioned arsenic, corrosive sublimate, the acid chromate of potash (Horn’s ‘Vierteljahrschrift,’ 1866, 2, 113), sulphate of copper, copperas or sulphate of iron, the muriated tincture of iron, and other irritants. Metallic mercury, which is generally reputed to be innocent, has been given for the purpose of procuring abortion. In a recent case, recorded by Sir D. Gibb (‘Lancet,’ March 8, 1873, p. 339), it produced no effect on the uterus, but caused some severe nervous symptoms, which would justify the application of the term ‘noxious’ to this substance.

The muriated tincture of iron has frequently caused severe symptoms, and seriously injured health, without producing abortion. In a case in which my evidence was required at the Lincoln Summer Assizes, 1863 (Reg. v. Rumble), it was proved that this compound of iron had been given in large doses daily to a pregnant woman, for the purpose of exciting abortion. It had not had this effect, but it had seriously injured the health of the woman. The prisoner also gave to her cantharides in pills. The defence was, that these were proper medicines for the treatment of amenorrhea, under which it was alleged she was labouring. The large doses administered, and the secrecy with which the medicines were sup-
CRIMINAL ABORTION.

plied, proved that they had been given unlawfully, and with criminal intent; and the druggist who supplied them, knowing the purpose for which they were required, was convicted.

Arsenic, corrosive sublimate and other mercurial compounds may cause death, without in any way exciting the uterus to expel its contents. In July 1845 a case was referred to me for examination in which a woman who had passed the fifth month of her pregnancy took a large dose of arsenic, as it was alleged for the purpose of abortion. She died in less than seven hours, having suffered during that time from severe vomiting and purging; yet abortion did not take place.

Drugs such as croton oil, elaterium, gamboge and other drastic purgatives, have been used with criminal intent without causing abortion. Aloes and two of its compounds, hierba pica, a mixture of aloes and canella bark, and Pilacotia (pilulae cocciae) sometimes called 'pill cochia,' a mixture of aloes and colocynth, are much used as purgatives among the poor. In large or repeated doses, they are supposed to have the power of exciting the uterus, and are secretly employed for the purpose of abortion. Although not poisons in the strict sense of the word, it may be observed of these drugs, and of all purgatives which cause much straining or specially affect the rectum, that they may readily bring on abortion in the advanced stages of pregnancy, while they fail in the earlier stages. The herbs which have acquired a popular repute as abortives, in the form of powdered leaves, infusion or decoction, are very numerous. Some are innocent, such as pennyroyal, broom, and fern; others are pernicious, such as white and black hellebore, yew, and laburnum. A decoction of broom simply acts as a diuretic.

The medicinal substances above described, if they have any effect, exert an indirect action on the uterus by producing a shock to the general system. But there is another class of bodies which are considered to act on the uterus directly. These are classed under the names of emmenagogues and ecbolics. As in certain trials for criminal abortion some confusion has arisen in the application of these terms (see Reg. v. Wallis, Winchester Summer Assizes, 1871), it will be necessary to state here what is understood by them. Emmenagogues (from ἐμμενάω, the menstrual discharge, and ἀγωγός, exciting) signify those medicines which excite or promote the menses. The late Dr. Pereira enumerates among these, savin, black hellebore, aloes, gamboge, rue, madder, stinking goosefoot (Chenopodium album), gin, and borax, and for the most part substances which when taken in large doses act as drastic purgatives or stimulating diuretics. When amenorrhoea co-exists with anaemia the most effectual emmenagogues are chalybeates, the preparations of iron, including Griffith's mixture. ('Elements of Materia Medica,' by Taylor and Rees, 4th edit. vol. 1, p. 270.) Ecbolics (from ἐκβάλλω, expulsion), substances which cause the expulsion of the fetus, imply medicines which operate directly as abortives.
They excite uterine contractions and thereby promote the expulsion of the contents of the uterus, such as the foetus, the placenta, hydatids, clots of blood, &c. The number of ecbolics known is very small. Indeed, the only known unequivocal agent of this kind is ergot. The ergot in ordinary use is that of rye: but the ergot of wheat is said to be equally effectual, and the same perhaps may be stated of the ergot of all grasses.

In addition to these there are other substances derived from the vegetable, animal, and mineral kingdoms, which have been employed for procuring abortion, and on the specific effects of these agents when administered to pregnant women, medical opinions may be required. Such are yew leaves, grains of paradise, tanay, hellebore (white and black), squills, pennyroyal, cantharides, sulphate of potash, borax, Griffith's mixture, and iron filings. The English herbs on which medical opinions may be required, are chiefly rue, pennyroyal, savin, and tanay.

Rue (*Ruta graveolens*).—This common garden plant has been much used in the form of decoction. M. Tardieu has reported three cases in which a strong decoction of rue produced abortion at the fourth, fifth, and about the sixth month of pregnancy respectively, and the women recovered. (*'Ann. d'Hyg.' 1866, 1, 403.*)

Pennyroyal (*Mentha Pulegium*).—This is a variety of mint. The infusion, under the name of pennyroyal tea or pennyroyal water, is used as a popular remedy for obstructed menstruation, and it has also been used for the purpose of abortion; but it has neither emmenagogue nor ecbolic properties, and it is not now employed for any purpose by medical practitioners. Any notice of this substance here would have been quite unnecessary, but for the fact that in a recent trial for criminal abortion (*Reg. v. Wallis, 1871*) strongly abortive properties were incorrectly assigned to it; and it was described as a highly noxious substance. Pennyroyal infusion or tea has no more effect on the uterus than peppermint, spearmint, or camphor water. A medical witness at the trial above referred to, stated that pennyroyal would produce abortion, but admitted in cross-examination that he had had no practical knowledge of its properties, and unless taken for some time and of considerable strength, it would have no effect at all.

Medical witnesses should be more careful in giving evidence on these occasions in reference to the properties of drugs. They have to consider seriously in all cases of alleged criminal abortion by drugs, whether the substance is noxious—whether it is an emmenagogue or really an ecbolic. They should base their opinions either on actual personal experience or on the authority of those who have practically studied the effects of the drugs, otherwise counsel may be greatly misused, as in the case of *Reg. v. Wallis*, in placing the facts before the Court. Pennyroyal is not described by any authority as an emmenagogue or ecbolic or as a substance having any abortive or noxious properties.
SAVIN AS AN ABORTIVE.

Savin (Juniperus Sabina). Oil of Savin.—The properties of this substance as a vegetable irritant poison have been elsewhere described (ante, p. 140). Writers on Materia Medica ascribe to it emmenagogue properties, i.e. that it is an excitant to the blood-vessels of the uterus, and is useful in certain cases of disordered menstruation, but it does not excite uterine contractions like the ergot of rye, and is not used for the purpose of aiding parturition. It would not be given to a woman in the pregnant state, for its operation as an irritant might affect the uterus indirectly and lead to abortion. It has been long known and employed as a popular abortive, the tops being used in the form of infusion or decoction. Under these circumstances it commonly acts only as an irritant poison, causing severe pain, with vomiting and purging. One case of its fatal action when used for procuring abortion was referred to me in 1845 (‘Med. Gaz.’ 36, p. 646). A woman may die undelivered, or the fetus may be expelled dead, and the woman afterwards die from the irritant effects produced on the stomach and bowels.

The powdered leaves of this plant are generally employed as a popular abortive; they are readily obtainable in gardens. They may be given in the form of infusion or decoction. The former is the most powerful. Savin may also be given as a tincture, or as an essential oil. In any of these forms when given in large or frequently repeated doses, it has an irritant action. The powdered leaves are not used in medical practice. The dose as an emmenagogue would be from five to fifteen grains—the medicinal dose of the oil is from two to six minims, and of the tincture (Tinctura Sabina, B.P.) is from twenty minims to one fluid drachm. This holds the oil and resin dissolved. The leaves of savin may be identified by their peculiar odour when rubbed, and also by their appearance under the microscope. (See ante, p. 141.)

Cases in which the oil of savin has been administered for the purpose of abortion are not very common. In Reg. v. Pascoe (Cornwall Lent Assizes, 1852) a medical man was convicted and sentenced to transportation for administering oil of savin to a woman with intent to procure miscarriage. The proof of intent rested partly on medical and partly on moral circumstances. It appeared that the prisoner had given fourteen drops of the oil, divided into three doses, daily—a quantity which, according to the medical evidence at the trial, was greater than should have been prescribed for any lawful purpose. The medicinal dose, as an emmenagogue, on the authority of Christison, is from two to five minims, and according to Pereira from two to six drops. The quantity given by the prisoner, although a full dose, was not, therefore, greater than these authorities recommend; and his criminality appears to have rested not so much on the dose given, as on the question whether he knew or, as a medical man, had reason to suspect that the woman for whom he prescribed it, was pregnant. No medical authority would recommend oil of savin in full doses for pregnant women; and with regard to the existence
or non-existence of pregnancy in a special case, medical men are reasonably presumed to have better means of satisfying themselves than non-professional persons. The prisoner’s innocence, therefore, rested on the presumption that he implicitly believed what the prosecutrix told him regarding her condition,—that he had no reason to suspect her pregnancy, and therefore did not hesitate to select and prescribe a medicine which certainly has an evil reputation, and is rarely used by regular practitioners. According to the evidence of the prosecutrix, she informed the prisoner that she had disease of the heart and liver, and that nothing more was the matter with her. It is absurd to suppose that oil of savin would be prescribed by a medical man for such a disease as this. The prisoner, on the hypothesis of innocence, must have intended that the medicine should act on the uterus, and must have inferred the existence of an obstruction to menstruation from natural causes irrespective of pregnancy. The jury do not appear to have given him credit for such ignorance of his profession, and this probably led to his conviction. There can, it appears to me, be no doubt that the oil was administered with a guilty intention. Every qualified practitioner, acting bona fide, would undoubtedly satisfy himself that a young woman whose menses were obstructed, was not pregnant, before he prescribed full doses of this oil three times a day, or he would fairly lay himself open to a suspicion of criminality. If pregnancy—a frequent cause of obstructed menstruation—were only suspected, this would be sufficient to deter a practitioner of common prudence from prescribing, in any dose, a drug which may exert a serious action on the uterine system. (A report of the case of Mr. Passo is will be found in the ‘Med. Times and Gazette,’ April 17, 1852, p. 104.) On the Northern Circuit, December 1853 (Reg. v. Moore), a man was tried and convicted of administering oil of savin to a pregnant woman. It made her very ill, but did not produce abortion.

The oil of savin is obtained by the distillation of the tops, in the proportion of about 3 per cent. by weight. It has a yellowish colour, and the peculiar terebinthinate odour of the plant, by which alone it may be recognized. It may be separated from the contents of the stomach by agitating them in a bottle with their volume of ether, in which the oil is very soluble. The ether may be afterwards removed by distillation. The odour of the oil is stated to have been perceived after death in the blood and in the cavities of the body. This may be regarded as the best test of its presence. (See a paper by Dr. Lex in Horn’s ‘Vierteljahresschrift,’ 1866, vol. 1, p. 241.) The oil of savin forms a turbid mixture with alcohol (‘826). When treated with its volume of sulphuric acid, it acquires a dark brown colour, and when this mixture is added to distilled water, a dense white precipitate is separated.

Tansy.—Oil of Tansy.—Dr. Hartshorne, an American physician, states that in the United States the oil of tansy has acquired the character of a popular abortive, and has caused death in several
instances. In England this oil and the herb have been chiefly employed for the purpose of expelling worms. It has not been used as an abortive.

Saffron in the form of a decoction of the dried stigmas of saffron (Crocus sativus) has been used as a popular abortive. Dr. Thom- sen, of Schleswig, has reported a case in which abortion occurred in a woman who had taken repeated doses of a decoction of saffron with starch. There was reason to believe, however, that manip-ulations per vagina had also been resorted to, and these may have had the principal share in bringing about the result. (Horn's 'Vierteljahrschrift,' October 1864, p. 315.) According to Pereira, although saffron was formerly used as an emmenagogue, and to promote uterine contractions, it is not established by any trustworthy observations that it possesses any medicinal properties. ('Mat. Med.' vol. 2, pt. 1, p. 219.) In modern medicine its chief use is to give colour and flavour to liquids.

Specific Abortives. Ecbolics. Ergot of Rye. Spurred Rye (Secale cornutum).—The substance called Ergot is a diseased growth on the grain or seed of rye, caused by a parasitic fungus. In powder, infusion, or tincture, it has been for some time used by medical practitioners to excite the action of the uterus and aid parturition. It is also used for a similar purpose on animals in veterinary practice. The properties of ergot as an abortive are but little known to the vulgar in this country, and this may account for the fact of our rarely hearing of cases in which it has been criminally administered by midwives to pregnant women. A trial which took place at the Central Criminal Court in July 1871, shows, however, that 'herbalists' and 'spiritualists' are well acquainted with the properties of ergot as an abortive, and are ready to supply it in secrecy (Reg. v. De Baddeley and wife). The prisoners in this case were indicted for unlawfully supplying a certain noxious drug—namely, ergot of rye, knowing that it was intended to procure abortion. They lived at Kennington, and an advertisement was inserted in a certain spiritualistic journal, inviting people to consult at that house 'Madame De Baddeley, the celebrated clairvoyante.' From what was alleged to be transacted there, the police were induced to send a woman named Hansard to consult the prisoners, and to concoct a story which might elicit their 'spiritual' mode of procedure. After being put into a state of so-called 'clairvoyance,' the female prisoner advised the applicant what to do in the case of a young woman whom she had mentioned, and gave her a quantity of ergot of rye to procure abortion. In all, 6l. was paid to the prisoners. The drug was at once handed over to the police. They were found guilty, and sentenced to twelve months' imprisonment.

The ergot of rye has been found to bring on contractions of the uterus at an advanced stage of gestation, or when efforts at par- turition had already commenced. There is, however, some differ-ence of opinion respecting its specific ecbolic properties. According
ACTION OF ERGOT OF RYE.

to Dr. Lee, it has no effect in the early stages of gestation, although given in large doses. (‘Med. Gaz.’ vol. 25, p. 10; see also ‘Edin. Med. and Surg. Jour.’ vol. 53, p. 27.) Dr. Kluge, of Berlin, found that its properties varied according to whether it was gathered before or after harvest; in the former case it had an energetic action, while in the latter it was powerless. Dr. Beatty states that when used in obstetric practice it is liable, by absorption into the system of the mother, which may take place within two hours, to endanger the life of the child. (‘Dub. Med. Jour.’ May 1844, p. 202.) This question was actually referred by the French Government to the Academy of Medicine in 1845, as there was reason to think that, under its employment in the practice of midwifery, children were frequently born dead. (‘Ann. d’Hyg.’ 1846, 1, 204; see also ‘Med. Gaz.’ vol. 46, p. 680.) In confirmation of Dr. Beatty’s statement, Drs. M’Clintock and Hardy report that out of thirty cases in which it was administered, twenty children were born dead. (‘Practical Observations,’ p. 95.) The late Dr. Ramsbotham considered that the drug might operate fatally on a child, according to the circumstances under which it was administered; but that, unless it excited the expulsive action of the uterus, it had no effect on the child’s system. (Op. cit. p. 319; also cases by Mr. Paterson, ‘Edin. Med. and Surg. Jour.’ vol. 53, p. 142.) According to M. Millet, in commenced or imminent parturition, ergot procures a safe and prompt termination; and he never met with a case in which it injured the child. (‘Med. Chir. Rev.’ July 1855, p. 41.) This is also the result of the more recent experience of Dr. Uvedale West, contained in a paper read before the Obstetrical Society (July 1861). Between December 1855 and June 1861 he had attended 734 labours, in 172 of which ergot was given. Including one case of twins, 173 children were born under the effects of ergot, of which number only five were stillborn. These facts appear to show that ergot, as a rule, does not exert those noxious effects on the child which have been attributed to it by some obstetric writers.

On trials for criminal abortion perpetrated or attempted, a medical witness must be prepared for a close examination on the ebolic properties of the ergot of rye on the uterus, as well as its general action as a poison on the woman and child. A case which occurred some years since (Reg. v. Calder, Exeter Lent Ass. 1844) has been reported, with comments on this subject by Dr. Shapter. (‘Prov. Med. Jour.’ April 10, 1844.) It was alleged on this occasion that savin, cantharides, and ergot had been respectively given by the prisoner, a medical man, for the purpose of procuring miscarriage. The prosecutrix, on whose evidence the case rested, was a woman of notoriously bad character, and the prisoner was acquitted. There were three medical witnesses, who agreed that savin and cantharides were only likely to occasion abortion indirectly, i.e. by powerfully affecting the system—the view commonly entertained by professional men. Some difference of opinion

xx2
existed with regard to ergot, but the balance of evidence was
decidedly in favour of its specific action as a direct uterine excitant;
and, according to Dr. Griffiths, this is so well known to the inhabi-
tants of the United States, that it is there in frequent use as a
popular abortive. In a case in which I was consulted in 1860, an
attempt had been made to administer secretly the ethereal tincture
of ergot.

A case occurred at Brighton in October 1864, in which a ques-
tion arose respecting the fatal effects of this drug on a woman who
had taken it for a long period, obviously with a view to procure
abortion. She died, however, without abortion having taken
place; and the question at issue was, whether this drug had or
had not caused her death. The dose taken was, I am informed,
about a teaspoonful of the tincture of ergot three times a day, for
a period of eleven weeks. On inspection, patches of inflammation
were found on the mucous membrane of the stomach after death.
No other cause for death was apparent, and one medical witness
assigned it to the poisonous irritant action of the ergot, as, at the
early stage of pregnancy which she had reached (the third month),
this substance would not be likely to act as an abortive. Another
medical gentleman who gave evidence at the inquest, asserted that
death could never be primarily caused by ergot of rye. The quali-
fication introduced into this medical opinion is of small importance.
The deceased woman is reported to have taken a large portion of
the tincture; and it is quite immaterial whether the drug killed her by
a primary or secondary operation. M. Tardieu describes the case
of a woman, aged 24, who aborted in the fourth month of pregnancy,
as a result of the administration of ergot in powder; she died from
peritonitis in about twenty-four hours. The ergot was found in
fragments in the lower third of the bowels. (‘Ann. d’Hyg.’ 1855,
vol. 1, p. 404.) At the same time this medical jurist states that,
in his opinion, ergot of rye has no direct action as an abortive; in
fact, that it is not an ebolic. (‘Ann. d’Hyg.’ 1865, 1, 139.) The
numerous cases showing its efficacy, and its extensive use in mid-
wifery practice, are sufficient to prove that this opinion is not
borne out by facts. In respect to its operation, it may be observed
that the effects produced by its administration are not such as
readily to excite suspicion. It does not cause the decided sym-
ptoms of irritation observed in the action of savin, nor the nervous
symptoms which are usually produced by rue. In medicinal doses,
given at proper intervals, the only marked effect which it pro-
duces on a pregnant woman, is a lowering of the pulse. Sometimes
other symptoms of a severe character have presented themselves.
(‘Ann. d’H yg.’ 1856, 1, 140.) If a person dies from the effects of
this drug, the results are legally the same, whether its operation as
a noxious substance is of a primary or secondary kind.

Action of Ergot. Doses. Analysis.—In doses of from half a
drachm to two drachms ergot in powder has caused nausea, vomit-
ing, dryness of the throat, great thirst, aversion from food, pain
Properties of Ergot of Rye.

in the abdomen, slight purging, pain in the head, stupor, and dilatation of the pupils. (Pereira, 'Mat. Med.' vol. 2, pt. 1, p. 111.) The medicinal dose of the powder in uterine diseases, is from 5 to 15 grains. It is employed in a larger dose (from 20 to 60 grains at intervals of half an hour) to excite uterine action either for abortion or parturition. The dose of the tincture is one drachm (a teaspoonful); this is considered to be equivalent to 20 grains of the powder. The dose of the ethereal tincture, according to Pereira, when employed for the purpose of exciting uterine action, is one drachm every half-hour for three or four doses. ('Mat. Med.' vol. 2, pt. 1, p. 118.) Ergot must be regarded as a noxious substance, and by some authorities it is ranked among narcotic-irritant poisons. It does not easily cause death in one large dose, but its fatal operation appears to be more strikingly developed by its long-continued use in small or medicinal doses. Its active properties have been ascribed to the presence of an oil or oleo-resin, soluble in ether. According to Herrmann an ethereal solution distilled, yields a fixed oil of a brownish-yellow colour, of aromatic odour and acrid taste: it exerts no particular action, either as a medicine or as a poison. An alkaloid called ecboleine has been discovered associated with the oil, and separable from it by a complex process (see 'Pharm. Jour.' Sept. 1871, p. 242); to this alkaloid, according to Wenzell, the medicinal action of ergot is due; others regard both ecboleine and ergotine as inert. ('Med. Record,' Jan. 1873.) It is soluble in water and alcohol, and the aqueous is more powerful than the alcoholic extract. The active principle is soluble in water, but only to a slight extent in alcohol. The solid principle, called ergotine, to which its medicinal properties were formerly assigned, is described by Herrmann as a constituent of the red colouring matter contained in the dark purple outer coat.

The form and characters of the ergot in mass, are well known to professional men. It consists of grains varying in length from half an inch to an inch and a quarter, and the breadth of about the eighth of an inch. The grain is cylindrical, blunt at the ends, and curved like the spur of a cock. The outer coat is of a dark purple colour, almost black, irregularly fluted on the surface, which is often irregularly cracked and fissured. In the annexed illustration (Fig. 48), 1, 1, represent the ergot of rye as it is usually seen.

Fig. 48.

The Ergot of Rye.
The smaller of the two grains represents the average size; 2, 2, are sections of the grains, and 3 represents a transverse section magnified thirty diameters. The spongy character of the substance of the ergot is here more distinctly seen.

The powder of ergot has a faint fishy smell; this is especially observed when it is rubbed with a solution of potash. This alkali dissolves it in part, and the solution acquires a dingy-red colour. In the form of tincture, alcoholic or ethereal, the peculiar fishy odour of the extract when treated with potash is well marked. This is considered to be owing to the production of propylamine. It may, however, be concealed by other odours. Sometimes small particles of ergot, presenting a pink-red colour in the dark external coat, may be detected in the sediment by the microscope. When ergot has been taken in powder, fragments of it may be found scattered over the lining-membrane of the stomach or bowels; these may be identified by the characters above described. The ethereal tincture of ergot, evaporated to an extract, yields a yellowish coloured oil, which, if any of the colouring matter of ergot is present, acquires a reddish colour when heated with a solution of potash. On the chemical and microscopical properties of ergot, see a paper by Dr. Lex. (Horn's 'Vierteljahrs.' 1866, 1, 231.)

It is not probable that a sufficient quantity of this substance will be found in the body of a person to whom it is alleged to have been given, to allow of the separation of echoline. The medical jurist must rely upon the physical properties of the fungus if he can obtain any of it. A spectral examination of the red alkaline solution of colouring matter presents nothing characteristic. The dry powder, heated in a reduction-tube, yields nitrogen as ammonia, and sulphur as sulphuretted hydrogen, discoverable by red litmus and lead-paper. Old samples smell strongly of ammonia, and contain scari.

Local applications. Injections.—In a case which occurred in France, it was proved that abortion had been caused by the injection of some corrosive and irritating substance into the vagina. The genital organs, as well as the abdominal viscera, were found in a high state of inflammation. ('Med. Gaz.' vol. 37, p. 171.) This is an unusual mode of perpetrating the crime, but it is one which can hardly escape detection. An analysis of the tissues might be required, in order to determine the nature of the substance used. It appears from a trial which took place at the York Summer Assizes, 1853, that this mode of attempting to procure criminal abortion, has been the subject of a prosecution in this country. It was established by the medical evidence that some liquid was injected into the vagina by a syringe, but there was no proof of the nature of this liquid; and as it was not shown to be of a noxious nature, the learned judge who tried the cause directed an acquittal. ('Lancet,' July 23, 1853, p. 89.) It is proper to state, however, that the mere mechanical effect of an innocent liquid, frequently applied, may be more effectual in producing abortion or premature labour.
than the use of any irritating liquid. In medical practice tepid water has been employed as an injection for the purpose of inducing premature labour in advanced pregnancy. Dr. Lazarewitz has published twelve cases in which the injection of water at 95° caused the uterus to contract and expel its contents. ('Trans. of the Obstetric Society,' vol. 9, p. 101.) The earliest period at which Dr. Lazarewitz employed water was in the thirtieth week of pregnancy. In most of the cases, the women had reached the thirty-sixth week of pregnancy. This is much later than the usual period at which abortion is commonly attempted for criminal purposes, namely, about the twenty-eighth week. At the same time it proves that an innocent injection may be used to produce abortion, and, according to the judicial decision above given, the use of such a liquid would not render a person criminally liable. The words of the statute, however, 'other means whatsoever,' appear sufficiently comprehensive to include the use of a non-noxious liquid, and, according to a judicial opinion given in the case of Wallis (Reg. v. Wallis, p. 507), it is not material to prove that the liquid employed is of a 'noxious' nature. In general, when the criminal means taken to procure abortion are effectual in causing the expulsion of the child, it comes into the world dead; but it may be born alive and die after its birth. Under these circumstances, although no violence is applied directly to the body of the child, but its death is simply the result of immaturity or the feeble state in which it was born, the person causing such abortion might render himself liable to an indictment for murder.

Signs of abortion in the living and dead.—These are practically the same as those elsewhere described as the signs of delivery. (See *ante*, pp. 474, 480.) The examination may extend to the woman either living or dead. In the former case there will be some difficulty, if the abortion has occurred at an early period of gestation and several days have elapsed before the examination is made; in the latter case, the investigation is not always free from difficulty. Dr. Shortt, of the Madras Presidency, who has had much experience on this subject, thus summarizes the symptoms which he met with in numerous cases which came before him officially. In that Presidency alone there were 306 cases in two years, 1863–4. In the cases which he examined up to a fortnight or a little later after the abortion, the vulva and passages were relaxed, the mouth of the uterus patulous, and in the early stage there was a lochial secretion, replaced in later cases by a white mucous secretion, having the peculiar smell common to women in the puerperal state. Among other symptoms, were a distension of the breasts, a flow of milk on pressure, and a knotty feeling in them. There was a general anaemic or bloodless condition of the body, with sunken eyes, an excited pulse, and dry skin. In multiparous women the womb was more patulous, and the neck was not distinguishable; but in primiparous women the mouth of the uterus, although
patulous to a small extent, still had the neck protuberant. ('Obstetric Transactions,' vol. 9, p. 9.)

It is believed by many physiologists that menstruation is a state, in some measure vicarious to conception, and the appearances presented by the generative organs during the menstrual period are somewhat similar to those which are observed after conception in its early stage. Mr. Whitehead remarks, that in persons who have died while the menses were flowing, the uterine walls were thickened and spongy, and the mucous lining was more or less swollen and suffused. The neck and lips of the uterus were swollen, the orifice was open, and the vaginal membrane and clitoris involved in the increased action. One of the ovaries was found larger and more congested than usual, presenting evidence of the recent escape of an ovum. (On 'Abortion,' p. 196, also p. 482, ante.) Unless these facts are attended to, an examiner may form an erroneous opinion respecting the chastity of a deceased woman. (For some remarks on the mode of conducting the examination of the woman, and of the embryo or fetus in cases of abortion, see 'Ann. d'Hgy.' 1856, 1, pp. 149, 153.)

Important questions may arise when it is alleged that abortion has been caused by the use of instruments, and death is referred to peritonitis, as the result of their employment. In these cases a medical opinion should not be based upon the statements either of the woman or of her friends, but upon some distinct and satisfactory medical proofs that mechanical violence has been done to the uterus, its contents, or its appendages. Peritonitis, or inflammation of the lining-membrane of the abdomen, may arise from a variety of causes. If we assign it to a particular cause, and thus implicate another in a felonious charge, we should do this only upon medical facts obtained by an examination of the dead body: we should deal with such cases as if we knew nothing of their previous history.

In September 1871, a case occurred at Rotherham, in which a druggist was charged with using instruments to cause abortion, which had led to the death of a woman from peritonitis. It appeared also that he had given to her doses of the muriated tincture of iron. The woman was delivered of a dead fetus at about the fifth month, and she herself died shortly afterwards. There was nothing in the body of the woman or of the fetus to show that instruments had been used, but it was quite clear that peritonitis was the cause of death. One medical witness thought that an operation had been performed on the body of the woman, but it was admitted that peritonitis might arise from a variety of causes in a woman who had had a miscarriage. ('Pharm. Jour.' 1871, p. 256.) On the diagnosis of abortion and its causes, see a paper by Dr. Rudolph Lex (Horn's 'Vierteljahresschrift,' 1866, 1, 179).

Feigned abortion.—For various motives, into the consideration of which it is unnecessary to enter, a woman may charge another with having attempted or perpetrated the crime of abortion. Such a
Criminal Abortion. Legal Relations.

Charge is not common, because, if untrue, its falsity may be easily demonstrated. A young woman, admitted into Guy's Hospital in April 1846, charged a policeman (who, according to her statement, had had forcible intercourse with her) with having given her some substance to produce abortion, and having subsequently effected this mechanically. She was not examined until nearly two months after the alleged perpetration of the crime, when the late Dr. Lever found that there was no reason to believe that she had ever been pregnant. This was a case of feigned abortion. When charges of this serious kind are brought forward, they are always open to the greatest suspicion, unless made immediately after the alleged attempt, as it is then only that an examination can determine whether they are true or false. If so long delayed as in this instance, without any satisfactory reason, the presumption is that they are false.

Legal relations.—In the statute for the consolidation of the criminal law (24 and 25 Vict. chap. 100, ss. 58 and 59), the nature of this crime, and the medical proofs required to establish it, have been more explicitly stated than in former Acts. By clause 58 (on attempts to procure abortion), it is enacted that 'Every woman being with child, who, with intent to procure her own miscarriage, shall unlawfully administer to herself any poison or other noxious thing, or shall unlawfully use any instrument or other means whatsoever with like intent, and whosoever, with intent to procure the miscarriage of any woman, whether she be or be not with child, shall unlawfully administer, &c., shall be guilty of felony.' Formerly, women who endeavoured to produce abortion in themselves were not guilty of any offence against the law. In Reg. v. Warboy (Cent. Crim. Court, August 1863), the prisoner, a widow, was convicted as an accessory before the fact to the felonious using by one Morgan of a certain instrument upon herself, with intent thereby to produce miscarriage. The latter portion of clause 58 makes it immaterial, so far as another person is concerned, whether the woman is or is not with child, in accordance with the decision of the judges in Reg. v. Goodhall (1 Den. C. C. p. 187), and Reg. v. Goodchild (2 C. and K. p. 293). Clause 59 is to the following effect:—

'Whoever shall unlawfully supply or procure any poison or other noxious thing, or any instrument or thing whatsoever, knowing that the same is intended to be unlawfully used or employed with intent to procure the miscarriage of any woman, whether she be or be not with child, shall be guilty of a misdemeanour; and being convicted thereof, shall be liable, at the discretion of the Court, to be kept in penal servitude for the term of three years, or to be imprisoned for any term not exceeding two years.' This clause is intended to check the obtaining of poison, &c., for the purpose of causing abortion, by making the person who supplies, and the person who procures it, guilty of misdemeanour. It will be observed, in reference to these clauses, that the means employed, whatever their nature, must have been used with an intent to procure the
miscarriage of a woman—a point which will be sufficiently established by a plain medical statement of the means employed. Supposing that a drug has been used, the witness may be further required to state whether it is 'a poison or other noxious thing.' I must refer the reader to what has been said elsewhere (ante, p. 49), in order that he may be able to judge how far the substance administered would fall under the description above given. Whether the substance would or would not have the effect intended, i.e. of inducing abortion, is perfectly immaterial.

Noxious substances.—Is it necessary to prove that the substance procured or administered is of a noxious nature? Some uncertainty may exist as to the strict meaning of the word noxious. All will allow that the word implies something injurious to the body, but a difference of opinion may arise among medical witnesses with respect to its application to the subject under discussion—as, for example, with respect to rue or savin. A substance must be regarded as injurious to the body, or noxious, either according to the form, quantity, or frequency with which it is administered. Savin, ergot, and rue are irritant; and they become noxious when given in large doses, or in small doses frequently repeated. ('Ann. d'Hyg.' 1838, 2, 180.) Aloes and castor-oil are innocent when taken in small doses; but they acquire noxious or injurious properties when administered frequently, or in large quantity, to a pregnant woman. To confine the term 'noxious,' therefore, to what is strictly speaking a poison per se, would be giving a latitude to attempts at criminal abortion which would render the law inoperative. (See the case of Reg. v. Stroud, Abingdon Sum. Ass. 1846.) The small quantity of the substance taken at once does not affect the question, provided the dose be frequently repeated. A case in which I was consulted by Mr. Reynolds (a former pupil) was tried at the Exeter Winter Assizes, 1844. Two powders, weighing each one drachm, were prescribed by the prisoner: one consisted of colocoly, the other of gamboge, and with them was half an ounce of a liquid (balsam of copaiba). They were to be mixed together, and a fourth part to be taken four mornings following. Mr. Reynolds said, in answer to the question whether such a mixture was noxious or injurious, that each dose would be an active purgative, and might thereby tend to excite abortion. One dose would not be productive of mischief in a healthy countrywoman, but its frequent repetition might lead to serious consequences in a pregnant woman. In a trial which took place at the Norwich Lent Assizes, 1846 (Reg. v. Whisker), it was proved that the prisoner had caused to be taken by the prosecutrix a quantity of white hellebore in powder, for the purpose of procuring abortion. One medical witness said he considered hellebore to be noxious to the system, but he knew of no case in which it had produced death; and under these circumstances he did not consider himself justified in calling it a poison. Another medical witness stated, in his opinion, it belonged to the class of poisons. The judge, in summing up, told
the jury that that was to be regarded as a poisonous drug which, in common parlance, was generally understood and taken to be such; and he thought the medical evidence sufficiently strong to bring hellebore within the meaning of the statute. The jury found the prisoner guilty, alleging that in their belief white hellebore was a poison. ('Med. Gaz.' vol. 37, p. 830.) The only circumstance calling for remark in this case is, that any doubt should have been entertained by a medical practitioner respecting the poisonous properties of white hellebore. It is a powerful vegetable irritant, and has caused death in several instances; yet on this occasion it appears to have been admitted to be noxious, but not poisonous!

Medical proof of the nature of the substance administered and that it was noxious, was formerly required on these occasions. In Reg. v. Taylor (Exeter Winter Ass. 1859), some powders had been given by the prisoner to a girl with a view of inducing abortion. No portion of the powders could be obtained for examination; but two medical gentlemen who heard the evidence deposed that in their opinion the powders were of a noxious nature. In the defence, it was urged that this had not been proved by chemical analysis. The jury adopted this view, and returned a verdict of acquittal. In Reg. v. Wallis (Winchester Aut. Ass. 1871), (see p. 503, ante), Brett J., in addressing the grand jury, is reported to have called their attention to the words of the statute, which declares that where any person shall unlawfully administer a poison or some other noxious thing, or shall unlawfully use any instrument or other means whatsoever, with intent to procure miscarriage, he shall be guilty of felony. The learned judge said that, having regard to the words ‘other means whatsoever,’ though there might be some doubt as to the construction of the statute, he should direct that in one count of the indictment the word ‘noxious’ should be omitted, and he should hold that if the person accused did administer some drug or something which he thought would procure miscarriage with that intent, although the thing itself would not procure that miscarriage, he would nevertheless be guilty of the offence, and they ought to find a true bill.

According to this judicial direction, it would appear that it is not in all cases necessary to prove by medical evidence that the substance procured or administered was of a noxious nature. The words of the 59th clause, as to procuring a noxious thing, or any instrument or ‘thing whatsoever,’ strictly interpreted, would include all substances, noxious and innoxious. If this view is generally adopted in future cases, medical evidence will be much simplified. Counsel will not be under the necessity of severely cross-examining medical witnesses on the strict meaning of the word ‘noxious.’ In Reg. v. Wallis the substances procured by the accused were not noxious, but the jury acquitted him apparently on the ground that he did not actually administer the drugs: hence the question of noxiousness did not formally arise. From the ruling in this case, it would appear that if a person procured or
ABORTION. NOXIOUS SUBSTANCES.

administered castor-oil or camphor julep, with intent to procure miscarriage, and with a belief that the substance would produce it, he would be found guilty of the offence. This being so, the use of the word poison and noxious thing in the statute is surplusage, and tends only to cause confusion in the medical evidence.

In *Reg. v. Newton* (Lewes Summer Ass. 1873), it was proved that the prisoner had given to a girl who was pregnant by him some pills and a powder, which made her very sick. A witness was called, who described himself as a labouring man, and stated that the prisoner obtained the medicine from him, that he had taken some of the pills himself, that they were antibilious pills, and that the powder was rhubarb. Under these circumstances, counsel for the defence submitted that there was no evidence that the medicine administered was ‘a noxious thing’ within the meaning of the statute which created the offence, citing the case of *Reg. v. Isaacs, 32 Law Jour.* M.C. Martin B., however, overruled the objection, and the prisoner was found guilty, and sentenced to nine months' imprisonment with hard labour.

In reference to the medical proofs of this crime, it is not required, under the circumstances, that any specific injury should have been done to the woman, or that abortion should have followed, in order to complete the offence. It is not even necessary to prove that she was with child, or that the aborted substance was a fetus or child. It might be a mass of blood, a mole, or a group of hydatids. There is every reason to believe that the crime is frequent, but its perpetration is secret. Applications are frequently made to medical men and druggists by the lower class of people for drugs for this purpose; the applicants appear to have no idea of the criminality of the act. Under the name of ‘female pills’ or ‘drops,’ medicines are thus dispensed in secrecy, and those who supply, as well as those who receive them, appear to have no idea that they are exposing themselves to a criminal prosecution. In one case a bottle containing a liquid supposed to have been used for the purpose of abortion, was sent to me for examination. It was labelled ‘Persian Otto of Roses.’ It contained a strong ethereal tincture of ergot of rye!

On a recent trial for criminal abortion, the medical evidence went far beyond its customary boundary. It appeared that the prisoners had applied to a medical man to supply them with drugs for procuring abortion. The medical man, mistaking his duty under such circumstances, gave information to the police, and acting under their advice supplied some drug which could do no injury. The prisoners were thus led to the commission of a felony, and at the trial the medical man appeared in the capacity of reporter as well as expert, a circumstance which led to some severe observations from the judge. When such an application is made to a professional man there is no objection to the fact being made known to the police or magisterial authorities, but beyond this he should not go. He should refuse to supply the applicants with drugs or
lend himself in any way as a detective for the purpose of a prosecution. The act was no doubt done with a good intention to protect the public, but under a mistaken sense of duty. (See, in reference to the frequency of this crime, a paper in the 'Medical Gazette,' vol. 46, p. 487; also 'Med. Times and Gaz.' Nov. 21, 1857, pp. 524, 537.)

On inducing premature labour. Medical responsibility.—It may be proper to offer here a few remarks upon the common practice of inducing premature labour, in certain cases of disease, of deformity of the pelvis, and in cases of excessive vomiting from pregnancy. This practice has been condemned as immoral and illegal; but it is impossible to admit that there can be any immorality in performing an operation to give a chance of saving the life of a woman, when, by neglecting to perform it, it is almost certain that both herself and the child will perish. (See, on the morality, safety, and utility of the practice, Ramsbotham’s 'Obstet. Med.' p. 315.) Any question respecting its illegality cannot be entertained; for the means are administered or applied with the bona fide hope of benefitting the female, and not with any criminal design. It is true that the law makes no exception in favour of medical men who adopt this practice, nor does it in the Statute on Wounding make any exceptions in favour of surgical operations; but that which is performed bona fide would not be held to be unlawful. The necessity for the practice ought to be apparent: thus, for instance, it should be shown that delivery was not likely to take place naturally without seriously endangering the life of a woman. It is questionable whether, under any circumstances, it would be justifiable to bring on premature expulsion, merely for the purpose of attempting to save the life of a child, since the operation, unless performed with care, is accompanied with risk to the life of the mother. Hence a cautious selection of cases should be made, because the operation is necessarily attended with some risk; it does not insure safety to a woman and child. All that we can say is, that, according to general professional experience, it places her in a better position than she would be in if the case were left to itself. It appears to me that before a practitioner resolves upon performing an operation of this kind he should hold a consultation with others; and, before it is performed, he should feel assured that natural delivery cannot take place without greater risk to the life of the woman than the operation would itself create. These rules may not be observed by obstetric experts in large practice; but the non-observance of them is necessarily attended with some responsibility to a general practitioner. In the event of the death of the woman or child, he exposes himself to a prosecution for a criminal offence, from the imputation of which even an acquittal will not always clear him in the eyes of the public. If the child were born alive, and died merely as a result of its immaturity, this might give rise to a charge of manslaughter. Within a recent period several practitioners have been tried upon charges of crimi-
nal abortion—whether justly or unjustly it is not necessary to consider; but they had obviously neglected to adopt those simple measures of prudence, the observance of which would have been at once an answer to a criminal charge. Because one obstetric practitioner of large experience may have frequently and successfully induced premature labour without observing these rules, and without any imputation on his character, this cannot shield another who may be less fortunately situated.

Chemical evidence. Blood in abortion. Liquor amnii.—In the event of an abortion having taken place, stains produced by blood or by the waters (liquor amnii) may be found on the linen of a woman, and a practitioner may be required to say whether these stains are of a nature to throw any light upon the perpetration of the crime. A woman who has aborted, may allege that the stains are those of the menstrual discharge. Speaking generally, there is no practical distinction between menstrual and other blood. (See ante, p. 240.) The menstrual blood contains less fibrin, is commonly acid and watery from admixture with the mucous discharges, and when examined by the microscope it presents epithelial scales, or cells derived from the mucous membrane. These scales or cells belong to the columnar variety. (See Rape, post.) Not much reliance can be placed upon their discovery, since the mucous membrane of the organs of respiration is lined with similar cells. Hence expectorated blood might be mistaken for menstrual. Cells of a similar shape line the whole of the mucous membrane from the stomach to the anus. The blood of piles might thus be confounded with menstrual blood. The blood discharged in abortion will present the usual characters of blood, elsewhere described (ante, pp. 234, 241); but it may be diluted with the waters simultaneously discharged. This question received the special attention of the French Academy a few years since, in reference to the crime of abortion; and the report made was to the effect that in the present state of science there was no certain method by which the blood of menstruation could be practically distinguished from the blood discharged from a woman in a case of abortion or from blood in infanticide. (‘Ann. d’Hyg.’ 1846, 1, 181.) In a more recent case, MM. Devergie and Chevallier were required to state whether certain stains on the dress of a woman supposed to have aborted, were or were not caused by the waters (liquor amnii). A chemical analysis merely revealed the presence of an albuminous liquid. The most elaborate experiments satisfied the reporters that neither by the odour nor by any other process could the liquor amnii, dried on linen, be identified. (See ‘Ann. d’Hyg.’ 1852, 2, 414.) It may, however, be of importance to observe that this liquid slightly discolours and stiffens the fibre of the stuff on which it has been effused, and that it can be readily extracted by cold water. The solution possesses all the properties of albumen. The amount of albumen contained in the liquor amnii decreases as gestation advances. At the fourth month it forms 10·77 per cent. of the
liquid; at the fifth month, 7.67; at the sixth month, 6.67; and at the ninth month, only 0.82 per cent. M. Chevallier's experiments show that the amniotic liquid has all the usual chemical properties of a very diluted solution of albumen. ('Ann. d'Hyg.' 1856, 1, 156.)
INFANTICIDE.

CHAPTER 46

By infanticide, we are to understand in medical jurisprudence, the murder of a new-born child. The English law, however, does not regard child-murder as a specific crime; it is treated like any other case of murder, and is tried by those rules of evidence which are admitted in cases of felonious homicide. In stating that infanticide is the term applied to the murder of a new-born child, it is not thereby implied that the wilful killing should take place within any particular period after birth. Provided it be proved that the child has actually died from violence, it matters not whether it has been destroyed within a few minutes, or not until several days after its birth. According to the latest return of the Registrar-General (for 1871), it appears that out of 202 murders 120 were perpetrated on children under one month. In the greater number of cases of infanticide, however, we find that the murder is commonly perpetrated either at the time of birth or within a few hours afterwards. Although the law of England treats a case of infanticide as one of ordinary murder, yet there is a difference in the nature of the medical evidence required to establish the murder of a new-born child. It is well known that many children come into the world dead, and that others die from various causes soon after birth; in the latter, the signs of their having lived are frequently indistinct. Hence, to provide against the danger of erroneous accusations, the law humanely assumes that every new-born child has been born dead, until the contrary appears from the medical or other evidence. The onus of proof that a living child has been destroyed, is thereby thrown on the prosecution, and no evidence imputing murder can be received, unless it be first made certain, by medical or other facts, that the child survived its birth, and was legally a living child when the alleged violence was offered to it. Hence there is a most difficult duty cast upon a medical witness on these occasions. In the greater number of cases the woman is delivered in secrecy, and no one is present to give evidence respecting the birth of the child. It is under these circumstances that medical evidence is especially required. For
reasons elsewhere assigned (see ante, p. 24) a medical man should be especially cautious in putting questions to a woman charged with this crime.

In most instances, however, the body of the child is found,—an inquest is held, and medical evidence is demanded. In giving evidence at a coroner’s inquest in a case of child-murder, as much care should be taken by a practitioner as if he were delivering it before a judge at the assizes. Some medical witnesses are disposed to treat an inquest with indifference, and to be careless in their evidence thinking probably, that should the case come to a trial, they could easily prepare themselves, and amend any statements which had been hastily made before a coroner’s jury. But it should be remembered that the depositions taken by this officer are placed at the trial in the hands of the judge, as well as of the prisoner’s counsel; and should a witness deviate in his evidence from that which he gave at the inquest, or should he attempt to amend or explain any of the statements then made, so that they might, by the ingenuity of a barrister, be represented as having a new bearing on the prisoner’s case, he would expose himself, not merely to a severe cross-examination, but probably to the censure of the Court. If medical men were to reflect that in delivering their opinions before a coroner and jury, they are, in many instances, virtually delivering them before a superior Court, it is certain that many unfortunate exposures would be easily avoided.

Uterine age or maturity of the child. Viability.—One of the first questions which a witness has to consider in a case of alleged child-murder, is that which relates to the age or probable degree of maturity which the deceased child may have attained in utero. The reason for making this inquiry is, that the chances of natural death in all new-born children, are great in proportion to their immaturity; and that, supposing them to have survived birth, the signs of their having breathed are commonly obscure. It is found that the greater number of children who are the subjects of these investigations, have reached the eighth or ninth month of gestation: yet charges of murder might be extended to the wilful destruction of children at the seventh month or under, provided the evidence of life after birth was clear and satisfactory.

The following are the characters whereby we may judge of the uterine age of a child from the sixth to the ninth month of gestation, a period which may be considered to comprise cases of abortion as well as child-murder:—

1. Between the sixth and seventh months: The child measures, from the vertex to the sole of the foot, from ten to twelve inches, and weighs from one to three pounds. The head is large in proportion to the trunk; the eyelids are adherent, and the pupils are closed by membranes (membranae pupillares). The skin is of a reddish colour, and the nails are slightly formed; the hair loses the silvery lustre which it previously possessed and becomes darker. Ossification proceeds rapidly in the chest-bone, and in the bones of
the foot; the brain continues smooth on its surface; there is no appearance of convolutions. In the male the testicles will be found in the abdominal cavity, lying upon the psoas muscles, immediately below the kidneys.

2. Between the seventh and eighth months: The child now measures between thirteen and fourteen inches in length, and weighs from three to four pounds. The skin is thick, of a more decidedly fibrous structure, and covered with a white unctuous matter which appears for the first time. Fat is deposited in the cellular tissue, whereby the body becomes round and plump; the skin previously to this is of a reddish colour, and commonly more or less shrivelled; the nails, which are somewhat firm, do not quite reach to the extremities of the fingers; the hair is long, thick, and coloured; ossification advances throughout the skeleton; valvule constrictions appear in the small intestines, and meconium is found occupying the cæcum and colon. The testicles in the male about this period commence their descent,—or rather, the child's head being downwards, their ascent towards the scrotum. The time at which these organs change their situation is probably subject to variation. According to J. Hunter, the testicles are situated in the abdomen at the seventh, and in the scrotum at the ninth month. Burns believes that at the eighth month they will commonly be found in the inguinal canals. The observation of the position of these organs in a new-born male child is of considerable importance in relation to maturity, and it may have an influence on questions of legitimacy as well as of child-murder. Mr. Curling thus describes their change of position:—At different periods between the fifth and sixth months of fetal existence, or sometimes even later, the testicle begins to move from its situation near the kidney towards the abdominal ring, which it usually reaches about the seventh month. During the eighth month it generally traverses the inguinal canal, and by the end of the ninth, arrives at the bottom of the scrotum, in which situation it is commonly found at birth. ('Diseases of the Testis,' 2nd ed., p. 17.) Its absence from the scrotum does not necessarily indicate that the child is immature, because the organ sometimes does not reach the scrotum until after birth.

3. Between the eighth and ninth months: The child is from fifteen to sixteen inches in length, and weighs from four to five pounds. The eyelids are no longer adherent, and the membrane pupillares have disappeared. The quantity of fat deposited beneath the skin is increased, and the hair and nails are well developed. The surface of the brain is grooved or fissured, but presents no regular convolutions: and the cineritious matter is not yet apparent. The meconium occupies almost entirely the large intestines; and the gall-bladder contains some traces of a liquid resembling bile. The testicles in the male may be found occupying some part of the inguinal canal, or they may be in the scrotum. The left testicle is sometimes in the scrotum, while the right is about the external ring.
4. Ninth month. Signs of maturity.—At the ninth month the average length of the body is about eighteen inches, and its weight from six to seven pounds: the male child is generally rather longer, and weighs rather more than the female. Extraordinary deviations in length and weight are occasionally met with. Mr. Owens has recorded a case in which a child at delivery measured twenty-four inches in length, and weighed seventeen pounds twelve ounces. ('Lancet,' December 1838), and Dr. Meadows has reported another in which a child measured, after death, thirty-two inches, and weighed eighteen pounds two ounces. It survived four hours. ('Med. Times and Gaz.' August 4, 1860.) In a case which I was required to examine in June 1842, the child, a male, measured twenty-two inches, and weighed twelve pounds and a half. (For some practical remarks on this subject, by Dr. Ellsässer, see Henke's 'Zeitschrift,' 1841, vol. 2, p. 235.) According to Dr. Duncan, the length and weight of a child vary according to the age of the mother. They are greatest among children when the mother is from 25 to 29 years of age; but the facts collected do not support this statement: for the child of a woman at 22, weighed seven pounds three ounces, and that of a woman of 30, seven pounds seven ounces. The length varied in a less degree, being for the different ages, at or about nineteen inches. (‘Éd. Mon. Jour.’ Dec. 1864, p. 500.)

At the full period the head of a child is large, and forms nearly one-fourth of the whole length of the body. The cellular tissue is filled with fat, so as to give considerable plumpness to the whole form, while the limbs are firm, hard, and rounded: the skin is pale; the hair is thick, long, and somewhat abundant; the nails are fully developed, and reach to the ends of the fingers—an appearance, however, which may be sometimes simulated in a premature child, by the shrinking of the skin after death. The testicles in the male are generally within the scrotum. Ossification will be found to have advanced considerably throughout the skeleton. The surface of the brain presents convolutions, and the cineritious or grey matter begins to show itself. The internal organs, principally those of the chest, undergo marked changes, if the act of respiration has been performed by the child before, during, or after its birth.

The characters which have been here described as belonging to a child at the different stages of gestation, must be regarded as representing an average statement. They are, it is well known, open to numerous exceptions; for some children at the ninth month are but little more developed than others at the seventh. Twins are generally smaller and less developed than single children:—the average weight of a twin child is not more than five pounds, and very often below this. The safest rule to follow in endeavouring to determine the uterine age of a child, is to rely upon a majority of the characters which it presents. That child only can be regarded as mature, which presents the greater number of the characters.
described, that are met with in children at or about the ninth month of gestation.

If the age of the child has been determined:—whether it be under or over the seventh month, the rules for a further investigation will be the same. Should the child be under the seventh month, the medical presumption will be, that it was born dead; but if it has arrived at the full period, then the presumption is that it was born alive.

Conclusions.—The following may be taken as a summary of the principal facts upon which our opinion respecting the uterine age of a child may be based:—

1. At six months.—Length, from nine to ten inches; weight, one to two pounds; eyelids, agglutinated; pupils closed by membrane pupillares; testicles not apparent in the male.

2. At seven months.—Length, from thirteen to fourteen inches; weight, three to four pounds; eyelids not adherent; membrane pupillares disappearing; nails imperfectly developed; testicles not apparent in the male.

3. At eight months.—Length, from fourteen to sixteen inches; weight, from four to five pounds; membrane pupillares absent; nails perfectly developed, and reaching to the ends of the fingers; testicles in the inguinal canal.

4. At nine months.—Length, from sixteen to twenty-one inches; weight, from five to nine pounds; membrane pupillares absent; head well covered with fine hair; testicles in the scrotum; skin pale; the finger-nails well formed and reaching to the ends of the fingers; features perfect—these and the body are well developed even when the length and weight of the child are less than those above assigned.

5. The point of attachment of the umbilical cord, with respect to the length of the body, affords no certain evidence of the degree of maturity.

Inspection of the body.—The questions which a medical jurist has to solve, in examining the body of a new-born child, are:—1. To determine its age, or the stage of uterine life which it has reached;—2. Whether it has lived to breathe;—3. Whether it has been born alive;—4. The period of time which has elapsed since its death;—5. The cause of death, whether violent or natural.

Hence, before commencing the inspection—

1. The length (measured from the summit of the head to the sole of the foot) and weight of the body should be taken;—2. The presence or absence of external fetal peculiarities noticed;—3. Any peculiar marks or indications of deformity whereby identity may be sometimes established;—4. All marks of violence, in the shape of wounds, bruises, or lacerations, and the kind of instrument or weapon by which they were probably produced;—5. Whether the umbilical cord has been cut and tied, or lacerated: the appearance of the divided vessels, and the length of that portion which is still attached to the body of the child;—6. The presence or absence of
MARKS ON THE BODY OF A CHILD.

vermix caseosa about the groins, arm-pits, or neck—the presence of this substance proves that a child has not been washed or attended to;—7. It will be necessary to state whether there are about the body any marks of putrefaction, indicated by a separation of the cuticle, change of colour in the skin, or offensive odour. It is obvious, that unless these circumstances are noticed before the inspection is commenced, they may be entirely lost as evidence. Notes should be made on the spot, and the original retained, even if copies be subsequently made.

A medical man cannot be too careful in noticing upon the body of the child, any special characters which may serve as proofs of identity. He must remember that the defence may be that the child is not that of the woman charged with murder. This observation applies especially to the examination of the bodies of children that may have survived their birth for some days. The body may be found wrapped in paper or in some article of clothing which may help to establish identity. If the child has survived its birth, it would be proper to form an opinion at once for how many days. The state of the umbilical cord, and whether the part to which it is attached is in the process of healing, or already healed, are facts which may help a medical opinion respecting the date of birth. In addition to these points, the sex of the child and the colour of the hair should be noted, as well as any particular marks on the skin, nevi (mother's marks), or moles, and, of course, all wounds or other injuries—their cause or mode of production, and their situation.

CHAPTER 47.

EVIDENCE OF LIFE BEFORE RESPIRATION.—PUTREFACTION IN UTERO.—EVIDENCE OF LIFE AFTER RESPIRATION.—COLOUR VOLUME CONSISTENCY AND ABSOLUTE WEIGHT OF THE LUNGS.—STATIC TEST.—WEIGHT INCREASED BY RESPIRATION.

The question whether a child was or was not born alive, is of great importance in a case of alleged child-murder; and it is unfortunately one which, in respect to the proofs upon which medical evidence is commonly founded, has given rise to considerable controversy. When it is stated that in most cases of alleged infanticide which end in acquittals in spite of the strongest moral presumptions of guilt, the proof fails on this point only, it must be obvious that this question especially claims the attention of a medical jurist. The medical evidence of a child having been alive, when violence was offered to it at its birth or afterwards, may be divided into
two parts: 1, that which is obtainable before the act of respiration is performed; and 2, that which is obtainable afterwards. At present it will be proper to confine our attention to the question, whether the child was legally living when it was maltreated,—the fact of its having been born alive will be a matter for future consideration. These two questions have been frequently but improperly associated, thus rendering the subject confused; but it must be so obvious as scarcely to require stating, that violence of a murderous kind may be offered to a living child before it is entirely born; and that owing to this violence it may come into the world dead.

Proofs of life before respiration.—It was formerly supposed, if the lungs contained no air, that the child could not have breathed, and must have been born dead; but this is now proved to be an error. Children have been known to breathe feebly, and continue in existence many hours without visibly distending the cells of the lungs with air—the absence of air from the lungs, therefore, furnishes no proof either that respiration has not been performed, or that the child has not lived. The restoration of many children apparently born dead is a clear proof that many are born living who might be pronounced dead, simply because breathing and life have been considered synonymous terms. That our law authorities will admit evidence of life in a child before the establishment of respiration, is clear from the decision in Rex v. Brain, in which the judge said, that a child might be born alive, and not breathe for some time after its birth (‘Archbold, Crim. Plead.’ 367), as also from the charge of Coltman J. in the case of Rex v. Sellis (Norf. Spr. Circ. 1837). In this instance it was alleged that the prisoner had murdered her child by cutting off its head. The judge directed the jury, that if the child was alive at the time of the act, it was not necessary, in order to constitute murder, that it should have breathed. In fact, it would appear that respiration is regarded as only one proof of life; and the law will, therefore, receive any other kind of evidence which may satisfactorily show that the child has lived, and make up for the proof commonly derived from the state of the lungs. It will be first necessary for a medical practitioner to prove that the child under examination has recently died, or, in other words, that there are good grounds for believing it to have been recently living. Hence, if the body is highly putrefied, either from the child having died in the uterus some time before birth, or from its having been born and its body not discovered until putrefaction had far advanced both internally and externally, the case is utterly hopeless. The medical witness will in general be compelled to abandon the investigation, because the body can furnish no evidence whatever of life after birth. The examination of the thoracic organs would throw no light on the case, for here we are assuming that the lungs are in their fetal condition.

Evidence from marks of violence.—It has been proposed to seek for evidence of life, under these circumstances, by observing the
characters presented by marks of violence on the body. In general, when children are murdered, the amount of violence inflicted is considerably greater than that which is required to destroy them, whereby satisfactory proofs of the crime are occasionally obtained. On the other hand, the body of a still-born child, dead from natural causes, is often covered with lividities and ecchymoses;—the blood of the fetus or child does not coagulate with the same firmness as that of the adult: hence the evidence derivable from the extent, situation, and characters of marks of violence, is generally too vague and uncertain a kind to allow of the expression of a medical opinion that the child was living when the violence was offered to it. The characters which have been already described as peculiar to wounds and contusions inflicted during life, may be met with in a child, whether it has breathed, or died without breathing. So again, these characters are open to the exceptions there pointed out; for they will be equally present, supposing the wounds to have been inflicted immediately after the cessation of respiration or circulation in the child, or after the cessation of circulation only,—if the act of respiration has not been performed. Marks of violence on the body of a child that had died in utero twenty-four or forty-eight hours before it was born, would not present the characters of injuries inflicted on the living. There would be no ecchymosis and no effused coagula of blood. These marks, when they exist, although they may establish that a child was either living or but recently dead at the time they were inflicted, can never show that it was born alive. Injuries met with on the bodies of children alleged to have been born dead ought, however, to be of such a nature as to be readily explicable on the supposition of their having arisen from accident. If, from their nature, extent, or situation, they are such as to evince a wilful design to injure, it is a fair ground for a jury,—not for a medical witness, to inquire why these extensive wounds, or other marks of violence, were inflicted on a child, if, as it is alleged, it was really born dead. It must be confessed that in such a case there would be a strong moral presumption of murder, although medical proof of life, or actually live birth, might totally fail.

As a summary of these remarks, it may be observed that although physiologically a child may live for a certain period after its birth without breathing,—and legally its destruction during this period would amount to murder, yet there are at present no satisfactory medical data to enable a witness to express a positive opinion on this point. If other evidence were adduced of a child having lived and been destroyed under these circumstances,—as where, for example, a woman causes herself to be delivered in a water-bath, or an accomplice covers the mouth of an infant in the act of birth or immediately after it is born,—a medical witness would be justified in asserting that the absence of the signs of respiration in the lungs was no proof that the child had been born dead. Indeed, it is apparent that the process could not be estab-
lished, owing to the criminal means actually employed to prevent it. Whether a jury would convict upon such evidence is doubtful; but this is of no importance to the witness:—his statements ought always to be made according to correct and well-ascertained medical principles, and not for the purpose of procuring either the conviction or acquittal of persons accused of offences against the law.

In general, those cases in which questions relative to life before respiration might arise, are stopped in the Coroner’s court,—the usual practice being, when the signs of respiration are absent or imperfect, to pronounce that the child was born dead. If the lungs sank in water, the presence of marks of violence on the body would be considered as furnishing no evidence;—for the sinking of the lungs would in general be taken as a proof of still-birth.

There is a class of cases in which a child is born alive, but its lungs remain in the fetal condition, i.e. they present no appearance of having received air by the act of breathing. These are cases of atelectasis (p. 528). The appearances in the body are the same as in still-born children. Professor Donders, who met with one of these cases in which he pronounced a child to be still-born when it was distinctly proved that it had lived twelve hours, says truly, ‘Where the signs of an extra-uterine life, which does not betray itself by air in the lungs, are to be found, futurity must declare.’

The absence of air from the lungs may really be the result of the forcible prevention of respiration in the act of birth. There cannot be the slightest medical doubt that living children are occasionally thus destroyed: they die, not from the actual infliction of violence, but because, either through design or accident, the performance of that act which is necessary to maintain existence when the child is born, is prevented. Such a case has not yet been decided, although from the dicta of our judges, it would probably involve a charge of murder.

Proofs of life after respiration.—There is no doubt that the proof of the act of respiration furnishes the best and strongest evidence of a child having lived at or about the time it was born. It does not, however, show that a child has been born alive. The physical changes in the body of a child, which result from the establishment of this process take place in the lungs immediately, and in the heart and its appendages more slowly. It is therefore chiefly to the lungs that a medical witness looks for proofs of respiration. Sometimes, however, these organs are found in their fetal condition, or nearly so:—for although a child may have survived its birth many hours, there may be no evidence of the fact from the state of the lungs. To such cases the remarks now about to be made cannot of course apply:—the proofs of life must then be sought for elsewhere, and if none can be found, the case is beyond the reach of medical evidence. But it is obvious that the occasional occurrence of cases of this description can present no objection to our still seeking for proofs of life in the state of the lungs,
any more than the fact of poison not being always discovered in
the body of one who has died from poisoning, would be a bar to our
seeking for the proofs of poison in any unknown case which pre-
presented itself. It is the more necessary to insist upon this point,
because some have held that, as we cannot always derive proofs of
life from an examination of the lungs of new-born children, we
should abandon all evidence of this description and leave the case
in its original obscurity. The very object of medical jurisprudence
is, to endeavour to remove these difficulties, and to show in every
department of the science the degree to which we may safely trust
the medical proofs of crime, however insufficient, inconsistent, or
contradictory they may at first sight appear.

Examination of the lungs.—The cavity of the chest may be con-
veniently laid open by carrying incisions from below the clavicles
downwards on each side from about half the length of the ribs
backwards. The diaphragm should be separated from the carti-
lages without opening the abdomen; the ribs sawn or cut through,
and the flap formed by the front of the chest turned upwards.
The differences in the relative position of the organs of the chest
before and after respiration may be thus stated. 1. If a child
has not breathed, the thymus gland, as large as the heart, will be
found occupying the upper and middle portions of the chest;—
the heart within its membrane (pericardium) is situated in the
lower and middle portion, and is rather inclined to the left side.
The lungs are placed quite in the back part of the chest, so as
often to give the impression that they are wanting. In some in-
stances they project slightly forwards by their anterior margins,
but in no instance, unless congested, infiltrated, or otherwise dis-
eased, do they cover and conceal the heart. The thymus gland is
sometimes of a pale fawn—at others of a deep livid colour; but
there is no perceptible difference in this organ in new-born chil-
dren, before or after the performance of respiration. 2. On the
other hand, when a child has fully breathed, the most striking
differences will be observed in the colour and prominence of the
lungs. They are of a light red hue, project forwards—appear to
fill the entire cavity of the chest, and cover and in great part con-
ceal by their anterior margins, the heart and its membrane. We
may meet with every variety in the appearances between these two
extremes; for the process of respiration often requires a consid-
erable time in order that it should be fully established, especially
in children which are of a weakly constitution or prematurely
born. Hence the lungs will be found to occupy their respective
cavities to a greater or less extent, and to cover the pericardium
more or less, not according to the length of time which a child has
lived, but according to the perfection with which respiration has
been performed. Although, as a general rule, the lungs are more
perfectly filled with air in proportion to the time during which a
child survives its birth, yet this is open to numerous exceptions.
The physical characters of the lungs now require notice.
Colour.—The colour of the lungs before respiration is bluish red, or deep violet, but it is subject to variation. Some medical jurists have compared it to the colour of the spleen. A short exposure to air will materially brighten the colour in the parts exposed, so that it should be observed and recorded immediately on opening the chest. After respiration, the lungs acquire a light red hue in proportion to the degree in which the process has been performed. If imperfectly established, they will be mottled or marbled generally about the anterior surfaces and margins, the patches of light red being intermixed with the livid foetal hue, and being slightly raised, as if by distension, above the general surface of the organs. The light red tint changes, after a short exposure to air, to a bright scarlet.

Volume.—Before respiration, the lungs are in general scarcely visible, unless forcibly drawn forwards in the chest. When it has been perfectly accomplished, the volume is so much increased, that the bag of the heart (pericardium) is almost concealed by them. Respiration must, however, have been perfectly performed in order that this condition should exist to the full extent described.

Consistency.—The lungs, before respiration, feel like the liver, or any other of the soft organs of the body. They are firm under the finger, but their substance may be lacerated by violent compression. After respiration has been fully performed, there is a distinct sensation of what is termed crepitation, on compressing them, i.e. air is felt within them. If a thin section of the lung is submitted to examination with a low power of the microscope,—before respiration it will present the solid appearance of a section of the liver, spleen, or kidney—after respiration, air-cells will be distinctly seen in it. These conditions of the lungs must, of course, depend on the degree to which respiration has been carried. The lungs of children that have lived for a considerable time after birth, will sometimes give no feeling of crepitation under the finger. Generally speaking, lungs of this kind present the other foetal characters; thus they are small and of a livid colour, and no air-cells may be detected on a microscopical examination.

Absolute weight of the lungs. The static test.—The absolute weight of the lungs before respiration, is less than that which they have after the establishment of the process. From this an inference has been drawn that the absolute weight of the lungs in an unknown case, compared with certain averages, will aid the inquirer in ascertaining whether respiration has or has not been performed. In order to determine the weight of the lungs, these organs should be carefully separated by dissection from the heart and thymus-gland, and removed with the tracheas and bronchi attached. Previously to their removal, ligatures should be placed on the pulmonary vessels, so that no blood may escape from the lungs. They should now be weighed, and the weight accurately noted in grains. The average weight before respiration, derived from nine cases, was found to be 649 grains. According to Dr.
OF THE LUNGS AFTER RESPIRATION.

Traill, the weight varies from 450 to 600 grains. It is of importance in taking the weight of these organs to observe whether the child is at or near maturity, and whether its body is fully developed, or of about the average size and weight: owing to a neglect of this rule, it is highly probable that comparisons have been made of the absolute weight of the lungs in children of different ages, which a full statement of the facts would not have justified. If it be small and immature, or unusually large, the lungs will weigh either less or more than the average. The average weight of the lungs, after respiration, derived from three cases, was 927 grains; but in making an estimate of this kind, much will depend upon the degree to which respiration has been carried. In three cases, in which the children lived half an hour, six hours, and twenty-four hours, respectively, the process had been so imperfectly performed, that the lungs varied but little in weight from the average before respiration. ('G. H. Rep. No. V.) The truth is, we cannot compare the lungs of children, as to weight, by the time which they may have survived birth, but rather by the degree to which the lungs have been penetrated by air. Another circumstance must also be considered in basing an opinion on the absolute weight of the lungs. Although there does not appear to be any strict normal relation between the weights of the body and lungs in new-born children, yet it is certain that in the bodies of children of unusual weight, the lungs will be found much heavier than the average, whether the child has breathed or not. The body may vary from six to eighteen pounds; the lungs under these circumstances will also differ in weight.

The healthy lungs of mature new-born children become heavier after respiration, and according to its degree; and where a deviation from this rule is observed, it may probably be explained by the circumstance that the lungs of an immature have been compared with those of a mature child—the lungs of an undeveloped twin with those of one not a twin, or the lungs of one which has breathed imperfectly with those of another in which respiration has become well established. The following table represents the weight of the lungs, in four cases: it will show how much the organs are liable to vary in weight after birth, according to the degree of respiration:—

<table>
<thead>
<tr>
<th>Case</th>
<th></th>
<th>Weight, 687 grs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Born</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Lived</td>
<td>6 hours</td>
</tr>
<tr>
<td>3.</td>
<td>Lived</td>
<td>24 hours</td>
</tr>
<tr>
<td>4.</td>
<td>Lived</td>
<td>9 days</td>
</tr>
</tbody>
</table>

774
675
861

Relying upon the mere weight of the lungs, it might be inferred from this table that the organs would weigh less in a child which had survived its birth twenty-four hours, than in another which had been born dead, and that there would be very little difference in the weight, whether the child lived six hours or nine days; but when it is stated that in Case 3 the lungs had every fotal
character possessed by those in Case 1, and that in Case 4 respiration had been obviously very imperfectly performed, the difficulty is removed. Such cases should rather be compared with the lungs in the fetal than in the respiring state. They merely show what is very well known to, and admitted by all medical jurists, that there are some instances in which the fact of respiration cannot be determined by the application of the static or any other test to the lungs, simply because they contain no air. Increased weight, therefore, is only one among several circumstances to which a medical jurist should attend.

Great weight of the lungs can obviously furnish no proof of respiration, unless this is accompanied by the other physical changes indicative of the process; as, for example, increase in volume from the presence of air, crepitation, and the detection of air-cells by the microscope. If the lungs are heavy, and at the same time contain little or no air; the increase of weight must depend upon disease or other abnormal causes—not upon respiration. In one case which I had to examine, the lungs were large, and weighed upwards of 1,200 grains. They contained no air; when divided into thirty pieces, not one portion floated, nor could any air be seen on the closest examination. It was therefore clearly impossible to ascribe a weight so much above the average to the effects of respiration. On the other hand, in a case communicated to me by Mr. Cann of Dawlish, the lungs of a new-born child apparently full-grown, although fully distended with air, weighed only 626 grains. In this case the body of the child weighed only six pounds, and a quantity of blood had, no doubt, escaped from the lungs, owing to the pulmonary vessels not having been tied before their removal from the chest. It must not be forgotten that all the physical characters presented by lungs that have expired are liable to certain fallacies; but, as in the evidence derived from tests used in poisoning, these may be removed, or the force of the objection diminished, by not basing an opinion on one or two conditions only. We should take the whole combined; for it would be as wrong to regard great weight in the lungs taken alone as an absolute proof of respiration, as it would be to draw the same inference from a mere change in the colour, volume, or consistency of the organs.

M. Plouquet proposed to determine whether the act of respiration had taken place or not by a comparison of the absolute weight of the lungs with the weight of the body of a child. This, which has been called the test of Plouquet, is based on the fallacy that there is an invariable relation between the weights of the lungs and bodies in new-born children. No such relation exists, and this method of arriving at a solution of the question of respiration, has been abandoned by all medical jurists.

The specific gravity of the lungs.—The specific gravity of the lungs is greater before than after respiration: for although the organs become absolutely heavier by the establishment of the
process, this is owing, not to the air, but to the additional quantity of blood received into them. The air thus received, so increases the volume of the lungs as to more than counteract the additional weight derived from the blood, and thus apparently to diminish their specific gravity. Under these circumstances they readily float on water. From several experiments, I have found that the specific gravity of the lungs before respiration, i.e. in the fetal condition, varies from 1.04 to 1.06. They are about one-twentieth part heavier than their bulk of water. After respiration, the specific gravity of the lungs with the air contained in them, I found in one experiment to be 0.94; i.e. the organs were about one-seventeenth part lighter than their bulk of water. The introduction of a very small quantity of air will render the lungs buoyant in water, and an alteration in their volume sufficient for this purpose, would not be perceptible to the eye. It will be understood that the specific gravity of the substance of the lungs is unchanged; the organs are rendered only apparently lighter by the air contained in their cells, on the same principle as a bladder filled with air. Hence it follows that the apparent diminution of specific gravity will take place, whether the air is derived from respiration, artificial inflation, or putrefaction. It is on this property of the lungs that the application of what is termed the hydrostatic test, or the docimasia pulmonaris, is founded—a subject which may be appropriately considered in another chapter.

Conclusions.—The general conclusions which may be drawn from the contents of this chapter are:—

1. That a child may be born alive and be criminally destroyed before it has breathed.

2. That the presence of any marks indicative of putrefaction in the uterus, proves that the child must have come into the world dead.

3. That there are no certain medical signs by which a child which has not breathed, can be proved to have been living when it was maltreated.

4. That a new-born child may be destroyed by the prevention of respiration during delivery.

5. That by taking together the colour, volume, consistency, absolute weight, and buoyancy of the lungs, we may be able to draw an inference whether the child has or has not breathed.

6. That the lungs increase in weight according to the degree to which respiration is established, and not necessarily according to the period which the child has survived birth.

7. That no reliance can be placed upon the test of Plouquet, or the proportionate weight of the lungs to the body.
CHAPTER 48.

THE HYDROSTATIC TEST.—SINKING OF THE LUNGS FROM DISEASE OR ATHELECTASIS.—LIFE WITH PERFECT ATHELECTASIS OR ENTIRE ABSENCE OF AIR FROM THE LUNGS.—ERONEOUS MEDICAL INFERENCES FROM SINKING OF THE LUNGS.—FLOATING OF THE LUNGS FROM PUTREFACTION.—EFFECTS OF PUTREFACTION ON THE LUNGS.

The Hydrostatic test.—The mode of employing this test is extremely simple. Having removed the lungs from the chest, they should be placed, still connected with the air-tubes, upon the surface of distilled or river water. If they sink, it should be noted whether the sinking takes place rapidly or slowly. If they both sink, the two lungs should be tried separately; for it is sometimes found that one, commonly the right, will float, while the other will sink. Supposing that both lungs sink, it will then be proper to divide each into twelve or fifteen pieces, and place these pieces separately on water. If, after this they all sink, the inference is, that although the child may have lived and survived its birth, there is no evidence of its having breathed. On the other hand, the organs when placed on water may float: it should then be noticed whether they float high above the surface, or at or below the level of the water; sometimes they indifferently float or sink. These differences will lead to a conclusion respecting the degree to which respiration has taken place. It will now be proper to separate the lungs, and determine whether the buoyancy is due to one or both. Each lung should be divided as before, and each piece separately tried. If all the pieces float, even after firm compression, we have good evidence, ceteris paribus, that respiration has been very perfectly performed. Should any of the divided portions sink in water, either before or after compression, our opinion should be modified accordingly. Some have recommended that the lungs should be placed on water with the heart and thymus-gland attached; but there appears to be no good reason for this, since it is as easy to form an opinion of the degree of buoyancy possessed by the lungs, from the readiness with which they float, as by observing whether or not they have the power to support these two organs.

With regard to the inference derivable from the use of this test, it should be observed that the floating of the lungs in water is not, as it is often incorrectly represented to be, a proof that a child has been born alive: nor is the fact of their sinking in water any proof that a child was born dead. The floating, under the limitations to be described, proves only that a child has breathed, the sinking, either that it has not breathed, or breathed but imperfectly. The fact of a child having been born living or dead, has strictly speaking, no relation to the employment of the hydrostatic test. There are cases of infanticide which may be readily established
without resorting to this test, and others which cannot be proved by its use: all that the law requires is proof that a child has been born living,—and whether this proof be furnished by the state of the lungs through the hydrostatic test, or in any other manner, is of no moment. The signs of life are commonly sought for in the lungs, because it is in those organs that the changes produced by a new state of existence are most distinctly perceived; but this examination may be dispensed with, when the woman confesses that the child was born alive—when others have seen it manifest life by motion or otherwise after its birth; or, lastly, in cases where, without being seen, it has been heard to cry. The crying of a child has been admitted as evidence of live birth on several trials for infanticide; although, as it is elsewhere stated, a child may utter a cry and die before its body is entirely born. Among the objections which have been urged to the employment of the hydrostatic test, we have first to consider those which concern the sinking of the lungs in water.

Sinking of the lungs from disease or atelectasis.—It is said that the hydrostatic test cannot show whether a child has or has not survived its birth, because the lungs of children that have lived for a considerable period, have been observed to sink entirely in water. In some instances this may depend on disease, tending to consolidate the air-cells, as hepatisation or scirrhus—in others, on oedema or congestion: but these cases can create no difficulty, since the cause of the lungs sinking in water, would be at once obvious on examination. The hepatised portion of lung may be known by the firmness with which it resists cutting with a knife, as also by the fact that it is impossible to distend it artificially with air. On the other hand, there are cases in which the lungs appear healthy and unaffected: all that we can perceive is, that they retain their fetal condition. This is a very different state from that of hepatisation, because the lungs may in this case, be made to receive air by artificial inflation. It is remarkable that life should continue for many hours, and sometimes even for days, under such a condition; but the occasional existence of this state of the lungs in a living child is placed beyond all dispute; the explanation of the causes upon which it depends—how it is that a child may live for hours or days, and no signs of respiration be discovered in its body after death, is however, involved in difficulty. The lungs appear to be simply unexpanded, or to retain their fetal condition; a state to which the name of atelectasis has been given. This condition may be found to affect the whole or a part of the organs.

Dr. Albert met with a case in which a child died thirty-six hours after its birth, having been attacked by convulsions at intervals during that time. On inspection, the whole of the right, and the lower portion of the left lung, were found to be in their fetal condition, and they immediately sank when immersed in water. There was no diseased appearance in the organs, and the undistended portions were easily filled by blowing air into them. (Henke's
'Zeitschrift,' 1837, vol. 2, p. 422.) M. Dépaul found that in many cases in which children had died suddenly after breathing for several hours or days, there was no other morbid appearance to be perceived than an unexpanded condition of a large portion of the lungs. ('Med. Gaz.' vol. 39, p. 283.)

It is quite necessary for a medical jurist to be aware that the state of the lungs which is here called atelectasis, is by no means unfrequent among new-born children, although attention has been only of late years drawn to this subject. When no portion of air is found in the lungs of a child, there is no test by which such a case can be distinguished from one in which the child has come into the world dead. These cases of atelectasis are ordinarily set down as exceptions to a general rule; but I believe they are more common than some medical jurists are inclined to admit. In examining the body of a child, the history of which is unknown, it is proper that the possible occurrence of such cases should be well borne in mind. It appears to me not improbable, that many such come yearly before coroners in this country; and that they are dismissed as cases of still-born children, notwithstanding that marks of violence are often found upon the bodies. If, as it has already been observed, the lungs sink in water, this fact alone is commonly, although improperly, regarded as sufficient evidence of still-birth. This is assuredly putting the most humane interpretation on the circumstances, and so far the result is not to be objected to; but we should take care, in carrying out this principle, that we do not throw obstacles in the way of a subsequent judicial inquiry, and lead to the concealment of crime. Professor Bernt met with an instance in which a seven-months' child died two hours after birth; and when its lungs were divided and placed in water, every portion sank. Remer has reported another, in which the lungs sank in water, both entire, as well as when divided, although the child had survived its birth at least four days. (Henke, 'Lehrbuch der G. M.' p. 374.) In this case the navel-string had separated naturally before death. Orfila found in a child which had lived eleven hours, every portion of the lungs, when divided, to sink on immersion. In three other instances in which the children survived birth four, six, and ten hours, the lungs also sank when divided; two of these were mature. ('Méd. Lég.' vol. 1, p. 375.)

Dr. Vernon attended a healthy woman, who was delivered of a child at about the sixth month of her pregnancy. The child was born before his arrival, and he heard it crying strongly from under the bed-clothes as he entered the room. After removal from the mother, the child cried at intervals, and it was observed that its chest rose and fell as in ordinary breathing. It lived five hours, and it then appeared to die from feebleness and exhaustion. It was a female child and very small; the body weighed 2 lbs. 13 ozs. and its length was 12½ inches; the eyelids were adherent. The lungs were of a purplish red colour, and slightly
overlapped the bag of the heart: they sank in water both entire and when divided into small pieces; they were not crepitant, and broke down under firm compression; there was no appearance of air-cells in a section of the lungs when examined by the microscope. The ductus arteriosus and foramen ovale were in their fetal state. ('Lancet,' Feb. 3, 1855, p. 121.) A still more remarkable case recently occurred to Prof. Donders, of Utrecht. (Report by Dr. Moore, 'Dublin Medical Press,' Nov. 22, 1865, p. 456.) The body of the child was sixteen inches in length, and weighed nearly five pounds. It was probably a seven-months' child. The lungs were of a brown colour, and sank in water entire and when divided. There was no crepitation, and on pressure only a reddish fluid without air escaped. The bladder was empty: there was no food in the stomach, but there was meconium in the larger intestine. From this state of facts Prof. Donders concluded that the child was immature—still-born—only a short time dead, and remaining in the uterus only a short time after death. It transpired, however, that the child had been born alive, had survived its birth twelve hours, and had cried distinctly after it was born. As the lungs could be readily inflated, and as the child had cried, he concluded that air had been received into the lungs, and had been again slowly expelled, the child dying in a kind of asphyxiated state.

Dr. Schwörer, of Freiburg, delivered a woman in the hospital. The child did not breathe when born, but showed some signs of life. Thus the pulsations of the heart and umbilical cord were perceptible. These gradually ceased, and no effort could restore the child. On inspection, the lungs were found to contain no air; there was no crepitation when the substance of the lungs was cut, and they sank in water, not only in the entire state, but when divided into numerous pieces. M. Ponec produced before the Lyons Medical Society (Oct. 1871) the lungs of a foetus, prematurely born at the Hôtel-Dieu. The child had cried, breathed, and lived an extrauterine life for ten hours, but the lungs sank completely in water as if no respiration had taken place. ('Lancet,' 1872, 1, 227.)

I may add to these instances two which have occurred under my own observation. In one, the case of a mature male child, the lungs sank in water, although the child had survived birth for a period of six hours. In the other, the case of a female twin, the child survived twenty-four hours; and after death the lungs were divided into thirty pieces; but not a single piece floated; showing therefore that, although life had been thus protracted, not one-thirtieth part of the structure of the lungs had received, by respiration, sufficient air to render it buoyant. ('Guy's Hospital Reports,' No. 5, p. 365.) In the latter instance no particular remark was made during life respecting the breathing of the child.

These cases show most clearly that buoyancy of the lungs is not a necessary consequence of a child having lived and breathed for some time after birth. Probably, had these cases called for
medico-legal inquiry, the lungs would have been cut to pieces; the sinking of the divided pieces in water, either before or after compression, would have been set down as negativing the act of respiration, and unless other strong evidence had been forthcoming, it would have been asserted that the children had been born dead. Here, again, we perceive the necessity of not hastily assuming that a child has been born dead, because its lungs *sink* in water. There may be no good medical evidence of such a child having lived after birth, but assuredly the mere sinking of these organs does not warrant the common and positive dictum, that the child was necessarily dead when born; it would be as reasonable to pronounce, in a question of poisoning, that the fact of an individual having died from poison, was negatived by the non-discovery of a poisonous substance in his stomach.

It must be apparent, on reflection, that cases of this description are beyond the reach of the hydrostatic as well as of all other tests applied to the respiratory organs; because the lungs do not receive and retain a sufficient quantity of air to give buoyancy after death, although the children may have lived some hours. The hydrostatic test is no more capable of showing that such children as these have lived, than it is of indicating from what cause they have died. Facts of this kind demonstrate that a passive existence may be for some time maintained under a state of the respiratory process not to be discovered after death. In the opinion of some, these cases form a serious objection to the hydrostatic test; but it is difficult to understand how they can affect its general application—or why, because signs of respiration do not always exist in the lungs of children that have lived, we are not to rely upon them when they are actually found. These exceptional instances prove that we are greatly in want of some fact to indicate life after birth, when the signs of respiration are absent. Until we discover this we must, of course, make the best use of that knowledge which lies at our disposal; taking care to apply it to those cases alone to which experience shows it to be safely adapted. In the mean time, the common inference that a child has been born dead because its lungs sink in water, is never likely to implicate an innocent party; it can only operate by sometimes leading to the liberation of the guilty.

It has been recommended that medical jurists should consider as dead every child that has not breathed, i.e. whose lungs *sink* in water; but they who give this advice at the same time admit that children may come into the world living without breathing, and the law holds, under the decision of its expounders, that respiration is only one and not an exclusive proof of life. In order to establish life or even live birth, respiration need not always be proved, either in civil or criminal cases. A medical jurist would, therefore, be no more justified in asserting that all such children were necessarily born dead, than that they were born living; and in stating what is the plain and obvious truth, it is not possible that his statement can ever be the means of involving an innocent person. It is
certain, however, in departing from the truth and stating what is contrary to well-known facts, that when the lungs of a child sink in water, it is safe and just to consider such child as having been born dead, he is incurring the risk of exculpating a really guilty person; for it cannot be too strongly borne in mind, that a woman is not now charged with murder, merely because the lungs of her child float or sink in water, but because there are upon its body marks of violent injuries apparently sufficient to account for the death of a new-born child, or there are strong moral presumptions of her guilt. (See 'Ann. d'Hyg.' 1836, 2, 362.) But there is another aspect in which this question should be viewed. There may be no marks of murderous violence on the body of the child, nor any proofs of ill-treatment, yet a child born under these circumstances may have died through the culpable neglect or reckless indifference of the woman. Dr. Moore, of Dublin, in reporting two cases of atelectasis, in one of which a child had survived its birth twelve hours, remarks that when such a child is deserted or exposed, without the necessary attention required for its helpless state, the conditions are precisely fulfilled to cause its death within a few hours under a diminution of temperature and a total expulsion of air from the lungs. He has no doubt that many a child so found, which had met with its death through want of care, is looked upon as not having lived. (‘The Medical Press,’ Nov. 22, 1865, p. 458.) It will be seen hereafter that some of our judges have recently given a strong exposition of the law, so as to bring cases of this description within the crime of manslaughter.

Floating of the lungs from other causes than respiration.— Another series of objections has been urged to the hydrostatic test, based on the fact that the lungs may receive air and acquire buoyancy from other causes than respiration. These causes are two: putrefaction and artificial inflation. Putrefaction.—The lungs of a still-born child, when allowed to remain in the chest, are slow in undergoing putrefaction; but, nevertheless, they sooner or later acquire sufficient air to render them buoyant in water. When the lungs are putrefied, this will be determined, in general, by putrefaction having extended throughout all the soft parts of the body. The organs, according to the degree of putrefaction, will be found soft, of a dark green or brown colour, and of a highly offensive odour; the serous membrane covering the surface will be raised in large visible bladders, from which the air may be forced out by very moderate compression. It has been remarked that, under the same conditions, gaseous putrefaction takes place as rapidly in the liver, heart, and thymus-gland of a new-born child, as in the lungs; we should, therefore, notice the general state of the body. The distension of the lungs with gas from putrefaction cannot be easily overlooked or mistaken for the air of respiration. The answer to any objection founded on the putrefied state of these organs must at once suggest itself. It is impossible that any well-informed medical witness can expect to obtain
satisfactory evidence from experiments on lungs in such a condition. He should abandon the case, and declare that in regard to the question of respiration, medical evidence cannot establish either the affirmative or the negative. The fact of his not being able to give the evidence required, cannot be imputed as a matter of blame to him or ascribed to any deficiencies in the hydrostatic test; this is due to purely accidental circumstances.

In a case reported by Henke, the lungs and other organs in the body of a child were found in an advanced state of putrefaction. A medical witness gave an opinion that the child was born dead, but the prisoner afterwards confessed that it had been born living. The medical opinion could have been no more than a conjecture, the condition of the body not allowing any correct conclusion to be drawn. This fact shows that it is always better to leave a doubtful case as we find it, than to express a positive opinion that the child has been born living or dead. If on these occasions a witness were simply to assure a jury that medical evidence could not solve the question whether the child had lived or not—if he were to assert, what is really the fact, that his experiments would not allow him to say whether the child had or had not breathed—it is certain that no innocent person would ever be convicted or a guilty person acquitted, upon his evidence. It is for a jury only to judge of guilt from all the circumstances laid before them; but it is assuredly not for a medical witness to prevent further investigation, and put an end to the case, when there is good reason for doubt. It is his duty to state that doubt, and leave the decision of guilt or innocence in the hands of the Court.

Conclusions.—The general conclusions which may be drawn respecting the application of the hydrostatic test in cases of infanticide are the following:—

1. That the hydrostatic test can only show whether a child has or has not breathed,—it does not enable us to determine whether a child has been born living or dead.
2. That the lungs of children that have lived after birth may sink in water, owing to their not having received air, or to their being in a diseased condition.
3. That a child may live for some time when only a portion of the lungs has been penetrated by air.
4. That a child may survive birth even for twenty-four hours, when no part of its lungs has been penetrated by air.
5. Hence the sinking of the lungs (whether whole or divided) in water is not a proof that a child has been born dead.
6. That the lungs of children which have not breathed and have been born dead may float on water from putrefaction.
7. That the lungs as situated in the chest, undergo putrefaction very slowly,—that if but slightly putrefied, the gases may be easily forced out by compression, and if much putrefied, either the case must be abandoned, or other sources of evidence sought for.
ARTIFICIAL INFLATION OF THE LUNGS. 533

CHAPTER 49.

FLOATING OF THE LUNGS FROM ARTIFICIAL INFLATION.—INFLATION NOT DISTINGUISHABLE FROM IMPERFECT RESPIRATION.—RESULTS OF COMPRESSION.—IMPROPER OBJECTIONS TO THE HYDROSTATIC TEST.—RESPIRATION BEFORE BIRTH.—RESPIRATION A SIGN OF LIFE, NOT OF LIVE BIRTH.—GENERAL CONCLUSIONS.

Artificial inflation.—It has been alleged that the lungs of a still-born child may be made to assume by artificial inflation, i.e. by blowing air into them, all the characters assigned to those which have undergone respiration. Thus, it is said, a child may not have breathed, and yet the application of the hydrostatic test would in such a case lead to the inference that it had. It will be seen that the force of this objection goes to attack directly the inference derivable from the discovery of air in the lungs. There is only one form under which this can be admitted as an objection, namely, as it applies to lungs which have been inflated while lying in the cavity of the chest. Any experiments performed on them after their removal from this cavity, can have no practical bearing, since in a case of infanticide we have to consider only the degree to which the lungs may be distended with air by a person who is fairly endeavouring to resuscitate a still-born child. Assuming that the experiment has been successfully performed, and that the lungs have been artificially inflated, they would resemble, in their partial distension with air and other physical characters, those of children which had breathed imperfectly. Like them, they may float on water; but on cutting them into pieces some of these would be found to sink. If the pieces which float are firmly compressed either by means of a folded cloth or between the fingers, they will lose their air and sink. When this pressure is produced under water, it will be seen that bubbles of air escape, but mere pressure with the fingers will not in general suffice to expel the whole. The same result is obtained when the divided portions of lungs which have breathed imperfectly are submitted to pressure. If, however, the act of breathing has been perfectly performed, and the air-cells are well filled, the air cannot be expelled by pressure or by any force short of the destruction of the substance of the lungs. This difference in the effect of pressure has been hitherto regarded as a criterion to distinguish lungs that have fully breathed from those which have been simply inflated; but Dr. Hicks met with a case which shows that pressure will not always effect the expulsion of air, artificially introduced into the lungs of a child born dead; hence by an exclusive reliance on this method, a medical man might be led to infer that a lung artificially inflated had received air by respiration. Dr. Hicks delivered a woman of a full-grown child; it was still-born, and there was no effort at respiration. An attempt was made to resuscitate the child, but unsuccessfully, by blowing air into the lungs through a
catheter. On inspection, the lungs were observed to be of large size, but they did not present the usual appearances of lungs which had breathed. Although about three-fourths of the organs had received air by inflation, they were of a pale fawn color, like the thymus-gland; still the air was contained in the minute air-cells. They floated on water as well as all the pieces (fifteen or sixteen) into which they were divided. When compressed between the fingers under water, small bubbles of air escaped; but no amount of compression short of destroying their structure caused these pieces to sink. A fact of this kind, although perhaps exceptional, shows that the non-expulsion of air from lungs by compression must not be regarded as an absolute proof of respiration. It must be taken with other circumstances, e.g. absolute weight and colour, as a fact to show that the child has either breathed, or has had its lungs perfectly inflated in a bond fide attempt to restore life after birth, either by the mother or by some person present at the birth. In these cases the only course left open to a medical witness is, to state that the evidence derived from experiments on the lungs left it uncertain whether the child in question had breathed, or had had its lungs artificially inflated. A jury will then know how to return their verdict: for it must be remembered, they have always circumstances, as well as medical opinions, to guide their judgment; and it is upon the whole, and not upon a part of the evidence laid before them that their verdict is founded.

In concluding these remarks upon the objections to the hydrostatic test, it may be observed that medical practitioners have differed much at different times in their ideas of what it was fitted to prove. About seventy years ago, it would seem that this test was regarded by some as capable of furnishing evidence of murder! Thus we find Dr. Hunter asking the question, 'How far may we conclude that the child was born alive, and probably murdered by its mother, if the lungs swim in water?' Later authorities, and, indeed, many in the present day, assert that the test is capable of proving whether a child has been born alive or not! From what has already been stated, as well as from the most simple reflection on the circumstances accompanying the birth of a child, I think it must be evident that the hydrostatic test is no more capable of showing whether a child has been born alive or dead than it is of proving whether it has been murdered or has died from natural causes. The majority of those who have made experiments on this subject have only pretended to show, by the use of this and other tests, whether or not a child has breathed,—the tests merely serve to furnish in many cases good proof of life from the state of the lungs; and slight reflection will render it apparent that in no case are they susceptible of doing more. Even here their utility is much restricted by numerous counteracting circumstances, a knowledge of which is essential to him who wishes to make a practical application of them. (See 'Edin. Med. and Surg. Jour.' vol. 26, p. 365.)
FROM THE HYDROSTATIC TEST.

If asked to state in what cases the pulmonary tests are capable of assisting a medical jurist, the answer, it appears to me, would be:—1st. They will clearly show that a new-born child has lived, when, during its life, it has fully and perfectly breathed. Cases of this description form a certain number of those which come before our Courts of Assize. To them the most serious objections are not applicable; and the few which might be made to the medical inferences are not difficult to answer. 2ndly. They will allow a witness to say, that the lungs must have received air either by respiration, or by artificial inflation. These are the cases in which a child has died soon after birth, and where the respiratory changes are but imperfectly manifested in the lungs. They probably form a large proportion of those which fall under the jurisdiction of the criminal law. It might be considered, that the qualification in the inference here drawn would neutralize its force; but it must be remembered, that there are few instances of actual and deliberate child-murder wherein artificial inflation could become even a possible defence for an accused person. So unusual is this kind of defence, that among the numerous trials for infanticide which have taken place in this country for many years past, I have not been able to meet with a single instance in which it was alleged as an objection to the medical evidence derived from the buoyancy of the lungs, that the prisoner had inflated them in order to resuscitate her child. The reason is obvious; had such a defence been attempted, the whole of the circumstantial evidence would at once have set it aside. When, in the suspected murder of an adult, a medical man swears that a fatal wound was such that the deceased might have inflicted it on himself, or that the prisoner might have produced it, he is placing the jury in a position very similar to that in which he places them in a case of child-murder, when he says that the child might have breathed, or its lungs might have been artificially inflated. How would a jury decide in the two cases? Assuredly, by connecting certain facts with which a medical witness is not concerned, but which may, in their opinion, satisfactorily supply the place of what is deficient in his evidence. It is not for him to speculate on the probabilities of respiration, or of artificial inflation; but it is for them to consider whether the accused was or was not likely, under the particular circumstances of the case, to have resorted to an experiment of this nature. It has been suggested that some person might inflate the lungs of a dead child, in order to raise a charge of murder against its mother; but this suggestion presupposes, on the part of a criminal, a profound knowledge of the difficulties of medical jurisprudence; and even then the question of murder does not depend merely on the presence of air in the lungs. Such a case is very unlikely to present itself; indeed, its occurrence is no more probable than that in poisoning it should be considered a good defence that some person might have introduced poison into the body by injections after death. The circumstances of the case will commonly furnish a sufficient answer to such hypothetical views.
INFANTICIDE. THE HYDROSTATIC TEST.

The hydrostatic test ought not, therefore, to be lightly condemned or rejected upon a speculative objection, which, in ninetenths of the cases of child-murder, could not possibly exist. Let it be granted to the fullest extent, that a conscientious medical jurist cannot always draw a positive distinction between the effects of respiration and artificial inflation on the lungs; still a jury may be in a situation to relieve him from this difficulty. In short, it would be as reasonable to contend that all persons charged with murder should be acquitted, because homicidal are not always to be distinguished from suicidal wounds, as to argue that all cases of infanticide should be abandoned because these two conditions are not distinguishable by any certain medical signs. If juries do frequently dismiss such cases, it is, I apprehend, to be ascribed rather to their great unwillingness to become the means of administering what they consider to be severe laws, than to their want of power to balance and decide on the probabilities laid before them. If the pulmonary tests were wholly set aside, it is easy to conceive what would be the consequences. Let us suppose that a new-born child is found under suspicious circumstances, with its throat cut: we are called upon to admit that it is impossible for medical evidence to establish whether the child has lived or not, and therefore we are to decline making an inspection of its body. But this would be the same as declaring that child-murder could never be proved against an accused party, and that new-born children might henceforth be destroyed with impunity! It appears to me that conduct of this kind, on the part of a medical witness, would be wholly unwarrantable; for we may sometimes acquire, by an inspection, as great a certainty of respiration having been performed, and therefore of a child having lived, as of any other fact of a medico-legal nature. Cases of poisoning often give rise to greater difficulties to a medical jurist; as where, for example, he attempts to found his opinion of the cause of death on symptoms alone or on appearances in the dead body. But we may put the question in this light. In the body of a healthy full-grown child, which has but recently died, we find the lungs filling the cavity of the chest, of a light red colour, spongy, crepitant beneath the finger, weighing at least two ounces, and when divided into numerous pieces, each piece floating on water, even after violent compression. Is it possible in such a case to doubt that respiration has been performed? If there is no certainty here, it appears to me that medical experience is but little fitted in any case to guide us in our inquiries. It would be difficult to point out an instance in which an affirmative medical opinion would be more surely warranted by the data upon which it was founded.

So far as I know there is only one recent instance in which a medical man declined to make an inspection of the body of a new-born child for the purpose of examining the state of the lungs. (Reg. v. Pitt, Dorset Summer Ass., 1859). The body was found much mutilated and with such injuries as would fully have accounted
for the death of the child, assuming it to have been born alive. At the inquest the coroner suggested that a post-mortem examination should be made; but the chief medical witness declined to make it as he did not consider it to be necessary. He was then asked by the coroner whether the floating of the lungs would indicate that the child had breathed, to which he replied that that theory was now exploded! It seems that the death of the child was so recent that when the body was found it was quite warm. It also became rigid in the usual time. The medical witness relied upon warmth and rigidity in the body as proofs of the child’s having been born alive, when it is obvious that those states can prove only that the child has been recently living. The neglect to examine the body led to an acquittal. There was no proof of life as the result of breathing, and no evidence to show whether the injuries were inflicted before or after death.

Respiration before or during birth.—It has been already stated that the pulmonary tests are fitted to prove only whether a child has or has not lived to breathe. Neither the hydrostatic nor any other test can positively show that the body of a child was entirely born alive when the act of breathing was performed. As this is a subject that generally gives rise to some discussion in cases of child-murder, I shall here make a few remarks on it. 1st. Respiration may be performed while the child is in the uterus, after the rupture of the membranes—the mouth of the child being at the os uteri. This is what is termed vagitus uterinus; its occurrence, although extremely rare, seems to me to rest upon undisputed authority. 2ndly. A child may breathe while its head is in the vagina, either during a presentation of the head or of the breech. This has been termed vagitus vaginalis. It is not very common, but it must be set down as a possible occurrence. 3rdly. A child may breathe while its head is protruding from the outlet; in this position respiration may be as completely set up in a few moments by its crying, as we find it in some children, that have actually been born and have survived their birth for several hours. This is the most usual form of respiration before birth. In the vagitus uterinus or vaginalis the lungs receive but a very small quantity of air; in respiration after protrusion of the head, the lungs may be sometimes found moderately well filled, although never perhaps possessing all the characteristic properties of those which have fully respired. The well-known occurrence of respiration under either of these three conditions, strikingly displays the fallacy of making this process, as some have done, the certain boundary of extra-uterine life. A child may breathe in the uterus or vagina, or with its head at the outlet, and die before its body is born: the discovery of its having respired would not, therefore, be any sort of proof of its having enjoyed what has been termed ‘extra-uterine life.’ (For a well-marked case of this kind, see ‘Med. Gaz.’ vol. 38, p. 394; and another, communicated to me by Dr. Crothers, of Coy, will be found in ‘Guy’s Hospital Reports,’ October, 1850, p. 231.)
The death of a child which has breathed in the uterus or vagina, from natural causes before its entire birth, is a possible occurrence; but its death from natural causes before birth, after it has breathed by the protrusion of its head from the outlet, is an unusual event. All that we can say is—it may take place; but death under these circumstances would be the exception to a very general rule. Oberkamp states that, in four successive deliveries of the same woman, the children breathed during delivery, but died before they were born.

Respiration a sign of life, not of live birth.—The hydrostatic test is only capable of determining that respiration has taken place: it cannot show whether this process was established during birth or afterwards. The fact of a child having the power of breathing before it is entirely born, does not therefore constitute the smallest objection to its employment; although, upon this ground, we find the use of it, in any case, denounced by many members of the medical and legal professions. It is obvious that most members of the law who have treated this subject, have adopted without sufficient examination, the statements of Dr. William Hunter. This author observes: 'A child will commonly breathe as soon as its mouth is born or protruded from the mother; and in that case may lose its life before its body be born, especially when there happens to be a considerable interval between what we may call the birth of the child's head and the protrusion of its body. And if this may happen where the best assistance is at hand, it is still more likely to happen when there is none—that is, where the woman is delivered by herself.' ('On the Uncertainty of the Signs of Murder in the case of Bastard Children,' p. 33.)

Dr. Hunter here exposes, in plain language, the fallacy of trusting to signs of respiration alone, as evidence of a child having been born alive. The truth of his remarks is, in the present day, generally admitted; and if, among medical and legal writers, we find some still treating of respiration as a certain proof of live birth, it is from their not having sufficiently considered the probability of a child breathing and dying before its body is entirely extruded.

Although it is obvious from the above cases that the test can prove no more than that a child has breathed, some medical witnesses, in giving evidence in cases of child murder, still fall into the error of assuming that the hydrostatic test is capable of proving 'live birth.' Medical jurists of repute have sanctioned this erroneous view, ignoring the fact that a child may breathe and die before the entire birth of the body, while the test cannot show whether the act of breathing was performed during birth or afterwards. Among others, the late Professor Casper, of Berlin, expresses his opinion that if we find air in the lungs of a new-born child, such a child must have been born alive. The reasoning of Casper is as extraordinary as his conclusion. He says:—I. During a rapid delivery those conditions are wanting which lead to breathing in
A SIGN OF LIFE NOT OF LIVE BIRTH.

utero or during birth. 2. All cases of secret delivery are rapid, and it is in these cases only that the hydrostatic test can be applied to the lungs, hence the proof of breathing in a secretly-born child must be regarded as breathing after, and not in or during birth (‘muss jedes von der Athemprobe nachgewiesene Geatmethaben eines heimlich gebornen Kindes als ein Athmen nach (nicht in oder vor) der Geburt, das Kind folglich als ein lebend geboren gewesenes erachtet werden.’ ‘Gerichtliche Medicin,’ vol. 1, p. 710.) It will be seen that this medical jurist entirely ignores the facts pointed out by Dr. W. Hunter eighty years ago, and accumulated by numerous obstetric authorities since his time.

On a late trial for child-murder a medical witness being asked on what he based his statement that the child had been born alive, said—the presence of air in the lungs, and quoted Casper as his authority. There may be cases in which the signs of full respiration would justify an opinion of live-birth, but the dictum of Professor Casper is quite inadmissible. The floating of the lungs in water is not a proof that they did not receive air before or during birth, and it cannot be admitted that all cases of secret delivery are necessarily rapid cases—so rapid that the child has no time to breathe during birth.

(The reader will find a good summary of the mode of applying the hydrostatic test, as well as of the conclusions which may be drawn from its proper application, by M. Devergie, in the ‘Ann. d’Hyg.’ for 1872, 2, 169. See also a paper by M. Tardieu, ‘Ann. d’Hyg.’ 1867, 2, 217 and 365.)

Conclusions.—The general conclusions respecting the employment of the hydrostatic test, to be drawn from the contents of this chapter, are—

1. That the artificial inflation of the lungs of a child born dead will cause them to float in water.
2. That lungs artificially inflated while in the chest resemble those organs in which respiration has been only imperfectly established.
3. That in cases of inflation of the lungs in the chest, the air may be generally expelled from the divided portions of lung by firm compression so as to cause them to sink.
4. That the same result occurs with lungs in which respiration has been imperfectly established.
5. That when lungs have undergone perfect respiration, the air cannot be expelled by compression of the divided parts, so as to cause them to sink.
6. That the artificial inflation of fetal lungs causes no alteration of weight, and as the weight increases in proportion to the degree of respiration, so in healthy lungs, with great buoyancy, there should be great weight if the air has been derived from respiration.
7. That we should base our judgment of a child having breathed, upon great weight and great buoyancy of the lungs combined,—
that the one condition without the other, is open to the objection
that the air may not have been derived from respiration.

8. That the floating of the lungs in water proves, ceteris
paribus, that a child has breathed either at, during, or after birth:
it does not prove that a child was born alive, or that it has died a
violent death.

9. That the sinking of the lungs, as a result of the expulsion of
air from them by compression, does not necessarily prove that the
child was born dead. It merely proves that the air contained in
them was derived either from artificial inflation, or from the
imperfect establishment of the respiratory process.

10. That the hydrostatic test is not applicable to determine the
fact of respiration or non-respiration in all cases of alleged child-
murder; but that, with ordinary precautions, it may be safely em-
ployed in the majority of such cases.

11. That a child may breathe before, during, or after birth, but
the hydrostatic test will not enable us to say, in the greater
number of cases, at which of these periods the act of respiration
was performed.

12. That respiration is a sign of life, and not necessarily of live
birth.

13. Hence medical evidence is required to show whether a child
breathed after it was entirely born, and whether the act of violence
which caused its death was applied to it while so breathing.

These conclusions are here expressed with brevity. Some of
them may require qualification; but for the circumstances which
qualify them, the reader is referred to the contents of the chapter.

CHAPTER 50.
ON THE PROOFS OF A CHILD HAVING BEEN BORN ALIVE.—EVIDENCE FROM
RESPIRATION.—FROM MARKS OF VIOLENCE.—FROM NATURAL CHANGES IN
THE FETAL VESSELS.—FROM THE DISCOVERY OF FOOD IN THE STOMACH.—
GENERAL CONCLUSIONS.

On a trial for child-murder, the important medical question has
hitherto been:—Was the child completely born alive? The inter-
pretation set upon these words by all the judges, is that the whole
body of a child should be entirely delivered from the body of the
mother before the question of its death from violence could be
entertained. In cases in which death had obviously taken place
from criminal violence, the medical witness was suddenly stopped
in his evidence by being asked for some infallible proof of live
birth in a legal sense. As a medical man not present at the
delivery could rarely be in a condition to offer such proof, the case
broke down, and the accused was acquitted of the charge of murder.
STATE OF THE LUNGS. 541

If a medical witness ventured to say that he formed his opinion of live birth from the presence of air in the lungs, and the usual appearances produced in these organs by the act of breathing, he was immediately met with the objection that a child might breathe during the act of birth, and die before its body was born, and yet the appearances would be the same. To this there was generally no reply; but every medical man could perceive that an exceptional condition was thus strained into a rule, simply to procure an acquittal on a capital charge. Some children are wilfully, or through reckless neglect, injured and destroyed during delivery, but the greater number are, no doubt, destroyed soon after they have been entirely born; still there is nothing of a medical nature to distinguish one set of cases from another. In each the child may have breathed, and the lungs may contain air; while, at the same time, the fatal violence—whether indicated by wounds, fractures, burns, or marks of strangulation on the neck—would be the same; there would be no medical difference, and it is obvious, from the nature of things, there could not be any appearances by which the partially born could be distinguished from the completely born child. Medical evidence went, on these occasions, as far as it could be reasonably carried. It established two facts:—1, that the child was living at or about the time of its birth, and when the violence was inflicted upon it; and 2, that the violence itself was sufficient to cause death, and was, in fact, the probable cause of death.

In the late session of 1872-3, a bill was introduced into the House of Commons, in which it was proposed to enact, that 'if any person shall unlawfully and maliciously wound or infect any grievous bodily harm upon any child, during, or immediately after its birth, and shall thereby cause its death, he shall be guilty of felony, and on conviction thereof shall be liable, at the discretion of the Court, to be kept in penal servitude for any term not exceeding ten years, or to be imprisoned for any term not exceeding two years, with or without hard labour.' It will be seen by this proposed enactment that medical proof that a child was 'completely born alive' would be no longer necessary. The whole subject of infanticide in its legal bearings will most probably undergo revision.

As the question of live birth must still as a rule be put to the witness on these occasions, it will be necessary to consider the medical facts upon which reliance is placed, as furnishing evidence of a child having come into the world living, or of its having been born alive.

Evidence from respiration.—As a general rule, there will be no perceptible difference in the state of the lungs, whether the act of respiration is performed by a child during birth or after it is born, provided that its death speedily follows its birth. But should we find that this process has been perfectly established, i.e. that the lungs present all those conditions which have been described as characteristic of full and perfect breathing, there is great reason to
presume that the process, even if it had commenced during birth, must have continued after the child was entirely born. This presumption becomes still stronger when the child is immature; for, generally speaking, such children must be born and continue to breathe for many hours after birth, in order that their lungs should present the characters of complete respiration. The process is seldom so established before birth as to give to these organs a feeling of crepitation under pressure; the existence of this character should, therefore, be sought for. A witness who relied upon it as a conclusive proof of breathing after birth, might be asked by counsel, whether it were not possible for some children to remain so long at the outlet with the head protruding, as to render the lungs crepitant from frequent respiration before birth. Admitting the bare possibility of this occurrence, he should endeavour to ascertain whether there were any probable cause which could thus have protracted delivery while the head of the child was in this position; as also, what natural cause could have produced its death when its head was protruding and respiration had been so freely performed as to give crepitation to the lungs. The presence or absence of the usual scalp-tumour might throw some light upon the case. If, when present, it did not prove live birth, it might indicate protracted delivery, and show that the child had been recently living. The late Professor Casper, of Berlin, has cut the Gordian knot of this difficulty, by assuming that breathing before birth takes place only in protracted delivery, in which the assistance of an accoucheur is required. In those cases which are likely to give rise to criminal investigations, he assumes that the birth of the child takes place quickly, and that in rapid delivery the child does not breathe until after it has been born alive. Hence his conclusion is—if in the body of a child (secretly disposed of) the lungs are found to contain air by the hydrostatic test, this air did not enter the lungs at or before birth but afterwards, and that the child was born alive. ('Gerichtl. Medicin,' vol. 1, p. 710.) Such a conclusion is not in accordance with the facts ascertained regarding the act of respiration in new-born children; it may be that they rarely die from natural causes after they have once breathed, but that they can breathe and cry during birth, is a fact which cannot be disputed. Further, there is no test known by which air received into the lungs during birth, can be distinguished from that which has entered these organs after the child has been born alive.

Evidence from marks of violence.—If marks of violence, apparently inflicted about the same time, are found on different and remote parts of the body, and these marks bear the characters of those produced during life, it is rendered probable that the whole of the body of the child was in the world when they were caused. Marks of severe violence on one part, as the head or breech, would not always justify such a presumption, because it might be fairly objected that they had been unintentionally produced by the woman in her attempts at self-delivery, and yet the child not have been
born alive. It would be for a witness to form an opinion from the circumstances accompanying the particular case, whether they had been thus occasioned. From this it will be seen that, in making an examination after death, it is proper that every mark of injury on the body of a child, even if slight, should be noted down. Abrasions of the skin, burns, and punctures, should be sought for, and the throat examined for marks of pressure by a cord or by the fingers.

Evidence from certain changes in the body.—In a child that has been born alive, or has survived its birth for a period of from twelve to twenty-four hours, that portion of the umbilical cord which is contiguous to the abdomen undergoes certain changes: it dries and becomes slowly shrivelled, and in from three to five days it separates from the body with or without cicatrization.

The cord does not separate at the part which is tied, but close to the abdomen. It separates generally within five days, by a process of sloughing, the skin connected with the dead portion of the cord presenting a red line, arising from capillary congestion. During the separation of the navel-string the umbilical vessels are gradually closed. According to Billard, the obliteration of these vessels is effected in a peculiar manner. The calibre diminishes as a result of a concentric thickening of the coats, so that, while the vessel retains its apparent size, its cavity is gradually blocked up. A quill would represent the form of the vessel in the foetal state, and a tobacco-pipe in the obliterated state. It is only by cutting through the vessel that the degree of obliteration can be determined. The state of the umbilical cord has furnished good evidence of live birth, when the other circumstances of the case have yielded no information.

The changes in the umbilical cord, especially those indicative of its separation and cicatrization, clearly prove that a child has survived its birth, whatever may be the results of experiments on the lungs; but the difficulty is, that they require some days for their production, and in practice it is necessary to procure some sign of survivorship for only a few minutes, or at furthest for a few hours. The same remark applies to the exfoliation of the cuticle in a new-born child: such a condition of the skin can rarely be found in cases of infanticide. The absence of meconium from the intestines, and of urine from the bladder, are not proofs of live birth, for these may be discharged during birth and yet the child not be born alive.

State of the skin.—In the greater number of new-born children, the skin has a dark red colour, probably owing to the first effect of the atmosphere upon it. Within an hour it begins to get of a lighter red, and so it remains for one or two days. According to Dr. Elsässer, it becomes again darker about the end of the second or on the third day, and is then of a brownish-red colour. This lasts for three or four days, unless a yellowness appears from jaundice. It is then more or less yellow. It is about the sixth or seventh day that the skin acquires a reddish-white colour, such as
it afterwards retains. (Henke's 'Zeitschrift der S. A.' 1842, vol. 2, p. 223.)

Evidence from changes in the heart and foetal vessels. Docimasia circulationis.—It has been supposed that the state of the ductus arteriosus, ductus venosus, and foramen ovale would aid a medical jurist in forming an opinion whether a child had survived its birth. In general, as a result of the establishment of respiration, it is found that the communication between the auricles of the heart by the foramen ovale becomes closed; and that the two vessels or ducts, after gradually contracting, become obliterated, or are converted into fibrous cords. Whatever may be the conclusions from experiments on the lungs, it has been contended that the closure of the foramen and of these vessels would infallibly indicate that a child had breathed. This inference, however, has been too hastily drawn. Recent researches have shown that there are some serious objections to any conclusions based on the state of these foetal vessels; their closure, as a natural process, always takes place slowly, and sometimes is not completed until many years after birth. Thus, then, in the generality of cases of infanticide, in which necessarily the child survives but for a short period, no evidence of the fact will be procurable from an examination of the heart and foetal vessels.

As a general rule, the peculiar parts of the foetal circulation are rarely obliterated by a normal process before the eighth or tenth day after birth. The obliteration, according to Bernt and Orfila, takes place in the following order:—1. The umbilical arteries; 2. The ductus venosus; 3. The ductus arteriosus; and 4. The foramen ovale. (Orfila, 'Méd. Lég.' 1848, vol. 2, p. 210.) The circumstances connected with the closure of these foetal vessels have been statistically investigated by Dr. Elsässer. Among 70 still-born children they were found open in 69. Among 300 children who died soon after birth, 80 out of 108 prematurely born and living from one to eight days, presented all the passages open; 127 out of 192 infants born at the full time had all the passages open, but partly contracted. The ductus arteriosus was open in 55 cases, and completely closed in 10 cases; the ductus venosus was open in 81, and completely closed in 37 cases; while the foramen ovale was open in 47, and completely closed in 18 cases only. These facts, according to Dr. Elsässer, prove that the vessels peculiar to the foetal circulation remain open as a rule for some time after birth, and that it is not possible to determine accurately, by days, the period of their closure. This physiologist remarked that the closure commenced and was often completed in the ductus venosus, before it manifested itself in the other vessels. The complete closure, in by far the greater number of cases, takes place within the first six weeks after birth, and the instances of obliteration before birth, or before the period mentioned after birth, must be regarded as rare exceptions. ('Med. Times and Gaz.' May 21, 1853, p. 530.)

From these facts, the docimasia circulationis may be considered as
useless to a medical jurist. It either proves nothing, or it may lead to a fatal error. It is the more necessary to point out the fallacies to which it is liable, because hitherto medical jurists have been disposed to place great reliance upon it, in cases in which medical evidence from the state of the lungs was wanting.

Evidence from the state of the alimentary canal.—Good evidence of live birth may be sometimes derived from the discovery of certain liquids or solids in the stomach and intestines, such as blood, milk, or farinaceous or saccharine articles of food; for it is not at all probable that these substances should find their way into the stomach or intestines of a child which was really born dead.

1. Starch.—In the case of a new-born child, the late Dr. Geoghegan discovered, by the application of iodine-water, the presence of farinaceous food in the contents of the stomach; hence the question of live birth was clearly settled in the affirmative. On another occasion Dr. Francis employed this method of testing with satisfactory results, in a case in which the investigation was beset with unusual difficulties. He was required by the coroner to examine the body of a new-born child, found under suspicious circumstances. The examination of the lungs left no doubt that respiration had taken place; and the fact that the child had been born alive was fully established by the discovery in the stomach of a small quantity of farinaceous food. On digesting in distilled water a fragment of the pulp found in this organ, and adding a drop of a solution of iodine, an intense indigo-blue colour appeared immediately. The application of this chemical test, therefore, removed any doubts which might have been entertained on the question of live birth. (‘Med. Gaz.’ vol. 37, p. 460.) The quantity of starch present may, however, be too small to produce with water a solution which would be coloured by iodine in the manner described. A portion of the contents of the stomach should be placed on a glass-slide, diluted with a little water if viscid, and examined under the microscope with a power of about 300 diameters. The granules (if present) may then be distinctly seen, having the shape peculiar to each variety of starch, and not unfrequently mixed with oil-globules and epithelial scales derived from the mucous membrane. By the addition of strong iodine-water their shape and size will be brought out by the intensely blue colour which they acquire. Blue fragments of an irregular shape indicate the presence of bread. The annexed engraving (fig. 49) represents two varieties of starch, either of which may be found in the stomachs of infants; in a the rounded
granules of wheat-starch are represented, and in **b** the ovoid granules of arrowroot. The micrometrical measurements of these granules show, for those of wheat which are irregularly spherical, diameters varying from 1-9000th to 1-1125th of an inch in size. Many have an average diameter of 1-3000th of an inch. The ovoid granule of arrowroot is 1-900th of an inch in length, and 1-1800th of an inch in width.

2. *Sugar.*—In a case which I was required to examine, the presence of sugar was readily detected in the contents of the stomach by the application of Trommer's test. In order to apply this test, a few drops of a weak solution of sulphate of copper should be added to a portion of the cold concentrated aqueous extract of the contents of the stomach. An excess of a solution of pure potash is then added, and the liquid boiled. If sugar be present, the suboxide of copper is immediately precipitated of a yellowish or reddish colour. With white sugar the same decomposition is effected, but more slowly. If starch only be present, black oxide of copper may be thrown down, but there will be no production of a red precipitate. The formation of the red oxide of copper under these circumstances proves that some saccharine substance is present. In reference to the application of the sugar test, however, it must be remarked that starch is easily convertible into sugar by a chemical action of saliva or mucus, so that the test may appear to indicate sugar in small quantity, when the result may be really due to the presence of some converted starch.

3. *Milk.*—This liquid may be found in the stomach of a new-born child; it may be identified microscopically in the fluids of the stomach by the numerous and well defined oil-globules which it contains. It is not possible to distinguish human from cow's milk under these circumstances. In both, the globules which are spherical in all aspects (figs. 50 and 51), are remarkable for their transparency.
IN THE CONTENTS OF THE STOMACH.

in the centre, and their dark margins. They vary considerably in size.
I have found those of the cow to have by measurement the following
diameters:—Maximum, 1-2200th of an inch; minimum, 1-1800th;
and medium size, 1-4500th of an inch. They are distinguished from
blood-corpuscles by their shape and lustre, and from starch-granules
by the fact that they are not coloured or changed by iodine-water.
Colostrum is the name applied to the milk first secreted after
delivery; it contains, in addition to oil-globules, numerous spheri-
cal granular bodies (fig. 51, b). When milk is present, lactine or
sugar of milk is generally found in the contents of the stomach by
the appropriate sugar-test (supra). The casein, or solid principle
of milk, precipitates oxide of copper from the sulphate; but on
adding an excess of a solution of potash, the oxide is redissolved,
forming a purple or violet-coloured solution. It is rapidly coagu-
lated by the digestive principle (pepsine) contained in the gastric
juice, so that the casein may be found in small soft masses adhering
to the lining-membrane of the stomach. It should be observed that
albumen forms a deep violet-coloured solution with sulphate of
copper and potash, but the red suboxide of copper is not precipi-
tated on boiling unless sugar is mixed with it.

4. Epithelial scales.—The epithelial scales commonly found
associated with articles of food in the stomach are of various shapes
and sizes; they are flat, oval, or rounded, and sometimes polygonal.
They are nucleated, and from their pavement-like appearance they
are called 'tesselated.' In fig. 52, b, an epithelial scale from the
mucous membrane of the inside of the mouth, is represented magni-
fied 570 diameters. In the long axis it was the 1-500th of an inch,
and in the shortest 1-900th of an inch in diameter. The central
nucleus was 1-4000th of an inch in diameter, and the small granules
around it 1-9000th of an inch.

These epithelial scales are very
numerous, much intermixed, and
so thin and transparent that they
are often only distinctly seen at
the edges, which are occasionally
folded or slightly turned over.

Besides the substances mentioned, other solids and fluids, such
as blood and meconium (the fecal discharges of the foetus) may
be found in the stomach of a new-born child, and a question may
arise whether their presence indicates that the child was fully born.
It is not impossible that a child might be fed and exert a power of
swallowing when its head protruded from the outlet, and its body
was still within the body of the mother. Children have been known
to exert a power of sucking or aspiration under these circumstances,
and with this, a power of swallowing might be exercised. In defend-
LIVE BIRTH. MEDICAL PROOFS.

ing a prisoner on a charge of child-murder, counsel would scarcely resort to a defence of this kind. That the starch, sugar, or milk, &c. found in the stomach, should have been given to a child when its body was only half-born, is so improbable an hypothesis that the most inexperienced lawyer would hardly resort to it to account for the presence of food in this organ.

When the substances found in the stomach are not in the form of food, but are fluids connected with the child or the mother, the case is different. These may penetrate into the lungs or stomach during birth, either by aspiration or by the act of swallowing: they thus indicate that the child was living, but they do not necessarily show that its body was entirely in the world when they were swallowed.

5. Blood.—An instance is related by Dr. Döring in which a spoonful of coagulated blood was found in the stomach of a newborn child. The inner surfaces of the gullet and windpipe were also covered with blood. Dr. Döring inferred from these facts that the child had been born alive; for the blood, in his opinion, could have entered the stomach only by swallowing, after the birth of the child, and while it was probably lying with its face in a pool of blood. Taken alone, however, such an inference would not be justifiable from the facts as stated. Blood might be accidentally drawn into the throat from the discharges of the mother during the passage of the child's head through the outlet, and yet the child may not have been born alive. The power of swallowing may be exerted by a child during birth either before or after the act of breathing. This power appears to be exerted even by the fetus in utero.

Blood may be recognized in the contents of the stomach not only by the colour which it imparts to the mucous liquids present, but by the aid of the microscope. This subject has been already fully considered in another part of this work (p. 234).

Dr. Robinson has made some researches on the contents of the fetal stomach during uterine life. He finds that the substances which naturally exist in the stomach of a fetus before birth, are of an albuminous and mucous nature. His observations were made on the stomachs of two human fetuses, and on those of the calf, lamb, and rabbit. The conclusions at which he arrived were:—that the stomach of the fetus, during the latter period of its uterine existence, contains mucous and albuminous matters derived from the salivary secretion, and that gastric juice is not secreted until after respiration has been established. The medical jurist will perceive, therefore, that the discovery of farinaceous food, milk, or sugar in the stomach will furnish evidence of birth, since substances of this kind are not found naturally in this organ.

6. Meconium.—This name is applied to the excrementitious matter produced and retained in the intestines during fetal life. It may be found in the stomach of a new-born child, and a question will thence arise whether its presence there should be taken as a proof of entire live birth. It may be discharged from the child
during delivery, in cases in which there is a difficult or protracted labour. In the act of breathing it may enter the throat with other discharges, and thus be found in the stomach. That a breathing child can thus swallow meconium cannot be disputed, but, assuming that in the body of a child which has not lived to breathe, this substance is found in the air-passages and stomach, how is the conclusion affected? From a case which occurred to Dr. Fleischer, it is probable that some portion of the meconium may be discharged from the bowels of a child during labour, and as the mouth passes over this liquid a portion may be drawn into the throat by aspiration. When once there, the instinctive act of swallowing would immediately convey a portion of it into the stomach. (See report of the case in Casper's 'Vierteljahrschrift,' 1863, vol. 1, p. 97; also for another case, 'Med. Times and Gazette,' August 3, 1861, p. 116.)

The presence of fluids therefore—such as blood, meconium, or the watery discharges attending delivery—in the stomach and air-passages of a new-born child, does not prove live birth, but merely indicates the existence of some living actions in the child at or about the time of its birth. In a case which occurred to Dr. Ramsbotham, a woman was suddenly delivered of a child while sitting over a slop-pail of dirty water. On examining the body, it was obvious that it had not breathed. There was no air in the lungs, but a quantity of dirty water like that in the pail was found in the stomach. This could have entered the organ only by the act of swallowing, and, in Dr. Ramsbotham's opinion, the child had swallowed the liquid under some postnatal attempt to breathe. The coroner who held the inquest directed the jury that the child was born dead: but most physiologists will consider that the power of swallowing cannot be exerted by a dead child; and as its body must have been entirely delivered in order to have fallen into the liquid, there was proof that it had been born living, and that in this instance it had died after it was entirely born, by the prevention of the act of breathing. The facts connected with the aspiration of liquids by new-born children have been lately fully examined by Dr. E. Hofmann (Eulenberg's 'Vierteljahr.' 1873, 2, p. 228).

The meconium may be generally recognized by its dirty-green colour and general appearance, as well as by the absence of any offensive odour, which it does not acquire until after the third or fourth day from birth, when it becomes mixed with feculent matter. Its microscopical characters are represented in the annexed engraving (fig. 53). In the air-passages it is sometimes associated with vernix caseosa, and hairs derived from the skin. ('Med. Times and Gazette,' June 1, 1861, p. 591, and Aug. 3, 1861, p. 117; see also 'Ann. d'Hyg.' 1855, vol. 2, p. 445.)

But little need be said on its chemical properties; still, as the detection of stains of meconium on clothing may occasionally form a part of the medical evidence, a few observations are here required. The stains which it produces are of a brownish-green colour, very difficult to remove by washing. They stiffen the stuff, and are usually
slightly raised above the surface, without always penetrating to the
it. Meconium forms with water a greenish-coloured liquid, by
an acid reaction: a boiling heat
not affect the solution. Nitric acid
sulphuric acid with sugar yield with
the green and red-coloured compound
which they produce with bile. Ch
terine may be separated from it by
ether.

It may be remarked, in reference
to stains produced by the feces of a
which has survived birth, that until
fifth or sixth day they retain a dark
or greenish-yellow colour. On the sev
day after birth, they generally acquire
bright-yellow colour, like that of the
of an egg; and this colour, if the ch
in health, they will retain during a
short time that it is suckled.

The slightest consideration will
that the various indications of live
above described are weak, and of p
accidental occurrence. If a child is
stayed either during birth, or wit
few minutes afterwards, there will
medical evidence to indicate the p
at which its destruction took place.

Microscopical appearances of Me
conium: — 1 crystals of cholesterol;
b epithelial scales; 2 masses
of green colour—matter of bile
(biliverdin); 3 e granules.
Magnified 40 diameters.

external and internal appearances presented by the body will be
same in the two cases. It is most probable that in the greater nu
of instances of child-murder, a child is actually destroyed
during birth or immediately afterwards; and, therefore,
characters above described can rarely be available in practice
any exception is made, it is with respect to the nature, situs
and extent of marks of violence; but the presence of these de
on mere accident. Hence, then, we come to the conclusion
although medical evidence can generally show, from the sta
the lungs, that a child has really lived, it can rarely be in a
tion to prove in a case of infanticide, that its life had cert
continued after its entire birth. We could only venture upon
inference when the signs of breathing were full and comple
when some article of food was found in the stomach.

Conclusions.—The general conclusions which may be drawn
the facts contained in this chapter, on the question whether a
has or has not been born alive, are as follows:—

1. That if the lungs are fully and perfectly distended with a
the act of breathing, this affords a strong presumption that
child has been born alive, since breathing during birth is in ge
only partial and imperfect.

2. That the presence of marks of severe violence on various
CAUSES OF DEATH IN NEW-BORN CHILDREN.

- of the body, if possessing vital characters, renders it probable that the child was born alive when the violence was inflicted.

3. That certain changes in the umbilical vessels, and the separation (by a vital process) and cicatrization of the umbilical cord, as well as a general peeling or scaling-off of the cuticle, indicate live birth.

4. That the absence of meconium from the intestines and of urine from the bladder, are not proofs that a child has been born alive, since these liquids may be discharged during the act of birth.

5. That the open or contracted state of the foramen ovale or ductus arteriosus furnishes no evidence of a child having been born alive. These parts may become closed and contracted before birth, and therefore be found closed in a child born dead; or they may remain open after birth in a child born living, even subsequently to the establishment of respiration.

6. That the presence of farinaceous or other food in the stomach proves that a child has been entirely born alive.

7. That the presence in the stomach and air-passages of blood, meconium, vernix caseosa, or the natural discharges, does not prove that a child was born alive.

8. That, irrespective of the above conclusions, there is no certain medical sign which indicates that a child that has died at or about the time of birth, has been born alive.

CHAPTER 51.

Causes of death in new-born children. —The next important question in a case of infanticide, and that upon which a charge of murder essentially rests, is,—What was the cause of death? 1. It is admitted that a child may die during birth or afterwards. 2. In either of these cases it may die from natural or violent causes. The violent causes may have originated in accident or in criminal design. The last condition only involves the corpus delicti of child-murder. If death has clearly proceeded from natural causes, it is of no importance to settle whether the cause operated during or after birth. All charge of criminality is thenceforth at an end.

It is well known that of children born under ordinary circumstances, a great number die from natural causes either during birth
or soon afterwards; and in every case of child-murder, death will be assumed to have arisen from some cause of this kind until the contrary appears from the medical evidence. This throws the onus of proof entirely on the prosecution. Many children die before performing the act of respiration; and thus a large number come into the world dead or still-born. The proportion of still-born among legitimate children, as it is derived from statistical tables extending over a series of years, and embracing not fewer than eight millions of births, varies from one in eighteen to one in twenty of all births. ('Brit. and For. Med. Rev.' No. 7, p. 235.) In immature and illegitimate children, forming the greater number of those which give rise to charges of child-murder, the proportionate mortality is much greater,—probably about one in eight or ten. Still-births are much more frequent in first, than in after-pregnancies: and children are much more frequently born dead among primiparous than among pluriparous women. According to Dr. Lawrence's observations, the proportion of deaths is 1 to 11 among the primiparous and 1 to 31.2 among the pluriparous. ('Edin. Med. Jour.' March 1863, p. 818.) In most cases of child-murder the woman is primiparous. These facts should be borne in mind when we are estimating the probability of the cause of death being natural.

Should breathing be established by a protrusion of the child's head from the outlet, or during the birth of the body, the chances of death from natural causes are considerably diminished. Nevertheless, as Dr. Hunter long ago suggested, a child may breathe and die. Thus, according to this author,—'If the child makes but one gasp and instantly dies, the lungs will swim in water as readily as if it had breathed longer and had then been strangled.' In general it would require more than one gasp to cause the lungs to swim readily in water; but waiving this point, the real question is,—If the child breathed either during or after birth, what could have caused its death? The number of gasps which a child may make, or which may be required for the lungs to swim in water, is of no moment; the point to be considered is, whether its death was due to causes of an accidental or criminal nature. So again observes Dr. Hunter: 'We frequently see children born, who, from circumstances in their constitution or in the nature of the labour, are but barely alive, and after breathing a minute or two, or an hour or two, die, in spite of all our attention. And why may not this misfortune happen to a woman who is brought to bed by herself?' (Op. cit.) The substance of this remark is, that many children may die naturally after having been born alive; and in Dr. Hunter's time these cases were not perhaps sufficiently attended to. In the present day, however, the case is different: a charge of child-murder is seldom raised, except in those instances where there are the most obvious marks of severe and mortal injuries on the body of a child; and unless it be intended to defend and justify the practice of infanticide, it must be admitted that the discovery of violence of this kind on the body
OF DEATH DURING OR AFTER BIRTH.

of a new-born infant, renders a full inquiry into the circumstances necessary. Among the natural causes of the death of a child may be enumerated the following:

1. A protracted delivery.—The death of a child may proceed, in this case, from injury suffered by the head during the violent contractions of the uterus, or from an interruption to the circulation in the umbilical cord before the act of breathing can be performed. As it is elsewhere explained (post, p. 557) each contraction of the uterus affects the placental circulation, and a succession of these contractions in a protracted delivery will have the same effect on the child as the arrest of breathing after birth, i.e. non-oxygenated blood will be circulated, and may cause the death of the child. For a similar reason a premature separation of the placenta may lead to its death.

A child, if feeble and delicate or if prematurely born, may die from exhaustion under these circumstances before respiration is established. This cause of death may be suspected when a sero-sanguinolent tumour (called cephalaxatoma, or caput succedaneum) is found on the head of a child, and the head itself is deformed or elongated as a result of pressure. This appearance will be accompanied with a congested state of the vessels of the brain. The existence of deformity in the pelvis of the woman might corroborate this view; but in primiparous women (among whom charges of child-murder chiefly lie) with well-formed pelvis, delivery is frequently protracted. It is presumed that there are no marks of violence on the body of the child, excepting those which may have reasonably arisen from accident in attempts at self-delivery.

2. Debility.—A child may be born either prematurely or at the full period, and not survive its birth, owing to a natural feebleness of system. This is observed among immature children; and it is a condition especially dwelt on by Dr. Hunter. Such children may continue in existence for several hours, breathing feebly, and may then die from mere weakness. These cases may be recognized by the immature condition of the body and the appearance of a general want of development.

3. Bleeding from laceration of the navel-string.—A child may die from loss of blood, owing to a sudden separation of the placenta or an accidental rupture of the navel-string. In the latter case it is said the loss of blood is not likely to prove fatal if breathing has been established; but an instance is reported in which a child died from bleeding even under these circumstances. (Henke's 'Zeitschrift,' 1839, Erg. H., p. 200; also, 1840, vol. 1, p. 347, and vol. 2, p. 106; 'Ann. d'Hyg.' 1831, vol. 2, p. 128.) Bleeding from the cord has been observed to take place at various periods after birth, and to have led to the death of the child ('Edin. Month. Jour.' July 1847, p. 70.) Death from bleeding may be commonly recognized by the blanched appearance of the body, and a want of blood in the internal organs; but there are several instances on record, in which the cord was ruptured close to
the abdomen without causing the death of the child. Bleeding from the vessels of the navel-string may prove fatal several days after birth, even when a child has been properly attended to, and the navel-string has separated by the natural process. Mr. Willing has reported a case of this kind, in which, in spite of every application, the child died from loss of blood six days after the cord had separated. (‘Med. Times and Gaz.’ March 25, 1854, p. 287.) The impossibility of arresting the bleeding in this case appeared to depend upon a great deficiency of fibrin in the blood, and a consequent want of tendency to coagulation. (See on this subject a paper by Dr. Wieczorek, Eulenberg’s ‘Vierteljahr.’ 1873, 1, p. 385.)

It has been hitherto believed that the danger arising from bleeding of the cord, was chiefly confined to those cases in which it was divided near to the abdomen and where a cutting instrument had been used, and this is no doubt generally true. Dr. Page performed some experiments on this subject which showed that hemorrhage might take place from the divided navel-string, even when torn through at a length of eighteen inches from the body, and to such an extent as to endanger the life of a child. He also found that hemorrhage from the cord might take place without any interference with the respiration; but the arrest of this may lead to hemorrhage when it might not otherwise have occurred.

If there are severe wounds on the body from which blood has issued, it would be obviously wrong to refer a blanched condition of the body to accidental bleeding from the cord. The fatal bleeding may really have arisen from the wounds.

Before a medical expert refers death to this cause, he should be well assured that the cord was really torn through or severed about the time of birth, and not from any accident subsequently. A case is reported which shows the necessity for this caution. The body of a newborn child was taken from a river in which it had probably been floating for nearly a fortnight. The placenta and cord were attached to the body, but in removing it from the water the cord was torn through and the placenta carried away by the stream. A medical man examined the body, and seeing the cord ruptured, and observing no marks of violence, he came to the conclusion that the cord had been torn through by the woman at birth, and that the child had died from hemorrhage. (‘Ann. d’Hyg.’ Oct. 1873, v. 2, p. 443.) The medical opinion, however, was disproved by the evidence of witnesses.

4. Compression of the navel-string.—When a child is born by the feet or buttocks, the cord may be so compressed under strong uterine contraction that the circulation between the mother and child will be arrested, and the latter will die. The same fatal compression may follow when, during delivery, the cord becomes twisted round the neck. A child has been known to die under these circumstances before parturition, the cord having become twisted round
OF DEATH DURING OR AFTER BIRTH.

its neck in the uterus. (' Med. Gaz.' Oct. 1840, p. 122: also vol. 19, pp. 232, 233.) On these occasions the child is sometimes described to have died from strangulation, but it is evident that before the establishment of respiration, such a mode of expression is improper. There are few or no appearances indicative of the cause of death. There may be lividity about the head and face, with a mark or furrow on the neck, and congestion of the brain internally; it is, however, necessary to remember that the brain of a child is always more congested than that of an adult. Dr. E. Hofmann, of Innsbruck, considers that asphyxia is really the cause of death in children which have not breathed. He looks upon the placental circulation as vicarious to that of the lungs after birth, the arterial blood from the woman supplying the oxygen (derived from respiration) necessary to support the life of the unborn child. The amount of oxygen required for this purpose is exceedingly small, and, according to Schwartz and Pfüger, it is not sufficient to produce any difference of colour in the blood of the umbilical vessels. (Eulenberg’s ‘Vierteljahr.’ 1873, vol. 2, pp. 219, 224.) Although, under compression of the cord, a child may die before breathing, from the want of a proper supply of oxygen through the blood, yet the appearances presented by the lungs would differ from those which are found in these organs after breathing has been once established.

5. Malformation. Monstrosity.—There may be a deficiency or defect of some vital organ which would at once account for a child dying either during delivery or soon after its birth. Two cases are reported, in one of which the child died from an absolute deficiency of the gullet,—the pharynx terminating in a cul-de-sac: in the other, the duodenum was obliterated for more than an inch, and this malformation had occasioned the child’s death. (' Med. Gaz.' vol. 26, p. 642.) In a third, recorded by Mr. Fairbairn, a child was suffocated by a retraction of the base of the tongue, owing to defect of the frenum. (' North Jour. Med.' March 1849, p. 278.) The non-establishment of respiration sometimes arises from the mouth and faucets of the child being filled with mucus. An enlargement of the thyroid gland has occasionally led to the death of a new-born child by suffocation. (' Edin. Month. Jour.' July 1847, p. 64.) The epiglottis is sometimes fixed over the glottis so as to prevent the entrance of air. In a case which occurred to Dr. Hicks, a child was saved by the introduction of a finger: the air suddenly rushed in, and the child was then enabled to breathe. But a child may be born in this state when no person is at hand to assist the woman: in this case it will die; and the lungs being found in the foetal or unexpanded condition, it will be pronounced still-born. Obstruction of the air-passages is a frequent cause of death among still-born children.

The varieties of malformation are very numerous, but there can be no difficulty in determining whether they are such as to account
for death. Persons are not allowed to destroy monstrous births; and the presence of any marks of violence in such cases should be regarded with suspicion. It is the more necessary to make this statement, as there is an idea among the vulgar that it is not illegal to destroy a monstrous birth. Mr. Poole, of Cirencester, communicated to me a case which occurred some years since in his practice. A lady was delivered of a most hideous dicephalous (two-headed) monster. In his absence, and at the earnest solicitations of the friends, the nurse destroyed it. The question was—was this woman guilty of murder? The only case in reference to this point which is recorded by medico-legal writers, is that of two women who were tried at the York Assizes in 1812, for drowning a child which was born with some malformation of the head, in consequence of which it was not likely that it could survive many hours. It did not appear that there had been any malice or concealment on the part of the prisoners, who were not aware of the illegality of the act. (Paris and Fonblanque, 'Med. Jur.' vol. 1, p. 228.) The absence of malicious intention would probably lead to an acquittal on a charge of murder, but such an act would doubtless amount to manslaughter: the degree of monstrousity or the viability of the offspring cannot be received as an extenuating circumstance. As to the first, if a liberty of judging of what was monstrous and what not, were conceded to any ignorant nurse, children simply deformed might be put to death on this pretence: as to the second, it is held in law that whoever accelerates death causes it,—hence the fact that a child is not likely to live more than a few hours, does not justify the act of one who prematurely destroys it.

6. Spasm of the Larynx.—Some children are born with uterine life, and on coming into the world make attempts to breathe, but, as Dr. Hicks has pointed out, owing to spasm of the larynx and retraction of the tongue, the air is unable to enter—the child dies, and on inspection no air being found in the lungs, the child is wrongly pronounced to have been born dead. ('Guy's Hosp. Rep.' 1866, p. 476.) A careful examination of the fauces may show the presence of mucus or meconium, or a condition of the epiglottis which may account for the obstruction to respiration. Dr. Hicks has on more than one occasion seen the new-born child make these inspiratory efforts, and by lifting the epiglottis has given free passage to the air, and the child has been saved.

7. Atelectasis.—Atelectasis, as it has been elsewhere explained ('ante, p. 528), implies simply an unexpanded state of the lungs. In some cases it is complete, in others partial. It can scarcely be regarded as a diseased condition, as the body of the child may be otherwise healthy: the lungs themselves are in a normal state, and they can be easily expanded by the artificial introduction of air, or by other remedial measures when assistance is at hand. This imperfect expansion of the lungs is generally due to debility in the child, and is especially a cause of death in weakly or immature
ATELECTASIS. CONGENITAL DISEASE. 557

children. But strong and healthy children may die from simple non-inflation of the lungs.

Assuming that in utero the child lives by what has been called 'placental respiration,' i.e. a continuous supply of sufficiently oxygenated blood from the woman, another explanation may be offered. If anything should arrest the placental circulation during labour by interrupting the flow of blood to the child through the umbilical cord, this may cause its death before pulmonary inspiration can be established. The child is born asphyxiated, and this may explain the state of atelectasis. Every contraction of the uterus more or less interrupts placental respiration as it is above defined. The child lives inside the uterus by the placenta, and outside by the lungs. If the action of the placenta is destroyed before that of the lungs can be set up, this would explain the condition known under the name of atelectasis. (See a paper by Hofmann, Eulenberg's 'Vierteljahr.' 1873, 1, p. 219.)

8. Congenital disease.—It has been elsewhere stated (p. 527, ante), that a child may be born labouring under such a degree of congenital disease as to render it incapable of living. The discovery of any of the foetal organs merely in a morbid condition amounts to nothing unless the disease has advanced to a degree which would be sufficient to account for death. There are, doubtless, many obscure affections, particularly of the brain, which are liable to destroy the life of a child without leaving any well-marked changes in the dead body. According to Dr. Burgess, apoplexy and asphyxias are common causes of death among new-born children. ('Med. Gaz.' vol. 26, p. 492; Henke's 'Zeitschrift der S. A.' 1843, p. 67.) Probably diseases of the lungs are of the greatest importance in a medico-legal point of view; because, by directly affecting the organs of respiration, they render it impossible for a child to live, or to survive its birth for a long period. These diseases in the foetal state are principally congestion, hepatization, tubercle, scirrhous, and oedema,—the existence of any of which it is not difficult to discover. They render the structure of the lungs heavier than water, and thus prevent the organs from acquiring that buoyancy which in their healthier state they are known to possess. It is not common to find the lungs diseased throughout—a portion may be sufficiently healthy to allow of a partial performance of respiration.

Conclusions.—The following conclusions may be drawn from the preceding remarks:

1. That a large number of illegitimate children, especially when immature, are born dead from natural causes.

2. That a child may die from exhaustion as the result of protracted labour.

3. That if a child be prematurely born, or if it be small and weak even at the natural period, it may die from mere debility or want of power in the constitution either to commence or to continue the act of respiration.
INFANTICIDE. VIOLENT CAUSES

4. A child may die from loss of blood, owing to accidental rupture of the cord during delivery; it may even die from this cause after it has breathed.

5. That fatal bleeding is more likely to occur when the cord has been cut close to the abdomen than when it has been lacerated or cut at a distance from the navel.

6. That the division of the cord, whether by rupture or incision, without ligature, is by no means necessarily fatal to a healthy mature child.

7. That a child may die from accidental compression of the cord during delivery—the circulation between the mother and child being thereby arrested before respiration has commenced.

8. That death may speedily follow birth from some malformation or defect, or from a defective condition of organs important to life.

9. That a child may die from congenital disease affecting the organs of respiration or the air passages.

CHAPTER 52.

VIOLENT CAUSES OF DEATH.—SUFFOCATION.—DROWNING.—DEATH OF THE CHILD FROM COLD AND EXPOSURE.—STARVATION.—DEATH FROM IMMATURE.—WOUNDS IN NEW-BORN CHILDREN.—FRACTURES OF THE SKULL, ACCIDENTAL AND CRIMINAL.—TWISTING OF THE NECK.—VIOLENCE IN SELF-DELIVERY.—POWER OF LOCOMOTION AND EXERIITION IN FEMALKS AFTER DELIVERY.

Violent causes of death.—In this chapter we have to consider those modes of death which are totally independent of the existence of congenital disease or other natural causes. In most cases of alleged child-murder, the body of the child bears about it the marks of physical injury, such as those which are indicative of strangulation, wounds, burns, and fractures. The marks of violence may be such as to leave no doubt that they were wilfully inflicted.

In order to render a person criminally responsible, it must be proved that the injuries were unlawfully inflicted on a legally living child, and that they were the cause of death. If the child has died after birth, from violence carelessly or ignorantly inflicted during birth or afterwards, or from culpable negligence, this will constitute a case of manslaughter. A question of medical responsibility may be raised under these circumstances, as where a medical man is charged with having caused the death of a child by gross ignorance and carelessness in the delivery of a woman. The following instance is reported by Chitty ('Med. Jur.' p. 416; also Archbold, p. 345):—

A man of the name of Senior, who, it appears, was an unlicensed medical practitioner, was tried for the manslaughter of an infant, by injuries inflicted on it at its birth. The prisoner practised mid-
OF DEATH. SUFFOCATION.

wifery, and was called to attend the prosecutrix, who was taken in labour. The evidence showed that when the head of the child presented, the prisoner, by some mismanagement, fractured and otherwise so injured the cranium, that the child died immediately after it was born. It was argued, in defence, that as the child was not born (in ventre sa mere) at the time the wounds and injuries were inflicted, the prisoner could not be guilty of manslaughter. The judge, however, held that as the child was born alive and had subsequently died from the violence, the case might be one of manslaughter. This opinion was afterwards confirmed by the other judges, and the prisoner was convicted and sentenced to imprisonment. From the decision in this case, it will be seen that if the prisoner had effectually destroyed the child before it was entirely born, he would not have been guilty of any crime.

Some of the causes of death in a new-born child are unavoidable, others may be avoided by care and ordinary precautions. In some recent cases where the death of the child after its birth had been traced to culpable negligence on the part of the woman, our judges have directed a verdict of manslaughter, and have inflicted a severe punishment—ten years’ penal servitude. (Reg. v. Maynard, Devon Aut. Ass., 1871; Reg. v. Libbey, Cornwall Aut. Ass., 1871; and Reg. v. Sell, Hereford Lent Ass. 1873.) In no case, however, have they dispensed with the proof that the child was born alive, either from medical evidence or from the confession of the woman.

Some general observations have been elsewhere made on the mode in which the dead body of a child in an alleged case of child-murder should be examined (ante, p. 516). A note of all marks of physical injury, however slight in appearance, may be of importance in the case. There are some forms of child-murder which are not necessarily attended with marks of violence; thus a child may be criminally destroyed by suffocation, drowning, exposure to cold, or privation of food. It may die under these circumstances, and its body may present no unusual appearance. These modes of destroying life will therefore first require consideration.

1. Suffocation.—This is a common cause of death in new-born children. A wet cloth may be placed over the child’s mouth, or thrust into this cavity, either during birth or afterwards, and before or after the performance of respiration. To the latter case only could the term suffocation be strictly applied. A child may be thus destroyed by being allowed to remain closely compressed under the bed-clothes after delivery, or by its head being thrust into straw, feathers, ashes, and similar substances. The appearances in the body are seldom sufficient to excite a suspicion of the cause of death, unless undue violence has been employed. There is commonly merely lividity about the head and face, with slight congestion of the lungs. A careful examination of the mouth and throat should be made, as foreign substances are sometimes found,
in this situation, affording circumstantial evidence of the mode in which the suffocation has taken place. Thus wood, straw, feathers, ashes, tow, or a hard plug of linen may be, and in some cases have been, found blocking up the mouth and throat, drawn into these parts by aspiration when the mouth of a child has been covered with such substances. When a child is found dead under these circumstances a question will arise, whether the ashes, dust, or other substances found in the air-passages have either been wilfully thrust into the mouth and throat, or accidentally drawn in by aspiration. Whether an accused person has placed the ashes in the mouth or buried the face of the child in them so that they might be thus drawn in, can make no difference in the nature of the crime. If the ashes are in large quantity, of large size, firmly impacted, and the lining membrane of the mouth presents signs of laceration or bruising, there can be no doubt that violence has been used. Aspiration would not explain facts of this kind. Again, the cinders and other substances may be found in the trachea and bronchi, into which parts they could not have been forced by manual violence. In all these cases the mouth and fauces require careful examination.

If a child has lived sufficiently long to be fed, it may be accidentally suffocated by the entrance of portions of solid food, such as the curd of milk, into the windpipe and air-passages. A new-born child may be suffocated by having its head held over noxious vapours, such as the exhalations of a privy or of burning sulphur; and it is here necessary to remind a medical jurist that other highly poisonous vapours, e.g. chloroform, or coal-gas, may be used by a criminal without leaving any indication in the body—except, possibly for a short time, that which may depend upon their peculiar odour. There are few of these cases of suffocation in which a positive medical opinion of the cause of death could be given, unless some circumstantial evidence were produced, and the witness were allowed to say whether the alleged facts were or were not sufficient to account for death. (‘Annales d’Hég.’ 1832, vol. 1, p. 621.)

On the other hand, if it be even clearly proved that death has been caused by suffocation, it must be remembered that a child may be accidentally suffocated, and the crime of murder falsely imputed. Dr. J. M. Duncan, quoting the observations of Dr. Buhl, states that obstruction of the air-passages by mucus and other matters is a frequent cause of death in new-born children. Among twenty-seven children dying in labour or shortly after birth, eleven died from obstruction of the air-passages with foreign matters. Eight were born dead, and of those which were alive at birth, none survived the first day. In ten of the cases the obstruction was produced by a greenish or greenish-brown slimy mass (meconium and mucus) filling the larynx and windpipe. In two of the cases, in which the child died during delivery, air was found in the lungs, and in only one of these, the air had been derived from the act of respiration during birth. (‘Edin. Monthly Med. Jour.’ April 1863, p. 924;
ACCIDENTAL CAUSES OF SUFFOCATION.

also 'Med. Times and Gaz.' August 3, 1961, p. 117.) In Dr. Hicks's case (p. 556, ante) the base of the tongue in a new-born child was so drawn down by spasmodic action as to close the glottis by pressing backwards the epiglottis. The child was saved by simply raising the epiglottis, when air rushed in and breathing was established; but many children must be born under similar conditions when no assistance is at hand. Cases of this kind, however, rarely give rise to charges of child-murder, as no air is found in the lungs. A child might be killed during delivery by pressure applied to the chest; this might be such as not to produce any mark of violence. If the child had not breathed, there would be nothing to indicate the mode of death; if air had entered the lungs, then the usual appearances would be found in these organs (p. 352, ante). In dealing with a case of this kind, it should be remembered that a child with its head born, but detained in the outlet by the size of its shoulders, might die from pressure exerted on the chest by the vagina. It might have breathed, but be born dead with the marks of suffocation about it.

There is another accidental cause of the death of a new-born child during delivery. The membranes or caul may be carried forward over the head and face, and the act of breathing thus mechanically prevented. If no assistance is at hand, the child, although born living, will die soon after birth in consequence of the prevention of respiration. If, when the dead body is found, the membranes are no longer there, the cause of the prevention of respiration would not be apparent. The child, although born living, would probably be pronounced to have been born dead. ('Med. Times and Gaz.' January 1863, p. 126.) The delivery of a child with a mask or caul around its head is not an unrequent occurrence. In June 1862 Mr. Blenkinsop, of Warwick, communicated to me a case in which a mature and healthy child so born was allowed to perish by those who had access to it. The caul was simply not removed, so that breathing could not be set up. The lungs contained no air. There was congestion of the brain and lividity of the body, but no mark of violence. There was some evidence that the child had been born living, and that the cause of death was the prevention of respiration by omission to do that which was necessary; but as the medical evidence showed that the child had not breathed, the Coroner held that it had never had any (legal) existence, and that there was no ground for further investigation. Dr. Hunter, who was well aware of the risk to which a woman might be thus exposed, observes in relation to this state of things:—'When a woman is delivered by herself, a strong child may be born perfectly alive, and die in a very few minutes for want of breath, either by being on its face in a pool formed by the natural discharges, or upon wet clothes; or by the wet things over it collapsing and excluding air, or being drawn close to its mouth and nose by the suction of breathing. An unhappy woman delivered by herself, distracted in her mind and exhausted in her body, will not have strength or recollection enough to fly instantly
to the relief of her child.' (Op. cit. p. 35.) It may be added that a primiparous woman may faint or be wholly unconscious of her situation; or, if conscious, she may be ignorant of the necessity of removing the child, and thus it may be suffocated without her having been intentionally accessory to its death. In such cases, however, there should be no marks of violence on the body, or, if present, they should be of such a nature and in such a situation as to be readily explicable on the supposition of an accidental origin. (See case by Dr. Dohow (Horn’s ‘Vierteljahr.’ 1864, 2, p. 123.)

An infant is easily destroyed by suffocation. If the mouth and nostrils are kept covered for a few minutes, by the face being closely wrapped in clothes, asphyxia may come on without this being indicated by convulsions or any other marked symptoms (see p. 412, ante). A suspicion of murder may arise in such cases; but the absence of marks of violence, with an explanation of the circumstances, will rarely allow the case to be carried beyond an inquest. Sometimes the body is found maltreated, with severe fractures or contusions on the skull, and marks of strangulation on the neck; concealed in a feather-bed or privy, or cut up and burnt. This kind of violence may properly excite a suspicion of murder, and lead to the belief that the allegation of death from accidental suffocation, is a mere pretence. This, however, is purely a question for a jury, and not for a medical witness. Unless the case is of a glaring nature, the violence is considered to have been employed for the purpose rather of concealing the birth of a child than of destroying it. In the present day these cases of death from accidental suffocation, when properly investigated, can never involve an innocent woman in a charge of murder, although the facts may show in many instances that the death of the child was really due to great imprudence, gross neglect, or culpable indifference on her part. When culpable neglect or reckless indifference to the life of a new-born child, has been proved against a woman charged with murder, a verdict of manslaughter has been returned.

The appearances in the body in cases of death from suffocation have been elsewhere described, in reference to adults (p. 406, ante); they are similar in new-born children, provided respiration has been fully performed. M. Tardieu attaches great importance to the discovery of subpleural ecchymoses in the lungs of children: he has also noticed small effusions of blood on the surface and in the substance of the thymus-gland. (‘Ann. d’Hyg.’ 1855, vol. 2, p. 379.) If the lungs float on water, as the result of breathing, then the appearances described will be met with: but it is worthy of remark that in three instances M. Tardieu met with similar appearances in children whose lungs had not received air, and sank when placed on water! They were children prematurely born, and under conditions which prevented full vital development. One born in the Hospital of Ribeisière uttered several cries, but in spite of this, the lungs contained no air. The subpleural ecchymoses met with in children under these circumstances, are ascribed by M. Tardieu to the efforts
made to breathe after birth (loc. cit.). Partial emphysema of the lungs is occasionally observed.

Some remarks have been elsewhere made on the evidence derivable from the presence of subpleural ecchymoses (ante, p. 407). In death from suffocation they are not always found, and in other forms of asphyxia they have been occasionally seen, so that they cannot be considered as characteristic of any one form. In May 1872, Dr. Moore, of Lancaster, consulted me on the following case. A servant girl had given birth to a healthy child. This child was found alive about a quarter of an hour afterwards in a privy, and it lived a few minutes after the discovery. Its jaw was broken, its cheek torn, and the mouth contained ashes, some of which were found in the back part of the throat. The body was blanched, and there had evidently been a great loss of blood from the wounds and the torn umbilical cord. There was no engorgement of the lungs, nor were there any subpleural ecchymoses. The lining membrane of the trachea was stained with ashes, and a small cinder was found in the left bronchus. In this case there was no question respecting live birth, as the child was living when found,—but What was the cause of death, and was this accidental or the result of violence wilfully applied after birth? In the opinion of Dr. Moore, the mouth of the child had been forcibly torn open and filled with ashes in order to suffocate it; these ashes might have been then drawn by aspiration into the air-passages, and death caused partly by suffocation and partly by hemorrhage from the wounds, the child's body being bloodless. The condition of the lungs was not inconsistent with death from suffocation. For some remarks on death from suffocation in child-murder, with reports of cases, see a paper by M. Séverin Causse, 'Ann. d'Hyg.' 1869, 2, 122, 443.

2. Drowning.—The fact of drowning cannot be verified by any appearances on the body of a child which has not breathed. Thus, if a woman caused herself to be delivered in a bath, and the child was forcibly retained under water (a case which is said to have occurred), it would of course die; but no evidence of the mode of death would be found in the body. After respiration, the signs of drowning will be the same as those met with in the adult. (See p. 352, ante.) The main question for a witness to decide will be, whether the child was put into the water living or dead. Infanticide by drowning is by no means common; the child is generally suffocated, strangled, or destroyed in other ways, and its body is then thrown into water in order to conceal the real manner of its death. The fact of the dead body of an infant being found in water must not allow a witness to be thrown off his guard: although a verdict of 'found drowned' is so commonly returned in these cases, the body should be carefully inspected in order to determine what was really the cause of death. All marks of violence on the bodies of children that have died by drowning, should be such as to have resulted from accidental causes. The throat and air-passages should be particularly examined.
It is not necessary that the whole of the body of a child should be submerged, in order that it may be destroyed by drowning: the mere immersion of the head in water or the covering of the mouth by liquid, will suffice to produce the usual effects of asphyxia. The outlets of the ears and the air-passages should be examined for foreign substances which may be deposited in them.

New-born children may be drowned or suffocated by being thrown into mud or into the soil of a privy. Sometimes the child is destroyed by other means, and its body is thus disposed of for the purpose of concealment. Should there be a large quantity of liquid present, the phenomena are those of drowning. The liquid portion of the soil abounding in sulphide of ammonium may be found, if the child was thrown in living, in the air-passages, gullet or stomach. The mere discovery of soil in the mouth would not suffice to show that the child was living when immersed; but the presence of foreign substances, such as dirt, straw, or ashes, in the air-passages, gullet and stomach, has usually been taken as a medical proof that the child was living when immersed, and that the solid substances had been drawn into the passages by aspiration or by the act of swallowing.

On these occasions the defence may be:—1. That the child was born dead, and that the body was thrown in for concealment; but the medical evidence may show that it had breathed, and had probably been born living. 2. It may be alleged that the child breathed for a few moments after birth,—had then died, and that the woman had attempted to conceal the dead body. A medical witness may be here asked, whether a woman could have had power to convey the body to the place—a point which must, as a general rule, be conceded. 3. It is most commonly urged, that the woman being compelled to go to the privy, was there delivered unconsciously or unexpectedly; that her waters had broken, and that she had no idea of anything more having happened; or that the child had dropped from her, and was either suffocated or prevented from breathing. (‘Med. Times and Gaz.’ Dec. 21, 1861, p. 646.) All these circumstances may readily occur, but on the other hand, such statements may be inconsistent with some of the medical facts. (See a case by M. Adelon, ‘Ann. d’Hyg.’ 1855, vol. 2, p. 453; also Casper’s ‘Klinische Novellen,’ 1863, p. 585.) Thus the head or the limbs of a child may be found to have been separated or divided by some cutting instrument, or a cord or other ligature may be found tightly bound around its neck, or there may be a tightly-fitting plug in the throat. Then, again, the body may be entire, but the umbilical cord may be cleanly cut. This would tend to set aside the explanation of the child having accidentally dropped from the female: because in such an accident the cord should always be found ruptured. The practitioner should make a careful examination of the divided ends of the cord by the aid of a lens, or a rupture may be mistaken for a section with a sharp instrument. Mr. Higginson, of Liverpool, has published a case of some interest in
AND ACCIDENTAL DROWNING.

this point of view. The child fell from the mother, and the cord broke spontaneously. 'The torn ends were,' he states, 'nearly as sharp-edged and flat as if cut.' ('Med. Gaz.' vol. 48, p. 985.) This case goes to prove that a careless or hasty examination of the ends of the cord may lead to a serious mistake. When the cord is lacerated, this will be, ceteris paribus, in favour of the woman's statement as to the mode in which her delivery occurred.

Drowning may be the result of accident from sudden delivery. A woman in an advanced state of pregnancy, while sitting on a chamber-vessel, was suddenly delivered. The child fell into the fluids in the vessel, and before assistance could be rendered, it was dead. Whether, in any instance, the drowning of a child was accidental or criminal, must be a question for a jury to determine from all the facts laid before them. The situation in which the body of an infant is found may be consistent with the supposition of accident. Thus a child may be accidentally drowned by its mouth falling into a pool of the discharges during delivery, although this would be rather a case of suffocation. The throat, windpipe, and stomach of the child should always be examined on these occasions, as mud, sticks, straw, weeds, or other substances may be found in these parts, indicating, according to circumstances, that the child had been put into the water living, and that it had been drowned in a particular pond or vessel.

In a charge recently delivered by the Recorder at the Central Criminal Court (Oct. 27, 1873), he is reported to have made these observations to the Grand Jury in reference to the finding of the body of a new-born child in a pail of water. "The law of infanticide in its present state was by no means satisfactory, and the consequence was, he feared, that many a crime of this kind was committed with perfect impunity. In the case under consideration, there was nothing to show that, at the time of its death, the child had an existence perfectly independent of the mother, and unless the Grand Jury were satisfied to the contrary it seemed to him that the charge of murder could not be entertained, although they might probably be of opinion, from the surrounding circumstances, that the infant was dropped into a pail of water with an intent to cause death." A woman aware of her condition, and not having the intention to destroy her child, would hardly resort to this method of self-delivery. Such an act would justify a verdict of manslaughter.

3. Cold and Exposure.—A new-born child may be easily destroyed by simply exposing it uncovered, or but slightly covered, to a cold atmosphere. In a case of this kind there may be no marks of violence on the body, or these may be slight and evidently of accidental origin. In death from cold the only appearance occasionally met with has been congestion of the brain, with or without serous effusions in the ventricles. (See Cold, p. 453, ante.) The evidence in these cases must be purely circumstantial. The medical witness
may have to consider how far the situation in which the body was found,—the kind of exposure, and the temperature of the air, would suffice to account for death from the alleged cause. There is no doubt that a new-born child may soon perish from exposure to a low temperature, and that warm clothing is required for the preservation of its life. An inspection of the body should never be omitted on these occasions, because it might turn out that there was some latent cause of natural death which would at once do away with the charge of murder. Admitting that the child had died from cold, it becomes necessary to inquire whether it was exposed with a malicious intention that it should thus perish. Unless wilful malice be made out, the accused cannot be convicted of murder, and unless culpable neglect is proved, she cannot be convicted of manslaughter. In general, women do not expose their children for the purpose of destroying them, but for the purpose of abandoning them: hence it is rare to hear of convictions for child-murder where cold was the cause of death, although some medical jurists have called this infanticide by omission.

4. Starvation.—A new-born child kept long without food will die, and no evidence of the fact may be derivable from an examination of the body. There may be no marks of violence externally, nor any pathological changes internally, to account for death. This is a rare form of murder, except as it may be accidentally combined with exposure to cold. In order to convict the mother, it is necessary to show that the child was wilfully kept without food, with the criminal design of destroying it. Mere neglect or imprudence will not make the case infanticide. The only appearance likely to be found on an examination of the body would be complete emptiness of the alimentary canal. Without corroborative circumstantial evidence, this would not suffice to establish the cause of death: a medical witness could only form a probable conjecture on the point. In a suspected case of this kind, the contents of the stomach should be tested for farinaceous and other kinds of food.

5. Immaturity in cases of abortion.—From the case of Reg. v. West (Nottingham Lent Ass., 1848), it would appear that if by the perpetration of abortion, or the criminal induction of premature labour, a child be born living at so early a period of uterine life that it dies merely from immaturity, the person causing the abortion, or leading to the premature birth, may be tried on a charge of murder. A midwife was alleged to have perpetrated abortion on a female who was between the fifth and sixth months of pregnancy. The child was born living, but died five hours after its birth. There was no violence offered to it; and its death appeared to be due entirely to its immaturity. The prisoner was acquitted, apparently on the ground that abortion might have arisen from other causes. In a case of this kind it must be clearly proved that the child survived its birth.

Among those causes of violent death which leave on the body of the
child certain marks or appearances indicative of the cause, may be mentioned wounds, strangulation, and poisoning.

6. Wounds.—Probably this is one of the most frequent causes of death in cases of child-murder. Wounds may, however, be found on the body of a child which has died from some other cause. The principal questions which a medical witness has to answer are:—

1. Whether the wounds were inflicted on the body of the child before or after death.—2. Whether they were sufficient to account for death—and 3. Whether they resulted from accident or criminal design. The child may have been destroyed by burning, and evidence must then be sought for by an examination of the state of the skin. All these questions have been fully considered in treating the subject of Wounds, and they therefore do not require any special notice in this place.

Incised wounds found on the bodies of new-born children may be referred to the use of a knife or scissors by the prisoner, in attempting to sever the navel-string, and they may therefore be due to accident. This point should not be forgotten, for a wound even of a severe kind might be thus accidentally inflicted. In such cases we should always expect to find the navel-string cut, and not lacerated. The end of it may, for the purpose of examination, be stretched out on a piece of white card. This will in general suffice to show whether it has been cut or torn. Wounds, however slight, should not be overlooked: minute punctures or incisions externally may correspond to deep-seated injury of vital organs. The spinal marrow is said to have been wounded by needles or stilettos introduced between the vertebrae, the skin having been drawn down before the wound was inflicted, in order to give it a valvular character, and to render it apparently superficial. The brain is also said to have been wounded, by similar weapons, either through the nose or the thinner parts of the skull (the fontanelles.)

In some instances the body of a child is found cut to pieces, and the allegation in defence may be that the child was still-born, and the body thus treated merely for the purpose of concealment. Dr. Toulmouche has reported a case of this kind, which was the subject of a trial in France in 1852. As the woman had not destroyed the lungs, experiments on these organs gave satisfactory results of perfect respiration. The cavities of the heart and great vessels were empty: the body was generally drained of blood, and the skin throughout very pale. This led to the inference that the mutilations must have been inflicted while the child was living; and as all the parts were healthy, and no natural cause of death was apparent, Dr. Toulmouche ascribed the death of the child to the wounds. The woman was convicted, and condemned to twenty years' confinement in the galleys. ('Ann. d'Hyg.' 1863, vol. 2, p. 200.) In this country she would probably have escaped under a verdict of 'concealment of birth,' and have been sentenced to a year's imprisonment.
INFANTICIDE. INJURIES TO THE HEAD.

Injuries to the head.—It has been elsewhere stated that during a protracted delivery there is formed on the head of a child a tumour containing either serum, blood, or a mixture of the two. If a woman has been secretly delivered, non-professional persons may ascribe a tumour of this kind to violence, whereas it may really have been produced by natural causes. The tumour is generally situated on one of the parietal bones, its situation depending on that part of the head which presents during delivery. After the discharge of the waters, the scalp is firmly compressed by the mouth of the uterus, and subsequently by the os externum. This pressure interferes with the circulation through the skin, and causes the compressed portion of the scalp to swell. In the simplest form of this tumour, serum only is found in the swollen part; occasionally this is mixed with blood, and there are small ecchymoses of the scalp, as well as of the pericranium and skull, but there is generally no injury to the bones, nor is there any laceration of the skin externally. In other cases blood is found effused in the tumour either under the scalp, the membrane covering the skull (pericranium), or within the skull itself. The term Cephal hernoma or Caput succedaneum is applied to a tumour which has this natural origin (p. 553, ante). The sanguineous, is more likely to be confounded with the effects of violence than the serous tumour; but it may be identified by the scalp being always uninjured, although it may present redness and lividity. Violence from blows or falls which would produce bloody effusions beneath the scalp, or within the skull, would in general be indicated by injury to the skin or by fracture of the bones.

The only injuries to the head which require to be specially considered in relation to infanticide, are fractures of the skull; and here the question to which we may chiefly confine our attention is, whether the fracture arose from accident or criminal violence. The rules for determining whether these injuries were inflicted during life or after death have been elsewhere considered. (See Wounds, pp. 201-326.)

Although it has been a matter of frequent observation, that great violence may be done to the head of a child during parturition without necessarily giving rise to fracture, yet it is placed beyond all doubt that such an injury may occur by the explosive efforts of the uterus forcing the head of a child against the bones of the pelvis. Even the violent compression which the head sometimes experiences in passing the mouth of the uterus, may suffice for the production of fracture. (See 'Edin. Med. and Surg. Jour.' vol. 26, p. 75.)

It was formerly supposed that fractures of the skull in new-born children were always indicative of criminal violence; but cases which have occurred in obstetric practice have established the certainty of their accidental occurrence. These accidental fractures, it is to be observed, are generally slight; they commonly amount merely to fissures in the bones, beginning at the sutures and
extending downwards for about an inch or less into the body of the bone. According to Dr. Weber, the frontal and parietal bones are the only bones liable to be fissured or fractured by the action of the uterus during delivery; and in the greater number of cases reported, the parietal bones only have presented marks of fracture.

The possible occurrence of an injury of this kind as the result of uterine action has been strained in several cases of child-murder, to explain the origin of fractures which could not fairly or reasonably be assigned to such an accident. A case was tried at Glasgow, in April 1852 (case of Ann Irwin), in which there was no doubt, from the state of the lungs, that the child had fully breathed, and there was violence to the head which satisfactorily accounted for its death. The whole of the right side of the head was deeply ecchymosed, and there was a large quantity of coagulated blood lying beneath the scalp. In the centre of the right parietal bone there was a fracture extending across the vertex for fully four inches, and involving a part of the parietal bone on the opposite side; it was in a continuous even line, not radiated and not depressed. The pericranium, bones, and soft parts in the track of the fracture, were deeply ecchymosed, while on the surface of the brain, particularly on the right side, there was a copious effusion of clotted blood. It was impossible to refer severe injuries of this kind to the action of the uterus in delivery, or to violence applied after death. The prisoner alleged that the child was still-born. (See 'Edin. Monthly Jour.' June 1852.)

Accidental fractures and effusions of blood which are caused by uterine action, may be in general recognized by their slight extent. In cases of murder by violence to the head, the injuries are commonly much more severe: the bones are driven in, the brain protrudes, and the scalp is extensively lacerated. Such severe injuries as these cannot be ascribed to the action of the uterus in parturition. Here, however, it may be fairly urged, that the woman was unexpectedly seized with labour, that the child was expelled suddenly by the violent efforts of the uterus, and that the injuries might have arisen from its head coming in contact with some hard surface—as a floor or pavement. It must be admitted that a woman may be thus suddenly and unexpectedly delivered while in the erect posture, although this is not common among primiparous women; and that injuries may be thus accidentally produced on the head of a child.

A woman is often unable to distinguish the sense of fulness, produced by the descent of a child, from the feeling which leads her to suppose that she is about to have an evacuation; and thus it is dangerous, when a labour has advanced, to allow a woman to yield to this feeling, for there is nothing more probable than that the child will be suddenly born. Mr. Rankin, of Carluke, has reported two cases of this description, where there could not be the slightest suspicion of criminality. In one, a primipara, the child was
actually born under these circumstances, but its life was fortunately saved; had there been no other convenience than a privy it must have been inevitably lost. In the second, although a case of third pregnancy, the female was equally deceived by her sensations. ('Edin. Month. Jour.' Jan. 1846, p. 11.) It is true that this alleged mistaken sensation forms a frequent and specious defence on charges of child-murder; but still a medical jurist is bound to admit, that an accident which occurs to women of the middle class, may also occur to women of a lower class without necessarily implying guilt.

The following case shows that a fracture of the skull of a child may occur when a woman is delivered in the erect posture. In this instance there was merely the appearance of a bruise on the head, and the navel-string was ruptured (not cut) three inches from the navel. The child did not suffer from the fall, and continued well until six days after its birth, when it was seized with convulsions and died. A fissure of about an inch and a half in length was found in the upper part of the left parietal bone. A clot of blood was found in this situation between the dura mater and bone, and there was congestion of the vessels of the membranes; with this exception there was no morbid appearance in the body. ('Association Journal,' Oct. 14, 1853, p. 601.) Dr. Porter Smith, of Bath, communicated to me a case, which occurred in November 1856, in which the facts were similar to those above related. In consequence of the concealment of the body, however, the mother was charged with murder. The right parietal bone was fractured, and there was effusion of blood internally, but there was no mark of external violence. The cord had been ruptured at a distance of two-and-a-half inches from the navel. The stomach of the child contained the usual albuminous and mucous matters of the fetal state, without any appearance of food. The lungs contained air, and were highly crepitant; the foramen ovale and the ductus arteriosus were in their fetal condition. The child had probably been drowned in the discharges from want of assistance at the time of birth. The woman, who admitted that the child fell from her suddenly, was acquitted. Dr. Olshausen has published four cases of sudden delivery, in each of which the child dropped from the woman, and in two of them there were fissures in the parietal bones. The children recovered from the effects of the accidents. ('Med. Times and Gaz.' Sept. 1860; 'Am. Jour. Med. Sci.' Jan. 1861, p. 279.) Other cases of rapid delivery in the erect posture, are reported in the 'Lancet' (Jan. 5, 1861, p. 13). In these, there was no injury to the child, although in one case the delivery took place on the deck of a vessel.

A medical witness would find no difficulty in determining the probability of this explanation of the accidental origin of such fractures, he were made acquainted with all the facts connected with the delivery. But the acquisition of this knowledge must be accidental; and it will in general be out of his power to obtain it. When the
fractures are accompanied by cuts, punctures, or lacerations of the scalp or face, although their production might be accounted for by an alleged fall during parturition, the cause of these wounds would still remain to be explained.

In fractures of the bones of the head in new-born children, the presence of effusions of blood on the outside of the skull, or on the membranes within, is one of the most common appearances. Effusions of blood beneath the skin of the scalp are by no means uncommon in new-born children, and are not necessarily indicative of criminal violence. Each case, however, must be decided by the circumstances attending it. Effusions on the membranes and in the substance of the brain are generally the result of great violence to the head.

Twisting of the neck.—Children are sometimes destroyed in the act of birth by the neck being forcibly twisted, whereby a displacement of the cervical vertebrae, with injury to the spinal marrow, may occur, and destroy life. Such injuries are immediately discovered by an examination of the body. It should be remembered that the neck of a child is very short, and that it always possesses considerable mobility.

Violence in self-delivery.—When the marks of violence found on the head, neck, or body of a child cannot be easily referred to uterine action or to an accidental fall, it is common to ascribe them to the efforts made by a woman in her attempts to deliver herself—the destruction of the child being an accidental result of these efforts. A medical opinion in such cases must depend upon the nature, situation, and extent of the injuries; and each case must be therefore decided by the circumstances attending it. A medical witness, however, should always be prepared to allow that a woman at the time of her delivery, owing to pain and anxiety, may be deprived of all judgment, and may destroy her offspring without being conscious of what she is doing. It is therefore a sound principle of law that mere appearances of violence on a child’s body are not per se sufficient, unless there is some evidence to show that the violence was knowingly and intentionally inflicted, or the appearances are of such a kind as of themselves to indicate intentional murder. (Alison.) But, judging from the verdicts returned in cases which have hitherto occurred, it would be very difficult to suggest any appearances which would be considered by a jury to indicate murderous violence.

Power of exertion in recently-delivered women.—On these occasions, a witness will often find himself questioned respecting the strength or capability for exertion, evinced by the lower class of women shortly after child-birth. Dr. Alison remarks that many respectable medical practitioners, judging only from what they have observed among the higher ranks, are liable to be led into an erroneous opinion, which may affect their evidence. He mentions a case, in which a woman accused of child-murder walked a distance of twenty-eight miles in a single day, with her child on her back,
may have to consider how far the situation in which the body was found,—the kind of exposure, and the temperature of the air, would suffice to account for death from the alleged cause. There is no doubt that a new-born child may soon perish from exposure to a low temperature, and that warm clothing is required for the preservation of its life. An inspection of the body should never be omitted on these occasions, because it might turn out that there was some latent cause of natural death which would at once do away with the charge of murder. Admitting that the child had died from cold, it becomes necessary to inquire whether it was exposed with a malicious intention that it should thus perish. Unless wilful malice be made out, the accused cannot be convicted of murder, and unless culpable neglect is proved, she cannot be convicted of manslaughter. In general, women do not expose their children for the purpose of destroying them, but for the purpose of abandoning them: hence it is rare to hear of convictions for child-murder where cold was the cause of death, although some medical jurists have called this infanticide by omission.

4. Starvation.—A new-born child kept long without food will die, and no evidence of the fact may be derivable from an examination of the body. There may be no marks of violence externally, nor any pathological changes internally, to account for death. This is a rare form of murder, except as it may be accidentally combined with exposure to cold. In order to convict the mother, it is necessary to show that the child was wilfully kept without food, with the criminal design of destroying it. Mere neglect or imprudence will not make the case infanticide. The only appearance likely to be found on an examination of the body would be complete emptiness of the alimentary canal. Without corroborative circumstantial evidence, this would not suffice to establish the cause of death: a medical witness could only form a probable conjecture on the point. In a suspected case of this kind, the contents of the stomach should be tested for farinaceous and other kinds of food.

5. Immaturity in cases of abortion.—From the case of Reg. v. West (Nottingham Lent Ass., 1848), it would appear that if by the perpetration of abortion, or the criminal induction of premature labour, a child be born living at so early a period of uterine life that it dies merely from immaturity, the person causing the abortion, or leading to the premature birth, may be tried on a charge of murder. A midwife was alleged to have perpetrated abortion on a female who was between the fifth and sixth months of pregnancy. The child was born living, but died five hours after its birth. There was no violence offered to it; and its death appeared to be due entirely to its immaturity. The prisoner was acquitted, apparently on the ground that abortion might have arisen from other causes. In a case of this kind it must be clearly proved that the child survived its birth.

Among those causes of violent death which leave on the body of the
DEATH FROM WOUNDS.

Child certain marks or appearances indicative of the cause, may be mentioned wounds, strangulation, and poisoning.

6. Wounds.—Probably this is one of the most frequent causes of death in cases of child-murder. Wounds may, however, be found on the body of a child which has died from some other cause. The principal questions which a medical witness has to answer are:—

1. Whether the wounds were inflicted on the body of the child before or after death.—2. Whether they were sufficient to account for death—and 3. Whether they resulted from accident or criminal design. The child may have been destroyed by burning, and evidence must then be sought for by an examination of the state of the skin. All these questions have been fully considered in treating the subject of Wounds, and they therefore do not require any special notice in this place.

Incised wounds found on the bodies of new-born children may be referred to the use of a knife or scissors by the prisoner, in attempting to sever the navel-string, and they may therefore be due to accident. This point should not be forgotten, for a wound even of a severe kind might be thus accidentally inflicted. In such cases we should always expect to find the navel-string cut, and not lacerated. The end of it may, for the purpose of examination, be stretched out on a piece of white card. This will in general suffice to show whether it has been cut or torn. Wounds, however slight, should not be overlooked: minute punctures or incisions externally may correspond to deep-seated injury of vital organs. The spinal marrow is said to have been wounded by needles or stilettoes introduced between the vertebrae, the skin having been drawn down before the wound was inflicted, in order to give it a valvular character, and to render it apparently superficial. The brain is also said to have been wounded, by similar weapons, either through the nose or the thinner parts of the skull (the fontanelles.)

In some instances the body of a child is found cut to pieces, and the allegation in defence may be that the child was still-born, and the body thus treated merely for the purpose of concealment. Dr. Toulmouche has reported a case of this kind, which was the subject of a trial in France in 1852. As the woman had not destroyed the lungs, experiments on these organs gave satisfactory results of perfect respiration. The cavities of the heart and great vessels were empty: the body was generally drained of blood, and the skin throughout very pale. This led to the inference that the mutilations must have been inflicted while the child was living; and as all the parts were healthy, and no natural cause of death was apparent, Dr. Toulmouche ascribed the death of the child to the wounds. The woman was convicted, and condemned to twenty years' confinement in the galleys. ('Ann. d'Hyg.' 1863, vol. 2, p. 200.) In this country she would probably have escaped under a verdict of 'concealment of birth,' and have been sentenced to a year's imprisonment.
Injuries to the head.—It has been elsewhere stated that during a protracted delivery there is formed on the head of a child a tumour containing either serum, blood, or a mixture of the two. If a woman has been secretly delivered, non-professional persons may ascribe a tumour of this kind to violence, whereas it may really have been produced by natural causes. The tumour is generally situated on one of the parietal bones, its situation depending on that part of the head which presents during delivery. After the discharge of the waters, the scalp is firmly compressed by the mouth of the uterus, and subsequently by the os externum. This pressure interferes with the circulation through the skin, and causes the compressed portion of the scalp to swell. In the simplest form of this tumour, serum only is found in the swollen part; occasionally this is mixed with blood, and there are small ecchymoses of the scalp, as well as of the pericranium and skull, but there is generally no injury to the bones, nor is there any laceration of the skin externally. In other cases blood is found effused in the tumour either under the scalp, the membrane covering the skull (pericranium), or within the skull itself. The term Cephalematoma or Caput succedaneum is applied to a tumour which has this natural origin (p. 553, ante). The sanguineous, is more likely to be confounded with the effects of violence than the serous tumour; but it may be identified by the scalp being always uninjured, although it may present redness and lividity. Violence from blows or falls which would produce bloody effusions beneath the scalp, or within the skull, would in general be indicated by injury to the skin or by fracture of the bones.

The only injuries to the head which require to be specially considered in relation to infanticide, are fractures of the skull; and here the question to which we may chiefly confine our attention is, whether the fracture arose from accident or criminal violence. The rules for determining whether these injuries were inflicted during life or after death have been elsewhere considered. (See Wounds, pp. 201-326.)

Although it has been a matter of frequent observation, that great violence may be done to the head of a child during parturition without necessarily giving rise to fracture, yet it is placed beyond all doubt that such an injury may occur by the expulsive efforts of the uterus forcing the head of a child against the bones of the pelvis. Even the violent compression which the head sometimes experiences in passing the mouth of the uterus, may suffice for the production of fracture. (See ‘Edin. Med. and Surg. Jour.’ vol. 26, p. 75.)

It was formerly supposed that fractures of the skull in new-born children were always indicative of criminal violence; but cases which have occurred in obstetric practice have established the certainty of their accidental occurrence. These accidental fractures, it is to be observed, are generally slight; they commonly amount merely to fissures in the bones, beginning at the sutures and
FRactures of the Skull. 569

extending downwards for about an inch or less into the body of the bone. According to Dr. Weber, the frontal and parietal bones are the only bones liable to be fissured or fractured by the action of the uterus during delivery; and in the greater number of cases reported, the parietal bones only have presented marks of fracture.

The possible occurrence of an injury of this kind as the result of uterine action has been straining in several cases of child-murder, to explain the origin of fractures which could not fairly or reasonably be assigned to such an accident. A case was tried at Glasgow, in April 1852 (case of Ann Irwin), in which there was no doubt, from the state of the lungs, that the child had fully breathed, and there was violence to the head which satisfactorily accounted for its death. The whole of the right side of the head was deeply ecchymosed, and there was a large quantity of coagulated blood lying beneath the scalp. In the centre of the right parietal bone there was a fracture extending across the vertex for fully four inches, and involving a part of the parietal bone on the opposite side; it was in a continuous even line, not radiated and not depressed. The pericranium, bones, and soft parts in the track of the fracture, were deeply ecchymosed, while on the surface of the brain, particularly on the right side, there was a copious effusion of clotted blood. It was impossible to refer severe injuries of this kind to the action of the uterus in delivery, or to violence applied after death. The prisoner alleged that the child was still-born. (See 'Edin. Monthly Jour.' June 1852.)

Accidental fractures and effusions of blood which are caused by uterine action, may be in general recognized by their slight extent. In cases of murder by violence to the head, the injuries are commonly much more severe: the bones are driven in, the brain protrudes, and the scalp is extensively lacerated. Such severe injuries as these cannot be ascribed to the action of the uterus in parturition. Here, however, it may be fairly urged, that the woman was unexpectedly seized with labour, that the child was expelled suddenly by the violent efforts of the uterus, and that the injuries might have arisen from its head coming in contact with some hard surface— as a floor or pavement. It must be admitted that a woman may be thus suddenly and unexpectedly delivered while in the erect posture, although this is not common among primiparous women; and that injuries may be thus accidentally produced on the head of a child.

A woman is often unable to distinguish the sense of fullness, produced by the descent of a child, from the feeling which leads her to suppose that she is about to have an evacuation; and thus it is dangerous, when a labour has advanced, to allow a woman to yield to this feeling, for there is nothing more probable than that the child will be suddenly born. Mr. Rankin, of Carlisle, has reported two cases of this description, where there could not be the slightest suspicion of criminality. In one, a primipara, the child was
actually born under these circumstances, but its life was fortunately saved; had there been no other convenience than a privy it must have been inevitably lost. In the second, although a case of third pregnancy, the female was equally deceived by her sensations. ('Edin. Month. Jour.' Jan. 1846, p. 11.) It is true that this alleged mistaken sensation forms a frequent and specious defence on charges of child-murder; but still a medical jurist is bound to admit, that an accident which occurs to women of the middle class, may also occur to women of a lower class without necessarily implying guilt.

The following case shows that a fracture of the skull of a child may occur when a woman is delivered in the erect posture. In this instance there was merely the appearance of a bruise on the head, and the navel-string was ruptured (not cut) three inches from the navel. The child did not suffer from the fall, and continued well until six days after its birth, when it was seized with convulsions and died. A fissure of about an inch and a half in length was found in the upper part of the left parietal bone. A clot of blood was found in this situation between the dura mater and bone, and there was congestion of the vessels of the membranes; with this exception there was no morbid appearance in the body. ('Association Journal,' Oct. 14, 1853, p. 901.) Dr. Porter Smith, of Bath, communicated to me a case, which occurred in November 1856, in which the facts were similar to those above related. In consequence of the concealment of the body, however, the mother was charged with murder. The right parietal bone was fractured, and there was effusion of blood internally, but there was no mark of external violence. The cord had been ruptured at a distance of two-and-a-half inches from the navel. The stomach of the child contained the usual albuminous and mucous matters of the foetal state, without any appearance of food. The lungs contained air, and were highly crepitant; the foramen ovale and the ductus arteriosus were in their foetal condition. The child had probably been drowned in the discharges from want of assistance at the time of birth. The woman, who admitted that the child fell from her suddenly, was acquitted.

Dr. Olshausen has published four cases of sudden delivery, in each of which the child dropped from the woman, and in two of them there were fissures in the parietal bones. The children recovered from the effects of the accidents. ('Med. Times and Gaz.' Sept. 1860; 'Am. Jour. Med. Sci.' Jan. 1861, p. 279.) Other cases of rapid delivery in the erect posture, are reported in the 'Lancet' (Jan. 5, 1861, p. 13). In these, there was no injury to the child, although in one case the delivery took place on the deck of a vessel.

A medical witness would find no difficulty in determining the probability of this explanation of the accidental origin of such fractures, if he were made acquainted with all the facts connected with the delivery. But the acquisition of this knowledge must be accidental; and it will in general be out of his power to obtain it. When the
VIOLENCE IN SELF-DELIVERY.

Fractures are accompanied by cuts, punctures, or lacerations of the scalp or face, although their production might be accounted for by an alleged fall during parturition, the cause of these wounds would still remain to be explained.

In fractures of the bones of the head in new-born children, the presence of effusions of blood on the outside of the skull, or on the membranes within, is one of the most common appearances. Effusions of blood beneath the skin of the scalp are by no means uncommon in new-born children, and are not necessarily indicative of criminal violence. Each case, however, must be decided by the circumstances attending it. Effusions on the membranes and in the substance of the brain are generally the result of great violence to the head.

Twisting of the neck.—Children are sometimes destroyed in the act of birth by the neck being forcibly twisted, whereby a displacement of the cervical vertebrae, with injury to the spinal marrow, may occur, and destroy life. Such injuries are immediately discovered by an examination of the body. It should be remembered that the neck of a child is very short, and that it always possesses considerable mobility.

Violence in self-delivery.—When the marks of violence found on the head, neck, or body of a child cannot be easily referred to uterine action or to an accidental fall, it is common to ascribe them to the efforts made by a woman in her attempts to deliver herself—the destruction of the child being an accidental result of these efforts. A medical opinion in such cases must depend upon the nature, situation, and extent of the injuries; and each case must be therefore decided by the circumstances attending it. A medical witness, however, should always be prepared to allow that a woman at the time of her delivery, owing to pain and anxiety, may be deprived of all judgment, and may destroy her offspring without being conscious of what she is doing. It is therefore a sound principle of law that mere appearances of violence on a child's body are not per se sufficient, unless there is some evidence to show that the violence was knowingly and intentionally inflicted, or the appearances are of such a kind as of themselves to indicate intentional murder. (Alison.) But, judging from the verdicts returned in cases which have hitherto occurred, it would be very difficult to suggest any appearances which would be considered by a jury to indicate murderous violence.

Power of exertion in recently-delivered women.—On these occasions, a witness will often find himself questioned respecting the strength or capability for exertion, evinced by the lower class of women shortly after child-birth. Dr. Alison remarks that many respectable medical practitioners, judging only from what they have observed among the higher ranks, are liable to be led into an erroneous opinion, which may affect their evidence. He mentions a case, in which a woman accused of child-murder walked a distance of twenty-eight miles in a single day, with her child on her back,
two or three days after her delivery. (Case of Anderson, Aberdeen Spring Circ. 1829.) Instances have even occurred in which women have walked six and eight miles, on the very day of their delivery, without sensible inconvenience. ('Criminal Law,' p. 161.) In one case (Smith, Ayr Spring Circ. 1824), the woman was engaged in reaping,—she retired to a little distance, effected her delivery by herself, and went on with her work for the remainder of the day, appearing only a little thinner and paler than usual. In Reg. v. Stouler (Wells Aut. Ass. 1865), two witnesses proved that the prisoner, who was tried for the murder of her child, was at work with them in a field about 800 yards from a pond in which the body was afterwards found. They left the prisoner weeding, returned in about an hour, and she was not then in the field. After a time she returned, sat on a bank, and then resumed her work. The witnesses noticed that, on her return, there was a great difference in her appearance. In this short interval she had been delivered, had disposed of the body of the child, and resumed her work, as if nothing had happened. A firm resolution, with a desire to conceal her shame, may enable a woman, immediately after her delivery, to perform acts connected with the disposal of the body of her child which, from ordinary experience, might appear to be far beyond her strength.

In Reg. v. May (Court of Exchequer, May 1857), for concealment of birth, it was proved that the prisoner, a domestic servant, had been sent to market with some poultry. On her return, she asked the boy who drove the cart to stop. He did so: she got out and went to a recess in the hedge by the side of the road, and in five minutes she was observed following the cart, and she walked home a distance of a mile and a half. She went about her usual work on that and the following day. She had been delivered of a child in the recess, and it was subsequently found there. One witness heard it cry, but it soon died.

Conclusions.—The conclusions to be derived from the contents of this chapter are:—

1. That a new-born child may die from violent causes of an accidental nature.
2. That some forms of violent death are not necessarily attended with external signs indicative of violence.
3. That a child may be accidentally suffocated during delivery.
4. That the usual marks of death from suffocation or drowning are not apparent, except in the bodies of children which have breathed.
5. That the state of the umbilical cord may often furnish important evidence.
6. That some women recently delivered may have strength to exert themselves and walk great distances.
7. That a new-born child may speedily die from exposure to cold or from want of food.
8. That slight fractures of the bones of the cranium may arise
from the action of the uterus on the head of the child during delivery.

9. That women may be unexpectedly delivered while in an erect posture: the umbilical cord is under these circumstances sometimes ruptured, and the child may sustain injury by the fall.

10. That the violence found on the body of a child may be sometimes referred to attempts innocently made by a woman to aid her delivery.

CHAPTER 53.

Among the forms of violent death which are generally attended with appearances indicative of criminal design are the following —

7. Strangulation.—The destruction of a new-born child by strangulation is not an unfrequent form of child-murder; and here a medical jurist has to encounter the difficulty, that the strangulation may have been accidentally produced by a twisting of the umbilical cord round the neck during delivery. We must not hastily conclude, from the red and swollen appearance of the head and face of a child when found dead, that it has been destroyed by strangulation. There is no doubt that errors were formerly made with respect to this appearance; for Dr. Hunter observes:—"When a child's head or face looks swollen, and is very red or black, the vulgar, because hanged people look so, are apt to conclude that it must have been strangled. But those who are in the practice of midwifery know that there is nothing more common in natural births, and that the swelling and deep colour go gradually off if the child live but a few days. This appearance is particularly observable in those cases in which the naval-string happens to gird the child's neck, and where its head happens to be born some time before its body." (Op. cit. p. 27.)

Strangulation by the naval-string can of course refer to those cases only in which it becomes firmly twisted round the neck after the child has breathed. This is rather a rare occurrence, because under these circumstances death more commonly takes place by compression of the cord, and by the consequent arrest of circulation before the act of breathing is performed. The only internal appearance met with in death from this cause is a congested state of the cerebral vessels. The presence of ecchymosis on the scalp, as well as of lividity of the face, is very common in new-born children when the labour has been tedious and difficult; and therefore, unless there were some distinct marks of pressure about the neck, with a pro-
trusion of the tongue, such appearances would not justify any suspicion of death from strangulation.

It has been supposed, that the strangulation produced by the wilful application of any extraneous constricting force to the neck, would be known from the accidental strangulation caused by the cord, by the fact that in the former case there would be a livid or ecchymosed mark or depression on the neck, while in the latter there would not. Severe violence to the neck of a new-born child may produce in the seat of constriction not only ecchymosis but a laceration of the skin, muscles, and windpipe; but these appearances are not always present in homicidal strangulation. In April 1861, Dr. Evans, of Sunderland, communicated to me the particulars of the case of a new-born child which had been destroyed by strangulation. Great violence had been used, but there was no trace of discoloration in the course of the ligature, or of ecchymosis in the tissues beneath. The muscles compressed were very dark in colour. In most cases when a ligature is applied to the neck during life the skin above and below it, becomes much swollen and presents an oedematous character. This indicates an application of violence when there is still some vital power in the body of the child.

The navel-string itself may be used as a means of constriction, and the mark or depression may sometimes present an appearance of ecchymosis. Among various cases which might be quoted in support of this statement, is the following, reported by Mr. Foster. In April 1846 he was summoned to attend a lady in labour with her first child. The labour was of a lingering kind, owing to the size of the head; and the child came into the world dead. The navel-string was found coiled three times round the neck, passing under the right armpit; and upon removing it three parallel discoloured depressions were distinctly evident. These extended completely round the neck, and corresponded to the course taken by the coils. The child appeared as if it had been strangled. ('Med. Gaz.' vol. 37, p. 485.) Had this child been born secretly, this state of the neck might have created a strong suspicion of homicidal violence. Strangulation after birth could not, however, have been alleged, because there would have been no proof of respiration. When a blue mark is found on the neck of a child whose lungs retain their fœtal characters, it is fair to presume, ceteris paribus, that it has been accidentally occasioned by the twisting of the umbilical cord during delivery. Mr. Price has communicated to the same journal the account of a case in which the cord, which was short, was so tightly twisted around the neck of a child, that he was compelled to divide it before delivery could be accomplished. There was in this instance a deep groove formed on the neck, conveying the impression to himself and a medical friend that, in the absence of any knowledge of the facts, they would have been prepared to say that the child had been wilfully strangled by a rope. ('Med. Gaz.' vol. 38, p. 40.) A diagnosis might have been formed, as in the preceding case, by examining the state of the lungs. Dr. Mutter
BY THE UMBILICAL CORD.

met with a case in which a child was born dead, and the cord was tightly twisted round its neck; when removed, the neck exhibited a livid circle of a finger's breadth, smooth and shining; but on cutting into this mark, no ecchymosis was found. ('North. Jour. Med.' Jan. 1845, p. 190.) In Reg. v. Martin (Lewes Lent Ass. 1860), the material question was, whether a mark round the neck had been caused accidentally by the navel-string: this was denied by the medical witness. A similar question also arose in another important case—Reg. v. Pyne (Gloucester Winter Ass. 1858).

Dr. Williamson, of Leith, has directed attention to an important fact connected with the state of the lungs in a new-born child, and the medical opinions which may be expressed from their condition as furnishing evidence of live birth. Referring to Mr. Price's case, in which the cord was tightly twisted round the neck of the child, he states that in similar cases which have occurred to himself, the child has breathed immediately on the birth of the head; but, owing to the shortness of the cord, the child would have been strangled and born dead unless he had divided it. Thus, then, a child might die apparently strangled, and not be born alive, although it might have so breathed during birth that the lungs would present all the characters of respiration. If the circumstances were not known, a medical man might be led to say that the child had been born alive, and had been destroyed by strangulation. ('Edin. Med. Jour.' Feb. 1858, p. 714.) The proof of respiration, as it has been elsewhere stated, is, however, not necessarily a proof of live birth.

From these cases it will be perceived that ecchymosis in the depression on the neck, furnishes no distinction between constriction produced by criminal means, and that which may result accidentally from the navel-string. In the following case ('Ann. d'Hyg.' 1841, vol. 1, p. 127), a woman charged with the murder of her child by strangulation appears to have been unjustly condemned. The child had fully and perfectly breathed: the lungs weighed one thousand grains, and when divided, every portion floated on water, even after firm compression. There was a circular depression on the neck, which was superficially ecchymosed in some parts. From an investigation of the facts, this appeared to have been a case in which a mark on the neck was accidentally produced by the umbilical cord, during attempts at self-delivery on the part of the woman: she was nevertheless convicted and condemned to a severe punishment, chiefly from the opinion expressed by two medical witnesses, that a soft and yielding substance like the umbilical cord could not produce a depression and ecchymosis on the neck of a child during birth. They attributed the mark to the wilful application of a ligature like a garter; but the experiments of Dr. Négrier clearly show that the umbilical cord has sufficient strength to produce fatal constriction. ('Ann. d'Hyg.' 1841, loc. cit.)

In the same volume of the 'Annales d'Hypièse' (at p. 428), will be found the report of another case, suggesting many important reflections in regard to the medical jurisprudence of infanticide. In
this instance the navel-string and the membranes were actually used by a woman as a means of strangulation; the child had not breathed, but was thereby prevented from breathing. There was superficial ecchymosis on each side over the muscles of the neck. The defence was, that the child was born with the cord around its neck, and that it was from this circumstance accidentally strangled; but the medical evidence tended to show that the cord had been violently stretched, and employed as a means of strangulation. The child had not breathed, and the medical witnesses considered that it had been born dead, owing to the violence used by the woman. The cause of death here was certainly not strangulation, but arrested circulation.

In the meantime, the case proves that ecchymosis (a blue mark) may be the result of violent constriction produced by the navel-string. A case occurred to Mr. M'Cann, in September 1838, in which the navel-string, which was of its full length, had been used as the means of strangulation. It was twisted once round the neck, passed under the left arm, over the shoulders, and round the neck again, forming a noose or knot, which, pressing upon the throat, must have caused strangulation, as the tongue was protruded, and there were other clear indications of the child having been strangled. The hydrostatic test applied to the lungs proved that respiration had been performed.

When the mark on the neck is deep, broad, much ecchymosed, and there is extravasation of blood beneath, with injury to the muscles or trachea, and ruffling or laceration of the skin, it is impossible to attribute these appearances to accidental compression by the navel-string. The lividity produced by it in the cases hitherto observed has been only slight and partial, and unaccompanied by laceration of the skin, or injury to deep-seated parts. On the other hand, in homicidal strangulation, as much more violence is commonly used than is necessary for destroying life, we may expect to find great ecchymosis and extensive injury to the surrounding soft parts. On some occasions all difficulty is removed by the discovery of a rope, tape, or ligature, tied tightly round the neck; or, if this be not found, the proofs of some ligature having been used will be discovered in the indentations or irregularly-ecchymosed spots left on the skin—the depressed portions of skin being generally white, and the raised edges livid or oedematous.

It has been doubted whether a child can be born with the navel-string so tightly round the neck as to produce great depression of the skin and ecchymosis, i.e. to simulate homicidal strangulation, and at the same time perform the act of respiration fully and completely. It is important, therefore, when this hypothesis is raised in order to account for a suspicious mark on the neck, to examine closely the state of the lungs. Unless the cord be designedly put round the neck of the child after the head has protruded, the effect of the expulsive efforts of the uterus, when a coil has become accidentally twisted round the neck, would be to tighten the cord, compress the vessels, and kill the child by arresting the maternal
circulation, at the same time that this pressure would effectually prevent the act of breathing. Hence the lungs usually present the appearances met with in still-born children generally; but the case which occurred to Dr. Williamson (p. 575) shows that this state of things may sometimes occur, and that a child may breathe, and die strangled by the umbilical cord before its body is entirely born. Medical witnesses, however, should not be too ready to accept such a suggestion: a careful examination of the neck will show whether a ligature has or has not been wilfully applied after birth. In Reg. v. Robinson (Lewes Summer Ass. 1853), there was around the neck, the mark of a ligature which had been tied very tightly. The child had fully breathed, and according to the medical evidence it had died from strangulation, owing to an accidental twisting of the cord during delivery. In examining a suspicious mark on the neck of a new-born infant, it is proper to notice whether it does not, by its form or course, present some peculiar indentations which may render it certain that a ligature has been wilfully employed after birth. When it is found that a child has fully breathed, the presence of a deeply-ecchymosed or an edematous mark on the neck with injury to the skin and muscles is, ceteris paribus, presumptive of homicidal strangulation. Death from accidental constriction of the cord during delivery should, as a general rule, leave the lungs in their fetal condition.

Marks on the neck of a child may be accidentally produced by the navel-string without necessarily destroying the child's life. Two cases of this kind are reported by Professor Busch ('Brit. and For. Med. Rev.' vol. 10, p. 579); and a child may be destroyed without ecchymosis being a necessary consequence of the constriction produced by it. There is much less risk of strangulation from twisting of the cord during birth than is commonly believed. Out of 190 cases Dr. Churchill found the cord round the neck in fifty-two children, and the shortest cord so disposed was eighteen inches long; Dr. Négrier found it round the neck in twenty cases out of 166 natural labours. ('Ann. d'Hyg.' 1841, vol. 1, p. 137.)

The appearances met with in the body in death from strangulation have been elsewhere fully considered (p. 387 ante). The facts of a case communicated to me in March 1865, by Mr. Cann of Dawlish, will, however, serve to show the appearances which may present themselves in a new-born child. A maid-servant in a family was secretly delivered of a child. When the body was found, it was observed to be full-grown, and there was a piece of tape which had been tied tightly in a bow, twice round the neck. The tongue protruded between the lips; two deep furrows were found round the neck after the removal of the tape; there was great edema with swelling of the skin between and above them, and the right hand was clenched. The lungs were of a light-red colour; they filled the chest, were highly crepitant, and floated readily on water, even when divided into sixteen pieces, and these had been submitted to strong pressure. They weighed, however, only 626 grains. The
heart was healthy; the right side contained some coagula of blood—the left side was empty; the foramen ovale was open. The scalp was much congested, the congestion almost amounting to small effusions of blood; the pia mater was also congested. The inferences drawn from these facts were, that the child had been born alive, and that it had died from strangulation. The lungs were as light as they usually are in the foetal state, showing that, although they had received air, the pulmonary circulation had not been perfectly established.

Accidental marks resembling those of strangulation.—In the fore part of the neck of a child a mark or depression is sometimes accidentally produced by forcibly bending the head forwards on the chest, especially when this has been done repeatedly and recently after death, while the body is warm. It may occur also, as an accident during labour. Such a mark must not be mistaken for the effect of homicidal violence. It has been a question whether, independently of the constriction produced by the umbilical cord, the neck of the uterus might not cause, during its contractions, an ecchymosed mark on the neck. I am not aware that there is any case reported which bears out this view; and it seems highly improbable that any such result should follow.

The discolouration may be in detached spots or patches—situated in the fore part of the neck, and evidently not arising from the employment of any ligature. These marks may depend on the forcible application of the fingers to the fore part of the neck of the child, and the indentations have been known to correspond—a fact which has at once led to a suspicion of the cause of pressure and the mode of death. At the same time it should be borne in mind that a superficial mottling of the skin occurs after death in new-born infants, in parts where moderate pressure only may have been accidentally produced. This would not be attended with ecchymosis, and its true nature would be at once determined by comparing the discoloured spots with the surrounding skin. It may be alleged, in defence, that such marks might have been accidentally produced—1. By the forcible pressure produced by the child's head during labour. 2. They will be more commonly referred to violent attempts made by a woman at self-delivery, during a paroxysm of pain. This explanation is admissible, so long as it is confined to injuries which, by any reasonable construction, might be caused during labour; but supposing the marks to have been certainly produced after the complete birth of the body, it will not of course apply.

 Among marks simulating violence, which are sometimes found on the necks of new-born children, Mr. Harvey has pointed out one of a singular kind. In February 1846 he was present at a delivery in which a child was expelled rather suddenly; and after making two or three convulsive gasps, it died. Whilst endeavouring to restore animation, he observed a bright-red mark extending completely across the upper and fore part of the neck, from one angle of the lower jaw to the other, as though it had been produced by strangulation with a cord, except that the mark was not continued round
to the back of the neck. It was of a vivid red colour, and not like a bruise or ecchymosis, but it had very much the appearance of a recent excoriatio. It was most clearly defined in front, where it was about a quarter of an inch in breadth, and it became diffused at the sides. The face was not swollen, and there was no fulness of the veins. (‘Med. Gaz.’ vol. 39, p. 379.) A distinction in this instance might have been based upon the colour of the mark—the uninjured state of the cuticle, and the absence of congestion of the face and venous system. Nevertheless, the fact is of some importance, and should be borne in mind during the examination of the body of a new-born child alleged to have been strangled. Another case, which was the subject of a coroner's inquest, was published by Mr. Rose in the same journal (vol. 37, p. 530), in which red marks on each side of the nose of a new-born child were mistaken for the effects of violence applied to the nostrils during a supposed attempt at suffocation. Mr. Rose examined them closely, and considered that they were nevi (mother's marks), and had nothing to do with the death of the infant.

A medical witness may be asked on these occasions, whether he will undertake to swear that the ligature or the fingers had been applied to the neck of a child before or after its death, or before or after it had breathed. It is proper to observe that, so far as external marks of strangulation are concerned, there is no difference in the appearances, whether the constriction is made during life, or immediately after death while the body is warm. Casper's experiments render it highly probable, that when a constricting force is applied to the neck of a dead child, at any time within an hour after death, the marks cannot with certainty be distinguished by any appearance from those made on a living body. (‘Wochenschrift,’ Jan. 1837.) With regard to the second point, it may be stated, that whether the child has breathed or not, provided it be living and the blood circulating, marks of violence on the neck will present precisely the same characters.

In the absence of any visible discolouration of the skin, it may be a question whether this should be taken as evidence of the means of constriction not having been applied during life. What we are entitled to say from observed facts is, that ecchymosis from the ligature is not a necessary consequence of constriction, either in a living or a recently dead child: although we might expect that there would be few cases of deliberate child-murder in which, when strangulation was resorted to, there would not be some ecchymosed mark or discolouration, chiefly from the presumption that great and unnecessary force is suddenly applied. Besides, it is not improbable that a slighter force would cause ecchymosis on the skin of a new-born infant than would be required to produce such an appearance on that of an adult.

Another question has been put—namely, whether a medical witness will undertake to say that the constricting force had not been applied to the neck of the child until after its body had been...
entirely born. This, of course, must be a pure matter of speculation. The appearance caused by a ligature applied to the neck of a living child, would not be different whether the child was partially or entirely born. If the child had actually breathed, the appearances in the body would be the same, and there are no medical facts by which it could be determined whether the act of strangulation proved fatal during birth or afterwards. A medical witness has also had this question put to him—Whether the strangulation occurred before or after the navel-string was severed. It would appear that the severance of the cord has been sometimes regarded in law as a test of an independent circulation being established in the child; but this is obviously an error, depending on a want of proper information respecting the phenomena which accompany birth. Respiration, and therefore an independent circulation, may take place before the cord is divided; and its severance, which is never likely to occur until after entire birth, cannot consequently be considered as a boundary between a child which is really born alive, and one which is born dead. A premature severance might possibly endanger the life of a child, instead of giving it an independent existence. A healthy and vigorous child may continue to live, and breathe independently of the mother, before the division of the cord, and the time at which the severance is made, depends on mere accident. Hence the marks of strangulation on the neck of a living and breathing child, must be the same whether the cord has been divided or not. The entire birth of the body is, however, now considered to be complete although the navel-string has not been divided.

8. Poisoning.—This is placed among the possible means of perpetrating child-murder, but we rarely hear of new-born children being thus destroyed. The earliest age at which I have known a trial to take place for the murder of a child by poison was two months. (Rex v. South, Norf. Aut. Cir. 1834.) A quantity of arsenic was given to an infant, and it died in three hours and a quarter after the administration of the poison. At this age the case can scarcely be called one of infanticide in a medico-legal signification, because all that it would be necessary to prove would be the cause of death; the question of life or live birth would not require to be entered into. If in a case of child-murder, death from poison should be suspected, it must be sought for in the usual way. Some cases have occurred, in which children have been wilfully destroyed a week or two after birth, by the administration of opium or excessive doses of purgative medicine. Oil of vitriol has been also used to destroy life.

In cases in which infants are destroyed by poison, there is generally great difficulty in tracing the act of administration to the guilty person. The fluid food given to them renders the admixture of poison easy, and as many persons may have access to this food, it is often impossible to fix upon the criminal. In one instance which came to my knowledge, an illegitimate child had been placed
GENERAL CONCLUSIONS.

out to nurse by its mother, a woman in a good social position. It was noticed that after each visit paid by the mother the child was sick, and after repeated attacks of illness, the child died. On inspection arsenic was found in the body, and this was beyond doubt the cause of death. There was no suspicion against the nurse; but a strong suspicion fell on the mother, from the circumstances above mentioned. There was evidence, however, that the child was not at any time fed by the mother when she visited it, and that the mother had no access to the child's food. No poison could be traced to her possession, and she was not seen by the nurse, who was present, to give anything to the infant. The only fact that transpired was that, at each visit, she took it in her arms and was observed to rub its gums with her fingers, and soon after her visits, sickness followed. There was reason to believe that she had concealed small quantities of arsenic under her finger-nails, and that she had administered the poison while rubbing the gums of the child!

Conclusions.—The following conclusions may be drawn from the preceding remarks:—

1. That congestion of the face and head in a new-born child, is not a proof of death from strangulation.

2. That strangulation can take place only in children which have breathed.

3. That a child may be strangled during birth by the accidental twisting of the navel-string round its neck.

4. That the navel-string may produce a livid or ecchymosed depression on the neck, like any other ligature.

5. The marks on the neck produced by accidental causes, may resemble those which arise from strangulation.

6. That the effect of constriction on the neck, either by the navel-string or any other ligature, is the same, if the child be living, whether it has or has not breathed.

7. That the effect is the same whether the child has been partially or entirely born.

8. That the effect of a ligature on the neck of a living child is the same whether the navel-string has or has not been severed.

9. That a new-born child may die from strangulation, without this fact being necessarily indicated by ecchymosis on the neck. This depends on the nature of the ligature, and the amount of force used.

Examination of women. Medical Responsibility.—In general it is the mother of the child who is charged with the murder, and in this case it may be necessary, in order to connect her with the child, to determine whether she has or has not been recently delivered. Medical evidence may show that the date of delivery does or does not correspond with the date of the birth and death of the child. The usual appearances in cases of recent delivery both in the living and dead body, have been elsewhere fully described. (See Delivery, ante, p. 474.) These appearances necessarily vary according to the time at which the examination is made. M. Toul-
mouche has reported in detail several cases showing the post-mortem appearances met with at different dates. ('Ann. d'Hyg.' 1864, 2, 349.)

If the reputed mother of the child is dead, a coroner or magistrate may issue an order for a post-mortem examination of the body, and the case will present no difficulty; if living, a serious question may arise as to medical responsibility. In general, a woman consents to be examined, but it may happen that she refuses to submit to a physical examination. An innocent woman is just as likely to refuse permission as one who is guilty; but, if circumstances point to one out of several women in a household, the refusal to permit an examination would of course be interpreted against her. It has happened on more than one occasion that medical men have assumed to themselves the right of enforcing an examination of suspected women, and by threats or otherwise, they have compelled her to undergo this. Such a course of conduct is in the highest degree indecent and improper; but when a woman willingly, consents to be examined, a medical man is justified in making an examination, and giving evidence thereon. It would, however, be only fair in such a case to give her the warning which every magistrate and coroner is bound to give to any woman charged with murder, before requiring an answer to a question which may be used in evidence against her at the subsequent trial.

The case is widely different, however, when a medical man takes this authority upon himself, and compels a suspected woman unwillingly, or under duress, to submit to a physical examination. By taking this illegal course, he is forcibly compelling a woman accused of murder, to produce positive proof of her guilt—such a course is entirely opposed to the spirit and practice of English jurisprudence. The mischievous results of such officiousness on the part of a medical man are well illustrated by the following cases. The first of them is noticed in the 'Lancet,' May 29, 1869. A surgeon and an inspector of police, at Hitchin, insisted upon examining two women, a mother and daughter, in order to determine whether either of them had been lately delivered of a child. This was against their consent, and in the absence of the husband and father. He brought an action against them and recovered damages. ('Lancet,' Sept. 2, 1871, p. 333.) The other case was that of Weir and Wife v. Hodgson (Liverpool Winter Ass. 1861.) The dead body of a child had been found near the house of the plaintiff. The defendant, a surgeon, went with an inspector of police to see Mrs. Weir; and, having informed her that she was suspected of having had a child, told her that he had come to examine her by the authority of the law, and that she must submit. She refused at first, and proposed to send for a medical man whom she knew. In the end the defendant examined her, and there was no ground for the charge. The jury returned a verdict of 200l. damages for the assault! . . . The police can give no legal power to a medical man to make such an examination in a suspected case, and the ultimate consent of the woman, if extorted
by threats or intimidation, will be no answer to a charge of indecent assault.

A coroner issuing an order for the compulsory examination of a woman under these circumstances, would be acting *ultra vires*, and any medical man obeying it, would incur a serious responsibility. In August 1871 a case occurred near Leominster, which has placed this question in cases of alleged infanticide in a painful light. A young lady, the sister of a clergyman, committed suicide rather than submit to a physical examination by two medical men under the order of a coroner. The coroner held an inquest on the body of a child in a case of alleged infanticide. A suspicion arose that this young lady had been recently delivered. Two medical gentlemen, provided with a written order from the coroner, went to the rectory where the lady was residing, and requested an interview with her for the purpose of ascertaining whether she had recently had a child. She refused to see them, and subsequently destroyed herself. All the particulars of this tragedy have not been made known, but the attempt to examine this young woman for the purpose of obtaining evidence against her on a charge of child-murder, appears to have had such an effect on her mind as to lead to suicide. The fragmentary particulars of this sad case will be found in the 'Lancet' for 1871, vol. 2, pp. 333, 471, and 477.

The 6 & 7 Will. IV. c. 89, under which an order was issued by the coroner on this occasion, empowers a medical man to examine a dead body, and give evidence touching the cause of death; but it says nothing about the examination of living women. Such an order would be obviously illegal, and a medical man acting under it would render himself liable to an action for an indecent assault. It can only be by consent of the person inculpated that a personal examination for evidence can be made. The criminal trial now pending in the Tichborne case, has furnished a good illustration of the care taken by our judges that an accused person shall not un-knowingly furnish evidence against himself. It was alleged that if the 'claimant' had been bled in the temporal artery, a scar would remain; and a proposition was made that he should be then examined by two medical witnesses who had been called for the prosecution. The Lord Chief Justice Cockburn ruled that such an examination could not be made except with the consent of the accused. This was given, and the examination accordingly took place in court. A similar rule has been long acted on in the Scotch Courts. Thus in a divorce case tried in 1860 (Edinburgh Sessions cases, 1860), the Court refused to receive certain evidence which was tendered regarding the condition of a woman, on the ground that they could not compel her to submit to another examination, and the evidence tendered would therefore have been entirely *ex parte*. In July 1873, in a suit of nullity in the English Divorce Court, Sir J. Hannen was obliged to decide the case upon the evidence of the husband only. The wife refused to submit to an examination, and there was no legal power to compel her
to undergo this, against her will. (Hewitt v. Pery, falsely called
Hewitt, July 1873.)
These cases suffice to show the course which a medical witness
should pursue on all occasions in which a person does not volun-
tarily consent to a personal examination.

BIRTH. INHERITANCE.

CHAPTER 54.

LIVE BIRTH IN CIVIL CASES.—DATE OF BIRTH.—SIGNS OF LIVE BIRTH INDE-
PENDENTLY OF RESPIRATION OR CRYING.—VAGITUS UTRINQU.—TENANCY
BY COURTESY.—LEGAL BIRTH.—POST-MORTEM BIRTHS.—MINORITY AND
MAJORITY.—PLURAL AND MONSTROUS BIRTHS.

Date of birth.—Medical evidence has occasionally been demanded
in Courts of law respecting the actual date of birth in those cases in
which a period of a few days, hours, or even minutes was required
to prove the attainment of majority,—and therefore a legal respon-
sibility for the performance of civil contracts into which the parties
had entered, either knowingly or ignorantly, when minors. Some
such cases have been decided by the evidence of the accoucheur
himself,—others, when the accoucheur was dead, by the produc-
tion of his case-books; and it is worthy of notice that the strictness
and punctuality of some medical practitioners, in making written
memoranda of cases attended by them, have in more than one in-
stance led to a satisfactory settlement of such suits, and the avoidance
of costly litigation. The proof of the exact date of birth is also of
considerable importance in certain cases of contested legitimacy.

Medico-legal questions connected with this subject arise in
contested suits relative to succession or the inheritance of property.
A child that is born alive, or has come entirely into the world in
a living state, may by the English law inherit and transmit prop-
erty to its heirs, even although its death has immediately, and
perhaps from morbid causes necessarily, followed its birth. Should
the child be born dead, whether it died in the womb or during the
act of birth, it does not acquire any civil rights; for it is not re-
garded as a life in being, unless it manifests some sign of life after
it is entirely born and separated from the mother. Some have
considered that partial birth, provided a child is living, should
suffice to confer the same rights on the offspring as the proof of
entire birth; but great difficulty might arise in civil cases, if the
bare extrusion of a part of the body sufficed for all the legal pur-
poses of entire birth. It might become a casuistical question, as to
how much of a body should be in the world in order to constitute legal birth; for there is no reason why, in a medical view, the extrusion of the head and shoulders should constitute birth any more than the extrusion of a hand or a foot. If it be said that the act of breathing should be combined with a partial extrusion of the body, this would be unjust; because a child is alive—its heart is evidently pulsating, and its blood circulating, as freely before the act of breathing as afterwards. Besides, it is admitted that children may be born alive, and live for some time without respiring; and this want of respiration is no objection to these children being considered living in law. In a case referred to hereafter, a child was pronounced to have been legally born alive, although it had certainly not breathed; and that a child may manifest life for a certain time without leaving in its body any evidence of respiration is clear from numerous reported cases (p. 528 ante). If, then, proof of respiration be not demanded in cases of entire, it could scarcely be required in cases of partial birth. In the event of partial being treated as synonymous with entire birth, there would be no end to litigation; and medical opinions would vary in every case. It is doubtful whether, under such circumstances, the law could be administered with any degree of certainty or impartiality. Admitting, then, that a child must be entirely born in order that it should acquire civil rights, it will next be necessary to examine the proofs required to show that it has been born alive in a legal sense. The question here is different from that of live birth in reference to child-murder. We must presume that a practitioner is present at a delivery in which a child is born in a doubtful state, or where its death speedily follows its birth. The civil rights of the child and its heirs, will depend upon the careful observation made by a practitioner, of the circumstances attending the delivery. It is proper that he should note the time when the birth is completed, by the body of the child being entirely out of the body of the mother. Children born at or about midnight are liable to have the date of birth wrongly registered; and the legal difference of twenty-four hours, which a few seconds or minutes may make, may hereafter affect their own rights, if they survive, or those of others if they die.

Signs of live birth independently of respiration or crying.—The visible breathing of a child after its birth, or as it may be manifested by its crying, is an undoubted sign of its having been born alive; but, as it has just been stated, a child may acquire its civil rights, although it may be neither seen to breathe nor heard to cry. The pulsation of a child’s heart, or even the spasmodic twitching of any of the muscles of the body, has been regarded as a satisfactory proof of live birth. The latter sign has been judicially so pronounced—à fortiori, therefore, the motion of a limb will be considered sufficient legal evidence of life after birth, in an English Court of law. It is to be observed that the length of time during which these signs of life continue after a child is born, is wholly immaterial; all that is required to be established is, that they were
positively manifested. A child which survives entire birth for a single instant acquires the same civil rights as if it had continued to live for a month or longer.

In *Brook v. Kelly* (April 1861) involving a claim by the widow to the estate of her husband, on the ground that a child born twenty years before had been born living, although it was at first supposed to have been still-born, Stuart, V.C., decided that proof of breathing was not necessary, and held that there was sufficient legal evidence of life after birth in the pulsations of the cord observed by the accoucheur. This decision is in accordance with law and common-sense. Pulsations indicate an independent action of the foetal heart, as much as a motion of the chest indicates an action of the intercostal muscles. Why it should be maintained that there is life with contractility of the intercostal muscles, but not with a contractile power of the heart, is not apparent; that this view is not in accordance with facts, is however proved by several cases which are described under *Infanticide*. (See 'Atelectasis,' p. 528 ante.)

There is no doubt that the best test to apply to such cases for the determination of physiological life is *auscultation*. The beating of the heart, as determined by the ear or the stethoscope, applied even for five consecutive minutes, is an undoubted sign of life in a physiological sense, whether the child breathes, cries, or moves. M. Bouchut noticed, on one occasion, that this kind of passive life continued in an infant for twenty-three hours after its birth. Feeble but distinct pulsations were heard at long intervals, but there was no motion of the ribs. Attempts at resuscitation were made, but the motions of the heart became more and more feeble, until they entirely ceased. An examination showed that the lungs had not received air. As we take the cessation of the heart's action to be the only certain evidence of death, so the existence of pulsations in the heart or arteries, when clearly perceived by the ear, stethoscope, or finger, is positive evidence of life in a physiological sense. Is this *legal* life? Would the wilful destruction of such a child constitute murder? Would this proof of pulsation without muscular motion, respiration, crying, or any other sign of active life, confer tenancy by courtesy, or transfer an estate by inheritance or survivorship? M. Bouchut justly observes that apparent death succeeding to birth, and characterised by the presence of a beating of the heart and an absence of breathing, is only a diseased condition of the new-born child (see p. 528 ante); and, whether it is cured of this or dies, it is living, although it has not breathed—or, as a German jurist remarks, 'Schein Tod ist Scheinleben.' By taking away its rights of succession, the law punishes the child and its heirs for a malady with which it is born. ('Gaz. des Hôp.' 1855, No. 124; and 'Med. Times and Gaz.' Aug. 19, 1856.) They who contend that crying or breathing alone should be taken as a sign of life after birth, would of course pronounce such a child to have been born *dead*, even at the time that they might be listening to the pulsations of its heart! (Casper, 'Klinische Novellen,' 1863, p. 564.) Such pulsations
would probably be referred by them to the remains of uterine life of which the law takes no cognizance.

Vagitus uterinus.—Let us suppose that the evidence of a child having been born alive is stated to be that it was heard to cry—it may be a question for a medical witness, in cross-examination, whether this is to be taken as an absolute proof of live birth. The answer must be in the negative, because a child may cry before its body is entirely born; or there may have been what is called _vagitus uterinus_—a uterine cry after the rupture of the membranes. (See INFANTICIDE.) It is quite certain that a child may breathe without crying, but it cannot cry without breathing; yet neither the crying nor the breathing is a necessary proof that the child was actually born alive. As in all cases of this description there must be eye-witnesses, either professional or not,—the evidence will not rest solely upon a mere medical possibility of the occurrence of such a cry before birth; and proof will then be required of the crying of the child _after_ it was born. The determination of the momentary existence of children _after_ birth, is of importance in a legal point of view in reference to the following subject.

Tenancy by courtesy.—This signifies, according to Blackstone ("Com." vol. 2, p. 420), a tenant by the Courts of England. If a married woman possessed of estate die, the estate passes from the husband to her heir-at-law, unless there has been a child born _living_ of the marriage, in which case the husband acquires a life-interest in the property. The only defence of this singular custom is that it is of great antiquity. An unsuccessful attempt was made a few years since to substitute for it the reasonable provision, that the marriage should entitle the husband to the right, which he can now only acquire by the fulfilment of certain accidental conditions. Incurable sterility, a protracted labour, deformity in the pelvis of the wife, or the necessary performance of craniotomy on a healthy well-formed child, may, under this custom, lead to an aversion of the inheritance. The tenancy, in contested cases, is generally established or disproved by medical evidence; and the following are the conditions which the law requires in order that the right should exist:—

1. The child must be born _alive_. Cases have been already referred to in which the motion of a lip and the pulsations of the umbilical cord were held to be sufficient legal proofs of live birth. Some physiologists have objected to these as inadequate proofs of life in a medical sense; and if the question were one of pure physiology, and not of law, there might be some ground for the objection. In truth, however, the law does not require proof of _active_ life in a child, but merely some evidence, however slight, that it has been born _living_; and the amount of proof to satisfy the purposes of justice, must of course rest, not with physiologists, but with the expounders of the law.

The _crying_ of a child, properly attested by disinterested witnesses, has been held in cases of disputed tenancy to be sufficient
evidence of live birth; this is, in fact, one of the tests given by Lord Coke. At page 523 ante some cases are related in which newborn children survived birth several hours, but manifested no sign of active life either by crying or in any other mode, and after death there was no air in the lungs. As in cases of infanticide, if the evidence of live birth rests entirely on an examination after death, the absence of air from the lungs will not necessarily show that a child has come into the world dead, nor will the presence of air in these organs prove that it has been born alive, because it may have breathed and died before birth. The child must be heard to cry, or be seen to breathe or move after birth. The fact that the lungs are not distended with air, and that they immediately sink in water, either when entire or when divided into small pieces, is no proof that a child has not breathed and cried during birth and afterwards. In a case which occurred to Dr. Vernon (p. 528 ante) the child had only reached the sixth month, but it was strong enough to cry; and yet, probably, had its history been unknown, a medical witness would have been prepared to state, from an examination of the lungs which contained no air and sank in water, that it must have been born dead, and certainly could not have had the power of uttering a cry! A child born at the fifth month has been known to cry; but the state of its lungs is not recorded. In the case of Gardner v. Llewellyn, (1856) a medical witness who appeared for the plaintiff, stated as his belief that a child born at the fifth month could not respire, and if it could not breathe (so as to fill the lungs) it could not cry! This may have been consistent with his experience, but it is not consistent with facts observed by others. One of the greatest difficulties that lawyers have to contend with in getting at medical truth, is this strong disposition on the part of witnesses to act upon a foregone conclusion, and to 'fix' all natural events by an exclusive reference to their individual experience.

2. The child must be born while the mother is living. From this it appears that if a living child were removed from the outlet, or extracted from the uterus by the Cesarean operation after the death of the mother, the husband would not become entitled to enjoy his wife's estate; although the child might survive its removal or extraction, and succeed to the estate on attaining its majority! How such a case would be decided in the present day it is difficult to determine; but one instance is quoted by most medico-legal writers from Lord Coke, in which, about three centuries since, the decision went against the husband, in consequence of the child having been removed from the uterus by the Cesarean section after the death of the wife. (For a singular case involving this question in France, see 'Ann. d'Hyp.' 1838, vol. 1, p. 98.) In the case of Llewellyn (supra) the late Baron Alderson ruled that the husband could not take the estate unless the child was proved to have been born during the marriage, i.e., during the life of the woman.
Cesarean extraction.—The Cesarean operation has rarely been performed in England except when a woman was actually dying or dead. A medical man wishing to perform it, may find that the husband or representative of the deceased parturient woman will object to its performance, although the child may be living in the womb, and there may be a reasonable hope, by an immediate operation, of extracting it living. The late Dr. Lever informed me that on two occasions in 1858, the husbands thus refused to allow him to operate on the dead body of the wife. I apprehend that no medical man would proceed to operate by force, or against the will of the husband: at the same time, in refusing his permission, the husband is not guilty of any legal offence. The practice on the Continent has been to undertake it while the woman was living, and the result has shown that it may be performed successfully both with regard to mother and child. In cases in which a tenancy by courtesy would be likely to arise, it would be to the interest of the husband to allow the operation of extraction to be performed while the wife was living; but he would have no such interest in its performance after her death; and if the child has not attained a sufficient stage of maturity to survive, there can be no reasonable object in performing it. Important legal consequences may hereafter ensue from a more general adoption of this practice in England in respect to deformed women. Thus, supposing in any case a child were removed alive while the woman was living, both of them dying shortly afterwards,—Would the husband become a tenant by the courtesy? The law says the child must be born; and some lawyers would find ground for arguing whether extraction by the Cesarean operation should be regarded as ‘legal birth.’ ‘Illud autem validé controversum est inter jurisconsultos, an is qui editus est, exsecto matris ventre, reputetur partus naturalis et legitimus et successiosis capax.’ (Caranza.) According to Fonblanque, the question is settled in the affirmative—a child extracted is a child born. (‘Med. Jur.’ vol. 1, p. 236.) Our ancient law authorities do not appear to have contemplated that the operation would ever be undertaken on a living female. The words of Lord Coke, which are considered to express the state of English law, are:—‘If a woman seised of lands in fee taketh husband, and by him is bigge with childe, and in her travall dyeth, and the child is ripped out of her body alive, yet shall he not be tenant by the curtesie, because the child was not born during the marriage, nor in the life of the wife, but in the meantime her land descended.’ According to Mr. Hobler, the Cesarean operation does not divert the course of descent, or divest the husband of the life-estate, provided the child be born alive, and the mother was living when the child was born. (‘Obstetric Record,’ vol. 3, 66.) Birth, and extraction by the Cesarean operation, are, therefore, treated by him as similar conditions.

There is no law to compel a man to perform this operation, and no law to prohibit it. Some years since the duty of a medical man
on these occasions was made a subject of investigation by a committee of the French Academy of Medicine, and the conclusion at which they arrived, was that in the case of a pregnant woman recently deceased a medical man might and ought to perform the Caesarean operation, if there were any probability of removing from her body a child in a viable state, i.e. with a power to maintain an extra-uterine life. The date of viability, according to some authorities, is fixed at the 180th day. Hence it is advanced that no operation should be performed on a woman until her pregnancy has reached this date. English practitioners would not be guided by any fixed period, but by the circumstances attending each case.

As a proof that the operation is not always necessary, even when circumstances may appear to call for it, the following case, mentioned by the late Sir B. Brodie as having occurred in a French hospital, is of some interest. It is that of a woman whose pelvis was considered to be too narrow for the egress of the child. As she was at the full term of gestation, the Caesarean section was proposed; but before the operators were ready to commence, the child was expelled by the natural efforts of the uterus, or, as Sir Benjamin expressed it, 'the child preferred coming into the world by the old road!' ('Lancet,' Dec. 1853.) This, however, is not the only case of the kind on record. There is great reason to believe that Continental practitioners are too officious in suggesting the performance of this operation, and that it has been often undertaken, to the serious risk of the life of a woman, when if left to nature, she would have done well. A case is reported to have occurred in Scotland in 1847, in which the Caesarean operation was considered by several practitioners of experience to be the only means by which delivery could be accomplished. Fortunately for the woman, the labour was somewhat rapid, and she was delivered of a dead child, weighing about three pounds, before the arrival of those who had considered that the operation would be required. ('Ed. Monthly Journ.' July 1847, p. 30.) The fact is, on these occasions nature often adapts means to ends in a most unexpected manner.

Medical jurists have differed respecting the period of gestation at which the operation should be performed. This would of course depend on the earliest period at which a child might be born capable of living. In reference to tenancy by courtesy, a child might be extracted alive as early as the fifth month, but it would not be likely to survive unless it were at or about the seventh month. When a woman dies undelivered, it is difficult to say for how long a period the child may survive in the uterus. It has been stated that a child may thus continue to live for many hours, but this is not borne out by any facts, and the physician who makes the suggestion admits that no time should be lost in removing it from the uterus. In the case of L'Hotelier, above referred to ('Ann. d'Hyg.' 1838, 1, p. 98), the child was removed alive a quarter of an hour after the death of the woman. Dr. Madge
operated in a case of convulsions twenty minutes after the death of the woman, but the child was then dead. There were no signs of uterine action after the mother's death. ('Amer. Jour. Med. Sci.' July 1872, p. 585.) Some have alleged, that unless the operation is performed immediately after the death of the woman, the child would not be extracted living. The condition of the fetus in utero is, however, peculiar, and quite distinct from that of a child living by the act of breathing. It is possible, therefore, that there may be a limited survivorship, and that the operation may be performed so late as from a quarter to half an hour after the death of the woman with the probability of extracting a living child. There is no doubt that it will carry with it the greatest chance of success when performed immediately after the circulation between the woman and child has ceased. This time will be marked by the cessation of the heart's action in the woman. Dr. Lorain recently extracted a child from the body of a woman, set thirty-five, in her eighth pregnancy. She died from eclampsia, and immediately after she drew her last breath, the abdomen was opened and a child at full term was extracted. In about a minute it began to breathe. ('Amer. Jour. Med. Sci.' Oct. 1873, p. 561.)

3. The child must be born capable of inheriting; therefore, if it be a monster which cannot legally take an estate, the husband does not acquire a right of tenancy. There are some other legal conditions which must also be fulfilled, but these remarks are confined to that which may become matter for medical evidence. Admitting that there are legal proceedings by which the obnoxious parts of this ancient custom may be set aside during the life of the wife, it is hardly just that the knowledge of the necessity for these precautions should be left to be acquired by accident. It would be better to abolish tenancy-by-courtesy altogether, than to allow the succession of a husband to his wife's estate to rest upon a casualty of this kind.

Minority and majority.—The word minor is synonymous with that of infant (infans), and is applied in law to any one under the age of twenty-one years. The age of a person may render him incompetent to the performance of certain duties. Minors are frequently called upon to act as witnesses in civil and criminal cases. In rapes committed upon children it is especially important to notice whether the prosecutrix is or is not competent to give evidence. The law has fixed no age for testimonial competency, and I have never heard of the question being referred to a medical practitioner. The child is always orally examined by the Court, and it is soon rendered apparent by the answers, whether the witness possesses a proper knowledge of the nature and obligations of an oath. If not, his or her testimony is not received, or, in a case of rape, the trial is postponed, and the child is placed under instruction, to appear again at the following sessions or assizes. The competency of a child as a witness, therefore, does not depend on
age, but upon its degree of understanding. In respect to criminal responsibility as affected by age, it was held by Keating, J., in a case (Reg. v. Coutley, 1860), in which the prisoner, a boy aged eight years, was charged with felony, that up to seven years of age the law presumed that a child could not distinguish right from wrong, so as to be legally capable of crime; and evidence was not admissible to prove that he possessed that capacity. After the age of seven and up to fourteen years, although the law presumed a child to be primâ facie incapable of crime, this presumption might be rebutted by evidence which showed that he had what was called a mischievous discretion (doli incapax). In the case referred to there was no evidence of that sort, and therefore his lordship directed the jury to acquit the prisoner. In another case, tried before the same learned judge in May 1863 (Whitby v. Hodgson),—an action for trespass and false imprisonment was brought against a man for giving into custody, on a charge of stealing, a boy under six years of age. It appeared that the child had stolen some wood; but it was held that at this age, and under seven years, a child was in point of law doli incapax,—hence the defendant was not justified in giving the boy into custody. The jury returned a verdict with damages against him. At the Bedford Summer Assizes, 1873 (Reg. v. Hollis), a boy of nine was charged with the manslaughter of a boy of about the same age by striking him a blow on the thigh with the iron end of a hoe. This led to death in about three weeks. Cleasby, B., directed the jury that they must be satisfied that there was such a wicked mind in the prisoner at the time of striking the blow as would rebut the presumption that a child under fourteen years of age is incapable of committing a felony. The jury returned a verdict of not guilty.

According to the principles of our law, a male at fourteen is considered to be at years of discretion, and he then becomes responsible for his actions; at twenty-one he attains majority, and is at his own disposal, and may alienate his lands, goods and chattels by deed or will. It is only when this age has been attained that an individual can be sworn to serve on a jury. The period at which a male is considered to have attained full age varies in different countries: thus, in the kingdom of Naples it was formerly fixed at eighteen years; in Holland at twenty-five: but generally throughout the States of Europe the law prescribes twenty-one years, the same as the common-law of England.

A child under fourteen indicted for murder, must be proved to have been conscious of the nature of the act. In the case of Reg. v. Vamplew (Lincoln Summer Ass. 1862,) a girl under fourteen years of age was convicted of destroying the life of a child by strychnia. It was shown that she was competent to understand the nature of the act. Under fourteen, a male infant is presumed to be incapable on the ground of incapacity, of committing a rape as a principal in the first degree, or even of committing an assault with intent to perpetrate this crime; but if the boy have a mischievous discretion, he may be convicted as a principal in the second degree. The
patient may be convicted of an unnatural crime, although the agent be under 14. A female under the age of 10 years is presumed to be incapable of consenting to sexual intercourse. ('Taylor on Evidence,' vol. 1, p. 117.)

A person attains his legal majority, or is completely of age the first instant of the day before the twenty-first anniversary of his birthday, although forty-seven hours and fifty-nine minutes short of the complete number of days counting by hours; and this mode of calculating age and time is applicable to all other ages before and after twenty-one. This is on the principle that a part of a day is, in a legal point of view, equal to the whole of a day. A few minutes or hours may thus determine the attainment of majority, and with this, the responsibility of minors for civil contracts, or the validity of their wills. By 1 Vict. c. 26, no will made by any person under the age of twenty-one years shall be valid; and as the day of a person's birth is included in the computation of his age, and there being in law no fraction of a day, a valid will may be made at any time on the day before that which is usually considered the twenty-first anniversary of birth.

There is another aspect in which this question of age may be viewed—namely, in reference to the responsibility of accused persons for debts, or alleged criminal acts. In Reg. v. Thornhill (Stafford Lent Ass. 1866), the prisoner was indicted for a misdemeanor in carnally knowing and abusing one Mary Sambrook, being a girl above the age of 10 and under the age of 12 years. It appeared in evidence that the girl's birthday was on the 5th of December 1852, and the offence was alleged to have been committed on the 4th of December 1864. The question then arose whether this girl was under the age of 12 years, so as to bring the offence within the statute. It was objected by the prisoner's counsel, that as on the 5th of December the girl would enter on her 13th year, she had therefore completed her twelfth year on the 4th of December, and that the law did not recognize a fraction of a day in such a case, so that she was 12 years old as much on the first hour of that day as on the last—and his lordship (Pigott, B.) so held. The indictment contained counts alleging rape and assault, but, after the cross-examination of the girl, his lordship stopped the case, and the prisoner was acquitted. It is obvious that this principle would equally apply to charges of felony for the carnal knowledge of children under 10 years of age, as well as to the misdemeanor of taking girls under the age of 16 years from the custody of their parents or of stealing children under the age of 14 years from their parents or guardians. (24 & 25 Vict. c. 100, ss. 50, 51, 55, 56.) The proof of the exact date of birth sometimes rests with a medical man.

The subject of plural births has been regarded as appertaining to medical jurisprudence; but I am not aware that there is any case on record in which the evidence of a medical man has been required respecting it. It is a simple question of primogeniture, which has
been generally settled by the aid of depositions or declarations of
old relations or servants present at the births. Of course in the
absence of eye-witnesses the question of priority of birth must be
a matter of conjecture. It cannot be determined by the size or
weight of the child, but it might be determined by the observation
of certain marks or deformities in one or more of the children.

Monstrous births.—The law of England has given no precise defi-
nition of what is intended by a monster. According to Lord Coke,
it is a being 'which hath not the shape of mankind; such a being
cannot be heir to, or inherit land, although brought forth within
marriage.' A mere deformity in any part of the body, such as
supernumerary fingers or toes, twisted or deformed limbs, will not
constitute a monster in law, so far as the succession to property is
considered, provided the being still have 'human shape.' Even
a supernumerary leg would not probably be allowed to avert an
inheritance! but the privilege might be denied to a supernumerary
head or body, or to children otherwise well-formed but born with-
out heads. From Lord Coke's description it is obvious that the law
will be guided in its decision by the description of the monstrous
birth given by a medical witness. It would not rest with a witness
to say whether the being was or was not a monster—the Court would
draw its inference from the description given by him. Various
classifications of monsters have been made, but these are of no
assistance whatever to a medical jurist, because each case must be
decided by the peculiarities attending it; and his duty will not be
to state the class and order of the monster, but simply in what
respect it differs in shape and external appearance from a normal
child. But the question here presents itself—What is a normal
child or indeed 'a child' in a legal sense? On this point conflict-
ing decisions have been given by different judges (p. 487, ante). All
will agree that a blighted fetus or a mole is not a child, but a dif-
fERENCE has arisen on the question whether the partus should, in
addition to having human shape, have reached a uterine age at
which it could continue to live, i.e. that it should have viability.
(See Concealment of Birth.) A correct definition of a normal child,
therefore, is still a desideratum in law. Although a monster may
not survive its birth more than a few seconds, yet if it be legally
pronounced from the medical evidence to have human shape, it
may transmit an estate to its heirs-at-law, as in the case of normally-
formed children.

Malpositions, transpositions, or defects of the internal organs
of any of the cavities do not form monstrous births within the
meaning of the English law. The legal question relates only to
external shape, not to internal conformation. It is well known that
many internally malformed persons live to a great age; and it is
not until after death that malpositions and defects of this kind are
discovered. In French jurisprudence the case appears to be dif-
ferent; if the malposition or defect was such as to become a cause
of death soon after birth, the child would be pronounced not 'viable,'
and therefore incapable of acquiring civil rights. Some medical jurists have discussed the question of 'viability' in new-born children, i.e. their healthy organization with a capacity to continue to live, as if it were part of the jurisprudence of this country; but I am not aware of any facts which bear out this view. The English law does not regard internal monstrosity as forming a bar to civil rights; and the cases decided hitherto, show clearly that the simple question in English jurisprudence is, not whether a child (partus) is or is not 'viable,' but whether it has manifested any distinct sign of life after it was entirely born. The French law is much more complex, and throws a much greater degree of responsibility on French medical jurists. No person is legally justified in destroying a monster at birth (p. 555, ante).

LEGITIMACY.

CHAPTER 55.

PRESCRIPTION OF LEGITIMACY.—NATURAL PERIOD OF GESTATION.—DURATION OF PREGNANCY FROM ONE INTERCOURSE.—PREMATURE BIRTHS.—SHORT PERIODS OF GESTATION.—VIABILITY.—EARLIEST PERIOD AT WHICH A CHILD MAY BE BORN LIVING.—EVIDENCE FROM THE STATE OF THE CHILD.—PROTRACTED BIRTHS.—THE PERIOD OF GESTATION NOT FIXED BY LAW.

Legal presumption of legitimacy.—Every child born either in lawful matrimony, or within a period after the death of the husband in accordance with the natural duration of gestation, is considered by the English law to be the child of the husband, unless the contrary be made clearly to appear by medical or moral evidence or by both combined. It is only in reference to medical evidence that the subject of legitimacy can here be considered; but it is extremely rare to find a case of this kind determined by medical evidence alone. There are generally circumstances which show that a child whose legitimacy is disputed, is the offspring of adultery, while the medical facts may be perfectly reconcilable with the supposition that the claimant is the child of the husband. These cases, therefore, have been repeatedly decided from moral evidence alone—the medical evidence respecting the period of gestation or physical capacity in the parties leaving the matter in doubt. The present state of the English law on this subject appears to be this. A child born during marriage is deemed illegitimate when, by good medical or other evidence, it is proved that it was impossible for the husband to be the father—whether from his being under the age of puberty, from his labouring under physical incapacity as a result
of age or natural infirmity, or from the length of time which may have elapsed since he could have had intercourse, whether by reason of absence or death. When the question turns upon any of these conditions, medical science is required for its solution, and on these occasions skilled experts are usually selected by the litigants. With proof of non-access of the husband or immorality on the part of the mother, so important on these occasions, a medical witness is not in the least concerned. In cases of contested legitimacy, the English law does not regard the date of conception, which cannot be fixed, but the date of birth, which can be fixed. Medical evidence may relate—1st, to the actual length of the period of gestation: this may be in a given case so short or so long as to render it medically impossible that the husband could be the father. 2ndly, there may be physical incapacity in the husband to procreate: he may be too old or too young—or he may labour under some physical defect rendering it impossible that he should be the father. 3rdly, there may be sterility or incapacity in the wife, rendering it impossible that the child should be the offspring of a particular woman: in other words, the claimant may be a supposititious child.

Natural period of gestation. Duration from one intercourse.—The first point to be considered is—What is the natural period of gestation, and whether this is a fixed or variable term. According to the testimony of experienced accoucheurs, the average duration of gestation in the human female is comprised between the thirty-eighth and fortieth weeks after conception. Numerous facts show that the greater number of children are naturally born between these two periods. Out of 186 cases reported by Dr. Murphy, the greater number of deliveries took place on the 285th day ("Obstetric Reports," 1844); but his opinion is that 301 days may be taken as the average limit of gestation. ("Lancet," Nov. 11, 1844, p. 284.) Dr. Blundell considered that the average period was 274 days; Sir J. Simpson ("Bromwich v. Waters, Chester Lent Ass. 1863, p. 825), 277 days, i.e. nine calendar months and a week; and other accoucheurs of repute have fixed upon 280 days. Among 500 cases observed by the late Dr. Reid, there were 283 in which the period of gestation was within 280 days, and 217 cases in which it went beyond this period. Dr. Duncan found in a group of forty-six cases, that 275 days is the average interval between that which he terms 'insemination' (intercourse) and parturition. The largest number of cases on any particular day was seven on the 274th day. ("Edin. Monthly Journal," 1854, vol. 9, p. 230.) The most common cause of this variation in time is, that the usual mode of calculation, by reference to the suppression of the menstrual discharge, even in a healthy woman, may lead to a possible error of two, three, or even four weeks, since there is no sign whereby, in the majority of women, the actual time of conception can be determined. Some have been able to determine by peculiar sensations, the time at which they have conceived; but, as a general
DURATION FROM ONE INTERCOURSE.

rule, this must be a matter of pure conjecture when they are living in connubial intercourse.

On the other hand, accidental and isolated cases have clearly proved that a great difference naturally exists among women with respect to the period of gestation; and it is probable that in no two is it necessarily the same. When there has been only one intercourse, the duration of pregnancy may be certainly calculated without reference to any changes in the female constitution: for the date of conception, within certain limits to be presently mentioned, would be fixed. Observations of this kind have shown that women have differed from each other; and in several instances the time has exceeded or fallen short of the period of forty weeks, which has been usually set down as the legal limit of natural gestation. In three cases of one intercourse known to the late Dr. Rigby, labour came on in 260, 264, and 276 days, making a difference of sixteen days. ('Med. Times,' March 14, 1846, p. 471.) In three other instances, which were privately communicated to me by Dr. S. W. J. Merriman, labour commenced at 281, 283, and 286 days respectively after one intercourse; and in a case which occurred to Dr. Reid, the labour did not commence until after the lapse of 293 days from a single intercourse. ('Lancet,' July 20, 1850, p. 79.) In another case accurately observed, communicated to me in March 1865, the gestation lasted 281 days. Menstruation had ceased on the 16th Sept., intercourse took place on the 20th, quickening occurred on the 23rd January following, and a full-grown male child was born on the 28th June following. In two cases, for which I am indebted to the late Mr. Carrington, the women were delivered respectively in 249 and 260 days after a single intercourse. In a third, in which pregnancy was the result of a rape, there was an interval of 261 days between intercourse and delivery. Hence it will be perceived that in well-observed cases, where there could be no motive for misstatement, and in which the characters of the women, some of whom were married and had already borne children, were beyond the reach of suspicion, a difference of not less than thirty-three days has been observed to occur, i.e. between the earliest case reported by Dr. Rigby, and the latest reported by Dr. Reid. This is worthy of remark, because in one case (Luscombe v. Prettyjohn), it was held that 299 days, only six days longer than in Dr. Reid's observation, was an impossible period for human gestation! In addition to the above facts, showing the variability of the period after a single intercourse, the following may be cited. Dr. Macilwain, U.S., has reported a case of gestation, which he thinks must have extended to 296 or at least to 293 days. ('Amer. Jour. Med. Sci.' July 1848.) I am indebted to my colleague, Dr. Oldham, for nine cases, which have fallen under his observation, in which the duration of pregnancy from a single intercourse was accurately observed:—
It is to be observed of these cases that Nos. 4, 5, and 6 represent the periods of gestation in the same woman at different times. Dr. Lockwood has published the following as the result of his experience. The actual duration of the term of gestation in the human subject, i.e. the interval between intercourse and delivery, was ascertained by him in four cases:—No. 1, aged 19, duration 272 days (first confinement); No. 2, aged 30 (first confinement), duration 276 days; No. 3, aged 17, duration 270 days; No. 4, aged 44 (seventh confinement), duration 284 days, the child weighing fourteen pounds. (‘Brit. Amer. Jour.’ Dec. 1847, p. 214.) M. Devilliers has also published the particulars of nine cases, in which the interval from a single intercourse was accurately determined. Delivery took place at the following periods:—229, 246, 257, 267, 301, 276–281, 278–283, 270, and 266–272 days, making an extreme difference of 49 days in the earliest and the latest periods between intercourse and delivery. (‘Gaz. Méd.’ March 4, 1848.) Another authority, Dr. Ahlfeld, made his observations on 425 women, whose children seemed mature, and, reckoning from the day of conception he found that the average duration of gestation was 269.9 days. Out of thirty cases of single or well-defined coitus collected by Ahlfeld, gestation varied from 233 days to one case of 313 days. The average of all was 269.17 days, which corresponds closely with the period obtained by other modes of observation. (‘Amer. Jour. Med. Sci.’ Oct. 1870, p. 566.) Hecker's tables gave an average of 273.5 days.

There is reason to believe that the date of conception after a single intercourse, varies in different women and in the same woman. It is customary for physiologists to date conception from intercourse; but the researches of Bischoff and Raciborski have shown that a variable interval may elapse, according to the situation of the ovum at the time. It has also been supposed that women conceive more readily at some periods than at others, and that intercourse had within eight to twelve days from the cessation of the menstrual discharge is more favourable to conception than at any other period. Dr. Oldham met with a case in which impregnation took place twelve days after menstruation; and he states that he has known it to occur at the respective times of ten days, twelve days, and even twenty-one days after the monthly period; and he knew of no fact to disprove the opinion that the human female is susceptible of impregnation at any time between her monthly periods. According to Dr. Duncan, a single insemination at any period of the interval between two menstrual periods may
result in fecundation. ('Edin. Monthly Journal,' 1864, vol. 9, p. 233.)

The experience of Dr. Oldham is confirmed by that of the late Dr. Reid. This gentleman admits that impregnation is more likely to occur immediately after the termination of a menstrual period than at any time during the interval. The next most likely period is immediately previous to the occurrence of menstruation, and the probability of conception becomes slighter as the time is more distant from this epoch; but there is no period in the menstrual interval at which impregnation may not occur. ('Lancet,' Sept. 3, 1853.) According to Raciborski, from observations made in Paris on one hundred women, no more than six or seven had become impregnated at the mid-term from the menstrual periods. In several cases of single intercourse, the dates being certain, conception took place twelve and fourteen days after menstruation. It may be therefore fairly taken as a fact, irrespective of any modern theories of ovulation, that a woman may conceive from intercourse had at the inter-menstrual period (mid-period), although, in a given number of instances, it is probable that the conceptions would be more numerous within six or seven days after the cessation of the menses than at any other time.

In these cases it is assumed that intercourse and conception are synchronous, but recent physiological researches have proved that the date of conception is not fixed by the date of intercourse. The time occupied by the descent of the ovum along the Fallopian tube varies, while the time required for the passage of the male fluid to meet the ovum is also subject to variation. The investigations of Bischoff and Valentine show that the spermatozoa may retain their movements, and probably their fecundating power, for so long a period as seven days within the body of a woman. Fecundation cannot result unless the matured ovum meets these bodies in an active or living condition; and conception may be regarded, in the language of Dr. Meigs, as the fixation of a fecundated ovum upon the living surface of the woman. Conception may therefore take place either in a few hours, or, according to Valentine's observations, at so long a period as seven days, after intercourse. But this does not satisfactorily explain such extreme differences as were observed in the cases of Dr. Rigby and Dr. Reid (thirty-three days), or in those of M. Devilliers (forty-nine days)—ante, p. 598. We must therefore be prepared to admit, either that conception may in some cases be delayed for so long a period as from five to seven weeks after intercourse, or that there may be a difference of from five to seven weeks in the duration of pregnancy. Whatever may be the explanation adopted, it is obvious that, in a medico-legal view, the only conclusion at which we can arrive is, that the period of gestation in woman is not, as it was formerly supposed to be, a fixed and invariable term.

Great mistakes have arisen in the calculation of the period by the use of the word 'month'—some intending by this a lunar and
others a calendar month. Nine lunar months would be equal to 252 days, while the average of nine calendar months would be 270 days—the latter period varying according to the particular months of the year over which the pregnancy might extend. To prevent mistakes or that misunderstanding of evidence which has so frequently arisen, it would be advisable that medical witnesses should always express the period of gestation in weeks or days, concerning which there can be no misunderstanding: it would be also proper to adopt the plan of always commencing the calculation from the period of the last cessation of the menses, rather than from two weeks later. The latter rule is often followed, and this discrepancy is another cause of confusion.

Premature births. Short periods of gestation.—From the preceding remarks we may regard all births before the thirty-eighth week as premature, and all those which occur after the fortieth week as protracted cases; and one great point for a medical witness to determine is, whether the external characters presented by a child correspond to those which it should present, supposing it to be legitimately born. When the birth is premature, this sort of corroborative evidence may be sometimes obtained; because, assuming that there has been no access between the parties before marriage, children born at the fifth or sixth month after marriage cannot, if the offspring of the husband, present the characters of those born at the full period. It is not so with protracted births, for children are not more developed in protracted cases than they are in those which occur at the usual period. This would lead to the inference that when a child has reached a certain stage of development it ceases to grow—a view which is borne out by the observations of Dr. Rüttel. (Henke's 'Zeitschrift,' 1844, p. 247.) This gentleman observed that the size of a child did not increase in proportion to the length of gestation. In protracted human and animal gestation, the offspring is not remarkable for size and weight. Thus robust mothers have had small children, and small mothers strong and sometimes unusually large children. Dr. Murphy states that he met with a fully-developed child which was born after a gestation of only 251 days. ('Lancet,' Nov. 30, 1844, p. 254.) For an account of the characters presented by children at different uterine ages, see Infanticide (p. 513, ante).

Development of the child.—In judging from marks of development on the body of a child as a test of uterine age, we must make full allowance for the exceptions to which they are liable. The nearer the supposed premature delivery approaches to the full period of gestation, the more difficult will be the formation of an opinion. Although the characters of a seven-months child, as a general rule, are usually well-marked, and may be known by common observation, it is not possible to distinguish with absolute certainty a child born at the eighth from one born at the ninth month. Burns observes that gestation may be completed, and the child perfected to its natural size, a week or two sooner than the end of the ninth
month; and other accoucheurs corroborate this view. (Dr. Murphy in 'Lancet,' Nov. 30, 1844, p. 284.)

When, however, the facts are such that to be the offspring of the husband it must be a six-months child, and it is born mature, there can be no reason to doubt that it is illegitimate. (Eager v. Grimwood, Exchequer Sittings, Jan. 7, 1847.) But the fact that a child born at nine months is small and resembles in size and weight a seven or eight-months child, cannot be taken as a medical proof of illegitimacy. Children born at the full period vary considerably in size and weight; yet, although small, there is commonly about them an appearance of development, which is especially apparent in the features. If there should be a general want of development in the body, and if certain fetal peculiarities remain—as, for example, the membranes pupillares, or, in the male, the testes do not occupy the scrotum—these facts lead to a strong presumption that the child has not reached the full period. On the other hand, when a child is born with the full signs of maturity about it, at or under seven months from possible access of the husband, there is an equally strong presumption that it is illegitimate. The great progressive stage of development is considered to be during the two last months of gestation—the changes which the fetus undergoes are greater and more marked at this than at any other time. The general opinion is that an eight-months child is not with any certainty to be distinguished from one born at the ninth month. If the body of a child is large and fully developed, it would be considered to have been born at the full period of gestation, and any opinion which had led to the supposition that it was a seven months child would be attributed to some mistake in the calculation. Dr. Beck states it as barely possible that a child born at seven months may occasionally be of such a size as to be considered mature, yet he qualifies this statement by the remark, that the assertion is most frequently made by those whose character is in danger of being destroyed. The important medical question is, however,—Has a really seven months child ever been born so developed as to be mistaken by an experienced person for one that was mature? He adduces no case of this kind in support of his opinion. There can be no doubt of the correctness of his statement, that a mature child, born before seven full months after intercourse, ought to be considered illegitimate: but it would be difficult to maintain this proposition consistently with the above admission, for there is no obvious reason why a child should not acquire premature development during the latter half of the sixth as well as at the seventh month.

In Bromwich v. Waters (Chester Lent Ass., 1862) the question of premature development arose incidentally upon an alleged gestation of 259 days. It was stated that intercourse had taken place upon the 9th of November 1861, and a child was born on the 26th July 1862—a period of 259 days, or thirty-seven weeks. The child had the appearance of a mature child. The counsel for
defendant admitted that a child born at this period, i.e. three weeks before maturity, might be as large as one born at the ninth month, but he denied that it would be so perfectly developed in all its parts. When the question was put to the late Sir J. Simpson, who gave evidence at the trial in favour of the defendant, he said that full size was generally combined with full development; and he further stated that it was against all the laws of nature that children should be born full grown even a fortnight before the usual term of gestation, which he fixed at nine calendar months and a week. According to this view, if there had been intercourse on the 9th of November 1861, the day of probable delivery would be a week after the 9th of the following August, i.e. on the 16th August 1862. Hence, as the child was actually born in a mature state on the 26th of July, this was three weeks before the usual term; and therefore, in his opinion, impregnation from some other person had probably taken place three weeks earlier than the period assigned by the woman (Whalley). Sir J. Simpson considered it to be as rare that a child should be born full-grown three weeks before the usual period, as that a man should attain one hundred years of age! (‘Report of the Trial of Bromwich v. Waters,’ 1863, p. 33.) There are not many medical witnesses, however, who would venture to affirm that in the last three weeks of gestation there are such marked changes in the body of a child as to render this difference in time always perceptible, or who would venture to bastardize a child or convict a woman of adultery because, when born at the 259th day after intercourse, the child had about it the usual appearances of maturity. This would be equal to affirming that variations in size might take place at the ninth, but not at the eighth month of gestation. But facts are adverse to the theory. Dr. Rüttel, an experienced observer, has met with several instances in which women have been delivered two and even three weeks before the expiration of the ordinary term (280 days), and the children were as perfectly developed, to all appearance, as other children which had been born at the full period; at any rate they could not be distinguished from them by competent observers.

In another part of this work (Infanticide, p. 515, ante), some cases are related which prove that at the ninth month, children are occasionally born of a size and weight greatly exceeding the average. Thus a nine-months child has been born weighing eighteen pounds and measuring thirty-two inches, whereas the usual weight is from six to seven pounds, and the length eighteen inches. In such an exceptional case, there is reason to believe that had the child come into the world at the seventh month, it would have appeared to the accoucheur to have reached the full term. As it is impossible to say when such an exception is likely to occur, and a lawyer is always entitled to take advantage of either extreme, it follows that in any case in which this question arises, a witness will be bound to admit that a seven-months child may be born of the average size and weight of a nine-months child, or to give some valid
reason for the fact that great variations in size and weight may occur at the ninth but never at or about the seventh or eighth month of gestation. He must also be prepared to affirm from facts within his knowledge that in these extreme cases the doubling of the weight and length of the child is not progressive, but that it suddenly takes place at or near the ninth month. If the child is a male, and the testicles are found in the scrotum, there is every reason to believe that it has passed the seventh and even the eighth month of uterine life. (See INFanticide, p. 514, ante.) The differences of opinion among obstetric experts in reference to this question appear to admit of explanation. All will agree that, as a general rule, a seven-months child might be distinguished from a nine-months child, unless the latter was a twin; but at the same time it must be admitted that if variations in development take place at the full term, there is nothing to prevent such variations from occurring at the seventh and eighth months of gestation. Dr. Hicks informs me that he has seen a child born seven months after marriage as large as at the full term; but, as he suggests, this child might really have been begotten so as to be born at the full term. In order to determine this point by unexceptionable facts, it would be necessary to collect a series of cases of impregnation from one intercourse in which the children were born seven months after such intercourse, and were proved to have had the average size and weight of mature children. In the meantime counsel will care little for the rule, but will take every advantage of the existence of admitted exceptions.

Earliest period at which a child may be born living. Viability.—
The fact that a child has had the strength to survive its birth for a certain period has been supposed to furnish additional evidence of maturity; for it is well known that under a certain age, children are not born living or if living they speedily die. Therefore it has been argued, if a child born at the fifth or sixth month after the first cohabitation be born living or survive, this should, ipso facto, be taken as a proof of its illegitimacy. According to the English law, it is not necessary that a child, when born, should be capable of living, or _viable_, in order that it should take its civil rights. Thus it may be born at an early period of gestation:—it may be immature, and not likely to survive:—or, again, it may be born at the full period of gestation, but it may be obviously labouring under some defective organization, or some mortal disease, which must necessarily cause its death within a short time after its birth. Fortunately, these points are of no importance in relation to the right of inheritance: an English medical jurist has only to prove that there was some well-marked physiological sign of _life_ after birth. Whether the child was mature or immature, diseased or healthy, is a matter which does not at all enter into the investigation. In this respect our law appears to be more simple and just than that which prevails in France. By Art. 725 of the Code Napoléon, no child that is born alive can inherit unless it is born, as the law terms it, _viable_. The meaning of this
word is not defined by the law itself, and there are probably no
two lawyers or physicians in that country who place upon it the same
interpretation. The French law seems to intend (Devergie, vol. 1,
p. 700; Briand, p. 173), by viability in a new-born child, that it
should have breathed and be capable of living out of the womb of
its mother and independently of her;—also, that it should be
capable of living for a longer or shorter period after its birth. It
would be difficult for any system of jurisprudence to lay down a
more vague or incorrect principle than this; and medical witnesses
may consider themselves fortunate that in this country they have
not to take part in the unsatisfactory litigation to which such a
principle must necessarily give rise.

The question, therefore, to be considered is,—What is the
earliest period of uterine life at which a healthily-formed child
can be born living, and with a capacity to live after its birth and
to attain maturity? It is now universally admitted that children
born at the seventh month of gestation are capable of living,
although they are more delicate, and in general require greater
care and attention to preserve them than children born at the
nineth month; the chances, are, however, very much against their
surviving. It was the opinion of Dr. William Hunter, and it is
one in which most modern authorities concur, that few children
born before seven calendar months (or 210 days) are capable of living
to manhood. They may be born alive at any period between the
sixth and seventh months; or even, in some instances, earlier
than the sixth: but this is rare, and, if born living, they commonly
die soon after birth. There is one case on record, of a child having
been born living so early as the fourth month of gestation (‘Brit.
and For. Med. Rev.’ vol. 2, p. 236); and another, in which a
woman aborted at the fourth-and-a-half month of pregnancy.
M. Maisonneuve saw the woman two hours after delivery: he then
found the fetus in its membranes, and on laying these open, to his
surprise it was still moving. He applied warmth, and succeeded
in partially restoring it; for a few minutes the respiratory
movements were performed with regularity, but in spite of the
establishment of respiration, the child died about six hours after
its birth. (‘Jour. de Méd.’ and ‘Med. Gaz.’ vol. 39, p. 97.) In
two instances of abortion about the fifth month, Dr. Davies, of
Hertford, noticed that the fetus showed signs of life after its birth,
by moving its limbs. (‘Med. Gaz.’ vol. 40, p. 1022); and the follow-
ing case, in which a child born at the fifth month survived
upwards of twelve hours, occurred to Mr. Smythe. A woman in
her second pregnancy, and in the 14th day of gestation, had
severe flooding with rupture of the membranes. Labour occurred
on the following night, when a small but well-formed fetus was
expelled, giving no other indication of life than a feeble action
of the heart, and a strong pulsation in the umbilical cord. It
was resuscitated, and cried as strongly as a child born at the full
period of pregnancy. It weighed less than two pounds, and
measured exactly twelve inches. It swallowed some nourishment, but died about twelve hours after birth. The membrane pupillares were entire,—the testicles had not descended,—the head was well covered with hair. The length and weight, as well as the presence of hair, indicated a foetus between the sixth and seventh months; but, as it is asserted that the period of gestation is accurately given, this must be regarded as an extraordinary instance of premature development. There was clearly nothing in the organization of this child to have prevented its growing to the age of maturity—in other words, it was viable. (‘Med. Chir. Rev.’ July 1844, p. 266.) In November 1865, Mr. Carter communicated to me the particulars of a case in which a child was born living at the fifth month of gestation. It cried slightly when it was born, and during the half-hour that it was kept unsevered from its mother it made frequent efforts to breathe. It was perfectly formed. It was about one foot in length, and its weight was fully one pound and a quarter. It died soon after it was born. Mr. Moore has reported a case of a child born living at the fifth month. (‘Lancet,’ Nov. 11, 1865.) A case is reported, in which a child born at five-and-a-half months survived its birth between three and four hours (‘Med. Gaz.’ vol. 19, p. 165); and on a trial for child-murder (Reg. v. West, Nottingham Lent Ass. 1848), a midwife was indicted for causing the death of a child by bringing about the premature delivery of the mother, when she was between the fifth and sixth months of her pregnancy. The child in this instance lived five hours after its birth. Capuron mentions an instance in which a child was born at the sixth-and-a-half month of pregnancy; and at the time he reported the case it was two years old, and enjoyed excellent health. In another instance a child was born at the same period, and lived to the age of ten years. (‘Med. Lég. des Acc.’ pp. 162, 208.) In a case which fell under my own knowledge, a child was born at the sixth-and-a-half month of gestation, and lived a fortnight. (See another case, ‘Med. Gaz.’ vol. 32, p. 623.) Capuron considers that a child born at the 180th day, or at the sixth month after conception, may be sufficiently mature to live, i.e. that there would be no reason to presume it was illegitimate, merely because it survived its premature birth. On the other hand, if born before the sixth month with sufficient maturity to live, this fact, although by no means a proof, affords, in his opinion, a strong presumption of its illegitimacy. Of eight cases of children born living (by abortion) at the sixth month, Mr. Whitehead states that seven perished within six hours after birth, and one only attained to the age of ten days. (‘On Abortion,’ p. 249.)

Dr. Rütte1, who has examined this subject with great care, states, as the result of his experience, that he attended a married woman, who was afterwards delivered of a living child in the fifth month of her pregnancy: the child survived its birth for twenty-four hours. He delivered another woman of twins, in the sixth month
of her pregnancy: one was dead, and the other continued alive for three hours, its life being indicated only by the visible pulsation of the heart, but there was no perceptible breathing. This fact strongly corroborates the remarks made elsewhere, as to life without active respiration (Infanticide, p. 623, ante); it has also an immediate bearing on the proof of life in reference to tenancy by courtesy (p. 587, ante). In another instance of the birth of male twins, at the sixth month, each weighed three pounds. Dr. Rüttele saw them a year after their birth, and they were then two healthy strong children. (Henke's 'Zeitschrift der S. A.' 1844, p. 241.) Dr. Barker, of Dumfries, met with a case, in which a female child was born on the 158th day of gestation, or twenty-two weeks and four days after intercourse. The size and weight of the child corresponded with the period at which it was born: it weighed one pound, and measured eleven inches. It had only rudimentary nails, and very little hair on the back of the head; the eyelids were closed, and remained closed until the second day; the nails were hardly visible; the skin was shrivelled. The child did not suck properly until after the lapse of a month, and she did not walk until she was nineteen months old. When born, the child was wrapped up and placed in a box before the fire. Three-and-a-half years afterwards this child was in a thriving state and healthy, but of small make; she then weighed twenty-nine pounds and a half. (Med. Times,' Sept. 1850, p. 259; also Oct. 12, p. 392.) Mr. Annan, surgeon, of Kinross, has recorded a case in which a child was born between the end of the sixth and the middle of the seventh month, and lived for a period of four months and eight days; it weighed a pound and a-half when seven days old. (Med. Times,' Sept. 9, 1848, p. 304.) In a case which occurred to Dr. Outrepont, of Bamberg (reported in Henke's 'Zeitschrift,' vol. 6), there was the strongest reason to believe that gestation could not have exceeded twenty-seven weeks. The child (a male) weighed, when born, one pound and a-half, and measured thirteen and a-half inches. The skin was covered with down and much wrinkled—the limbs were small—the nails appeared like white folds of skin, and the testicles had not descended. It breathed as soon as it was born, and by great care its life was preserved. It is singular that its development was very slow until it had reached a period which would have corresponded to the forty-second week of gestation. Dr. Outrepont saw the child when he had attained the age of eleven years, and then he appeared to be of the size of a boy of eight years. The only remarkable point about this case is the length of time which the child lived. In a case quoted in the 'Lancet' (Aug. 23, 1861, p. 177), a child born at six months and ten days, was thriving satisfactorily when four months old. (See also Med. Times,' Feb. 16, 1860, p. 129.)

Hence it may be considered as established that children born at the seventh, and even at or about the sixth month, may be reared, and that the fact of their surviving for months or years
cannot be taken as a proof of illegitimacy. In forming our judgment on these occasions, we are bound to look less at the period at which a child is born, than at the marks of development about the body. The case reported by Mr. Smythe (p. 604, ante) is corroborative of this view. Dr. Bonnar has recently published a tabulated view of 112 cases of premature births of living children,—the dates of gestation extending from the 120th to the 210th day. Among these cases 35 children died within the first twenty-four hours; 13 more before the completion of one week; 1 in six weeks; 4 in four months. The following lived, or were living at the date of the report:—1, seven-and-a-half months; 8, from one to two years; 1, three-and-a-half years; 5, from ten to fifteen years; 6, to adult age; 5 lived not stated how long. ('Critical Inquiry regarding Superstition,' 1865, p. 13.)

Protracted births. Long periods of gestation.—The questions connected with retarded gestation have given rise to considerable discussion in legal medicine. That gestation may be retarded or protracted beyond the fortieth week is now, I believe, not disputed by any obstetric writer of reputation. Some accoucheurs have denied it, because they have not met with such cases; but the medico-legal relations of such questions do not depend upon the solitary experience of practitioners. It is only by the accumulation of well-ascertained facts from all authentic sources that medical knowledge can be made available for the purposes of the law; otherwise, owing to the mere accident of a witness not having met with any exceptional instance, a Court may be entirely misled in its judgment by trusting to his opinion. It is the more important to attend to this, because most of the cases involving questions, either of contested legitimacy or of the chastity of women, turn upon protracted rather than upon premature delivery.

In standard works on Midwifery will be found authentic reports of cases in which gestation continued to the forty-first, forty-second, forty-third, and even to the forty-fourth week. Dr. Murphy regards 301 days, or forty-three weeks, as the average limit of gestation. ('Obstetric Report,' p. 4.) Dr. Lee met with a case in which he had no doubt that the pregnancy lasted 287 days: the labour did not take place until forty-one weeks after the departure of the husband of the lady for the West Indies. ('Med. Gaz.' vol. 31, p. 917.) Dr. William Hunter met with two instances in which gestation was protracted until the forty-second week. Dr. Montgomery met with a case in which delivery did not ensue until between the forty-second and forty-fourth weeks. ('Med. Gaz.' vol. 19, p. 646.) Dr. Merriman has published a valuable table on the subject of protracted gestation, on which the most experienced accoucheurs have been in the habit of relying. Of 114 pregnancies calculated by him from the last day at which the women menstruated, and in which the children appeared to be mature, the following were the periods:
In the 37th week | 3 | In the 41st week | 22
" 38th " | 13 | " 42nd " | 15
" 39th " | 14 | " 43rd " | 10
" 40th " | 33 | " 44th " | 4

Another well-marked case, occurring forty-four weeks precisely after the cessation of the menses, has been communicated to me by Dr. S. W. J. Merriman.

From these results Dr. Merriman considers that in the greater number of women, gestation is completed in the fortieth week from the cessation of the menses, and next to this period, in the forty-first. In the evidence given by this gentleman in the Gardner Peereage case before the House of Lords in 1825, the case of longest protraction on which he was able to rely was that of a married woman, who was in the habit of calculating from the last day on which her monthly period ceased. This lady was delivered 309 days, or forty-four weeks and one day, from the time at which she supposed that she had conceived. In another case mentioned by the witness the period was 303 days, or forty-three weeks and two days from the termination of the last monthly period. It was objected to this evidence, by the Attorney-General, that it was impossible to fix the exact date of conception, and, as the female might have really conceived only a day or two before the expected return of menstruation, twenty-eight days (or four weeks) should be deducted from the periods assigned by the witness. Admitting the validity of this objection—and the fact upon which it is based is indisputable—it followed that the longest protracted case observed by Dr. Merriman might have really been only a case of ordinary gestation extending to forty weeks and one day. An objection of this kind may of course be successfully urged in law to any inference from a calculation so made, and it was thus that in the Gardner Peereage case the medical evidence failed to render it certain that gestation might be so protracted as to support the legitimacy of the claimant; namely, to 311 days or forty-four weeks and three days. Hence, in considering this question, it is necessary to make full allowance for such a cause of error; and, in calculating the pregnancy from the last day of the last menstrual period, we should deduct the interval of menstruation, if known, and at least twenty-eight days if unknown. In these cases of contested legitimacy the offspring is commonly the result of a single intercourse, hence the date of conception is fixed within limits already described (p. 598): and a comparison can be instituted only between the period of gestation thence deduced, and the periods taken in other cases which are equally free from error.

A well-marked case of gestation passing beyond what is commonly set down as the average period, was communicated to me by Mr. Howell, of Walton-on-Naze. This occurred in a healthy woman, aged 30, who had borne three children, the youngest being 4 years old. She had menstruated with regularity up to the third week in June; the menses then stopped without any apparent
cause. Her delivery took place 323 days after their last appearance. Allowing that impregnation occurred at the intermenstrual period, this would make the gestation 309 days; or assuming that impregnation did not occur until twenty-eight days from the date of the last menstruation, this would make the period 295 days, or forty-two weeks and one day.

A case is reported by Dr. Power in his work on 'Human Pregnancy,' in which gestation is said to have extended to 325 days. Mr. Chattaway, of Knighton, a former pupil, communicated to me the following instance of protracted gestation. A healthy woman, aged 36, the wife of a farmer, applied to him to attend her in her confinement, which she expected to take place in September 1856. The menses appeared for the last time in December 1855, and she quickened in the beginning of April 1856. About the middle of September (i.e. on the 283rd day, dating from the last menstruation), Mr. Chattaway was summoned to attend her, and he found her labouring under severe false pains; there was also a discharge of mucus tinged with blood. The case went on until the 19th November 1856, when the patient was delivered of a female child of the average size. It would thus appear, according to the ordinary mode of calculation, that deducting twenty-eight days from the last appearance of the menses, gestation was protracted in this instance to 330 days, or forty-seven weeks and one day.

This, of course, is open to the suggestion that the menses had ceased from some accidental cause, and that pregnancy had taken place some weeks subsequently. In reference to this objection, it may be observed that few women have such unusually protracted pregnancies. Then, again, all practitioners may not have met with protracted cases; but the fact being clearly ascertained in one case, it is unnecessary to search for more, unless we doubt the credibility of reporters well qualified to observe, and who could have had no conceivable motive to misrepresent the facts which came before them. On this part of the question I think it is unnecessary to argue. The advocates of a fixed and limitable period differ from each other by a space of at least ten or twelve days, and each must either take his own experience for the final decision of this question, or it must be allowed that men of equal powers of observation with themselves have met with exceptional instances.

Protracted cases of gestation are always open to the objection that the menstrual function may have been suspended from some hidden morbid cause, one or two months before the actual date of conception, and that there may have been some error in the calculation by which the period has been determined. If, however, the objection is admitted under these circumstances, it would be only equally just to admit that in any given case the ordinary and so-called fixed period, also calculated from the cessation of menstruation, is based on a fallacy. The menstrual function may have
accidentally ceased, or continued for several intervals after conception, and thus a corresponding change should be made in fixing the ordinary period of gestation. This view of the question implies that no reliance can be placed on the date of the cessation of the menses as evidence of the actual duration of pregnancy, whether natural, premature, or protracted. My colleague, Dr. Hicks, informs me that he met with a case in which the pregnancy of a woman appeared to be protracted to between twelve and thirteen months. There was every reason to believe that this woman became pregnant during the absence of the menses, and that these had been suspended for some time before intercourse took place. This is no doubt the explanation of a large number of cases of alleged protracted gestation.

In the Gardner Peerage case, the Attorney-General was quite willing to rely upon the cessation of the menstrual discharge as a good criterion of the duration of pregnancy, when by such a mode of calculation this was not made to exceed forty weeks, and thus fitted in with his own view of the case! But it is obvious that this condition must be either taken or rejected altogether as evidence: if taken, we have no right, in alleged protracted cases, to refer the suppression to disease, for the sake of shortening the period, when in ordinary cases we do not refer its continuance to disease, because this would tend to lengthen it: if rejected, it would be in the highest degree unjust not to give to a claimant the beneficial presumption of his having been born legitimate, when the cases adduced in evidence against his claim are actually based upon a precisely similar mode of calculation!

It is, however, difficult to admit that all the protracted cases recorded by different observers have depended upon mistakes being made in the calculation of the period, since this calculation is based on the same principles as those adopted in cases of ordinary pregnancy. Hence, if there is a mistake in the one case, there would be in the other; if an error in the exception, there would be an error in the rule. Either the average term of pregnancy is wrongly calculated by most accoucheurs at the thirty-eighth or fortieth week, or it is rightly calculated to extend occasionally to the forty-fourth or, admitting these protracted cases, to the forty-sixth week. But, even setting aside the obvious answer to an objection of this nature, some of the protracted cases observed were instances of impregnation from a single intercourse; and, making due allowance for the interval for conception, the general inference would not be affected, and no fallacy could have arisen in these cases of protraction from mistakes dependent on the cessation of menstruation.

The late Dr. Reid's conclusions, derived from numerous facts and cases, represent the views of an experienced observer on this much-disputed question. They are—'1. The duration of pregnancy is not altogether a fixed period: it varies somewhat in the human female as it does in the lower orders of animals. 2. This deviation, however, is not to any great extent: the only certain data of calcu-
lation are those dependent on the known time of conception (of intercourse). 3. The average duration of the pregnant state, when calculated from this event, is about 275 days, or it may have a range of from 270 to 280 days. 4. There is no full or satisfactory evidence of gestation having been prolonged beyond 293 days. 5. The Code Napoléon, which allows 300 days, may be regarded as liberal. 6. The menstrual period must generally serve as our guide in default of some exact knowledge: it is, however, often fallacious, and is only a means of approximation to the probable time of parturition. 7. The fortieth week after the last appearance of the menses is the most likely period, and the forty-first week the next.

Dr. Duncan ('Edin. Monthly Journal,' 1854, vol. 9, p. 230), draws the following conclusions regarding the duration of pregnancy:—1. That the interval between conception and parturition (the real duration of pregnancy) has not been exactly ascertained in any case. 2. That the average interval between insemination (intercourse) and parturition (commonly called the duration of pregnancy) is 275 days. 3. That the average intervals between the end of menstruation and parturition have no standard length, but vary within certain limits. 4. That while absolute proof of the prolongation of real pregnancy beyond its usual limits is still deficient, there is evidence to establish the probability that it may be protracted beyond such limits to the extent of three or even four weeks.

It will be perceived from the conclusions drawn by Dr. Reid, that he admits a variation of 23 days, i.e. from 270 days (the shortest period) to 293 days, the longest known to himself from a single intercourse. There appears to be no valid reason why the variation should not be even greater than that which is here assigned, and why the duration of pregnancy might not extend occasionally to 296 and even to 301 days. It is merely a question of individual experience. An accoucheur who admitted a variation of 23 days, and who had known gestation to be protracted to the 293rd day after intercourse, would hesitate to pronounce a child illegitimate merely because he had been born on the 296th or the 300th day after possible access of the husband. There is no doubt a limit to gestation, but it is not in our power to fix it: hence we find obstetric writers of repute adopting periods which have no point of agreement among themselves. Some stop short at 280 days; others, like Dr. Reid, fix the maximum yet known at 293 days; Dr. Murphy allows from his experience at least 324 days; and Dr. Meigs considers that gestation may be continued to twelve months, or 365 days. ('Obstetrics, the Science and the Art,' 1849, p. 194.)

The fact is, the term has not yet been fixed even approximately by medical science: hence, in a disputed case, other circumstances must be looked to in order to lead a Court of law to a safe decision. It is at present hopeless to reconcile the conflicting medical opinions which exist on the subject of the duration of pregnancy in the human female. There is, indeed, only one point on which all
modern observers agree—namely, that the period cannot be limited to a fixed and invariable number of days or weeks, but that it is liable to variation according to circumstances not fully understood.

It has been elsewhere observed that the date of intercourse does not furnish us with the date of conception, and according to some authorities all evidence connected with the function of menstruation is untrustworthy. In spite of these objections, the menstrual period must generally serve as a guide in default of more certain criteria. It is, however, a curious fact, and one which the mind of an acute lawyer will not fail to appreciate, that the date of the cessation of the menses is taken by some physicians as a guide (in married life with constant intercourse), so long as gestation does not extend beyond 280 days; while, supposing it to extend to 300 days, they will assume that some other cause than pregnancy must have led to an earlier suppression, and thus to an error in the calculation! There may be no more evidence of suppression from a morbid cause in the one case than in the other, and the period of 280 days may be as much based on error as the period of 300 days. It is strange that clever writers, who adopt this mode of making facts square with a foregone conclusion, do not perceive that they must, in fairness, either reject altogether the evidence derivable from a cessation of the menses, or admit it adversely to their own views, in cases in which the facts connected with the cessation have been as carefully observed and recorded by others as by themselves. No evidence on this subject can be drawn from an examination of the body of the child. There is no increase of size or development after the ninth month has passed. Children born at the full period of nine months, have been larger and heavier than many children born, as it was believed, at a later period; but in cases of alleged protracted gestation, it may be considered that the child should always have attained its full growth and most perfect development.

Period of gestation not fixed by law.—In all cases of contested legitimacy, the question respecting the duration of gestation, when it arises, is left entirely open by the English law. No period of time has been fixed by English jurists within which, or beyond which, a child, if born in wedlock, will be presumed to be illegitimate. The decisions of our Courts would be founded, quad the duration of pregnancy, on the opinions of experts selected for the occasion, and each case would be decided on its own merits. Precedents can have but little influence on these occasions, because a Court may think fit to pronounce illegitimate, on non-medical grounds, a child born in the thirty-eighth week of gestation, while it may decide that another was legitimate that had been born in the forty-third week. By some law authorities forty weeks (or 280 days), and by others forty-three weeks (or 291 days), have been taken as the ultimum tempus partandi; but as the period of human gestation is wholly independent of legal dicta, it is not the custom of Courts to act upon any definite rule. Nevertheless, it is clear in some extreme cases that the law may fairly interpose, and pronounce for a reasonable limit. In the case of Cotterall v. Cotterall
(decided in the Consistory Court, July 1847), a child was born during the marriage, and the husband proceeded against the wife for a divorce on the ground of adultery. The main proof was based on the fact, that in order to have been the child of the husband it must have been born after twelve months' gestation. Dr. Lushington, without entering into the question of protracted gestation, upon proof of this allegation, at once pronounced for the divorce. Such a duration of pregnancy is not supported by any known facts, and is altogether opposed to medical probability. In suits of contested legitimacy the general practice consists in establishing possibility of access on the part of the husband: when this is proved, the medical question arises, whether the term of gestation falls within the limits assigned by the best medical experience. In two instances, children have been pronounced legitimate, which were born, the one in forty-one weeks and three days, and the other in forty-one weeks and four days after the death of the husband. Legitimacy has been allowed where gestation was probably protracted to the forty-third week (Anderton v. Gibbs, 1854). In the United States, a decision in favour of paternity has been made in a case in which gestation extended to forty-five weeks and two days (Commonwealth v. Porter). Legitimacy has been disallowed in the English Courts, although probably on non-medical grounds, where it was protracted to forty-four weeks and three days (Gardner Peerage case, 1825); in one case paternity was denied (judicially) because gestation had extended to forty-two weeks and five days (Luscombe v. Prettyjohn), and in another (Dyson) because it had extended to forty-eight weeks.

M. Stolz, a recent writer on the subject, after stating that the ordinary period of gestation is from 270 to 280 days, admits that it may extend to a fortnight beyond the latter period, but not longer, whatever may be the circumstances to cause protraction. Protracted labour, extending over five or six days, must not be included in this term. The death of a child may favour its retention in utero, and thus add to the apparent length of gestation.

The Code Napoléon cuts short all difficulties respecting the term of gestation, in cases of contested legitimacy, by fixing upon the term of 180 days after marriage and 300 days after dissolution of marriage or non-access, between which periods children born may be regarded as legitimate. In Germany it is laid down that gestation may be protracted from 301 to 308 days, but not beyond. The general law of Germany places the period for ordinary gestation among women not married at 285 days, but for a married woman divorced, or whose husband has died, it allows 302 days. Hohl, who records these facts, thinks that there is injustice in this fixed rule regarding time, and that in exceptional cases a period of from 322 to 336 days might be admitted. ('Ann d'Hyg.' 1873, 2, p. 153.) It is more reasonable and just to leave the period open than to fix it by assigning arbitrary periods, to which there must necessarily be numerous exceptions.
Disputed paternity. Parental likeness.—It has been stated that the law does not pretend to determine who begat a child when it has been born during wedlock, and from circumstances it might be the child either of the husband or of an adulterer. But medical jurists have recommended that family-likeness should be looked to on these occasions,—not merely a likeness in feature and figure, but in gesture and other personal peculiarities which may have characterized the alleged parent. These are called questions of paternity: they seldom occur except in reference to cases of bastardy, and when they do present themselves, the evidence thus produced, even if affirmative, is properly regarded as only corroborative. In the Townshend Peerage case (House of Lords, May 1843), a presumption based on family-likeness was admitted by their lordships. The person whose legitimacy was in question was sworn by one of the witnesses to bear so strong a likeness as a child to the alleged adulterer, that he should have known him among five hundred children.

The proceedings in the Douglas Peerage case (1767–9) show that evidence of this kind is occasionally of some importance. The peerage was claimed by Archibald Douglas—the survivor of two brothers after the death of the alleged parents, Sir John and Lady Douglas. The claim was disputed, on the ground that the appellant and his deceased brother were supposititious children. Evidence for and against the legitimacy of the claimant had been collected from every quarter, and after it had been most minutely sifted and criticized, the case came on for judgment, in the Court of Session in Scotland, on the 7th of July 1767. So important was the cause deemed, that the fifteen judges took eight days to deliver their opinions. The result was that seven of the judges voted in favour of the identity or legitimacy of Mr. Stewart, and seven against it; the Lord President, who had the casting-vote, agreed with the latter, by which Archibald Douglas, alias Stewart, was cast on the world without either name or estate—thus furnishing one among numerous instances that learned judges as well as doctors can differ with precisely the same facts before them. An appeal from this decision was taken to the House of Lords, by which the judgment of the Court of Session was reversed in 1769, and Archibald Stewart (or Douglas) declared to be the undoubted son of Lady Jane, the
sister of the previous holder of the title. Much stress was laid, in favour of the legitimacy of these children, on the fact that they closely resembled—the one Sir John, and the other Lady Douglas. The resemblance was said to be general; it was evident in their features, gestures and habits. Lord Mansfield, in delivering judgment, made the following remarks, which comprise all that can be said on this subject:—'I have always considered likeness as an argument of a child being the son of a parent, and the rather as the distinction between individuals in the human species is more discernible than among animals. A man may survey ten thousand people before he sees two faces exactly alike; and in an army of a hundred thousand men, every man may be known from another. If there should be a likeness of feature, there may be a difference in the voice, gesture, or other characters, whereas a family-likeness runs generally through all of these: for in everything there is a resemblance, as of feature, voice, attitude, and action.' This kind of evidence has been strongly objected to from its uncertainty; and I am informed, on good authority, that it was in this instance much disputed whether one of the children did resemble Lady Douglas, but it seems to have been generally admitted that the other child resembled the husband, Sir John. From this account it will be seen that evidence from family-likeness is not strictly medico-legal; it can be furnished only by friends and relatives who have known the parties well, and are competent to speak of the facts from personal acquaintance with them. It will also be apparent that the affirmative evidence in such cases will be stronger than that which is negative, for it could hardly be inferred that a person was illegitimate because he did not resemble his parent.

Parental likeness may be occasionally indicated by colour or peculiarities belonging to the varieties of mankind, as of the intermixture of the negro or Mongolian with one of the Caucasian variety. In such a case the evidence afforded becomes much stronger; and supposing that two men of different varieties have had intercourse about the same time with the same woman, the colour of the skin of the offspring might enable a Court to determine the question of paternity. It is stated to have happened, on more than one occasion, that a black woman has given birth at the same time to a black child and a mulatto; Dr. Cunningham refers to a case in which a negress gave birth to twins, one a black and the other a white child. ('Lancet,' May 9, 1846, p. 525.) This was probably a case of superconception. In Stothard v. Aldridge (Ball Court, January 1856), the plaintiff sued the defendant for damages for the seduction of his wife. The defendant was a man of colour, and the child born of the alleged adulterous intercourse, was proved by the medical witness to have been born coloured and with woolly hair. The husband and wife were both light. This peculiarity fixed the paternity of the child on the black defendant.

Personal deformities are not necessarily transmitted from parent
to child; yet it would appear, from the subjoined case, that a disputed question of affiliation has been settled on this principle. A woman alleged that a gentleman in whose service she had lived, was the father of a child of which she had been recently delivered. The solicitor who appeared to support the affiliation, rested his case chiefly on the fact that the child had been born with five fingers and a thumb on the right hand, the defendant himself having been born with a similar malformation on both of his hands. It was argued, on the other side, that the deformity might have arisen from the mother’s imagination, as, while pregnant, she was constantly in the habit of seeing the defendant. The magistrates decided that he was the father of the child, and condemned him to pay the necessary expenses for its support. (‘Med. Times,’ March 6, 1847, p. 47.) It is very likely that the decision was here influenced by moral circumstances, for otherwise the defendant might have been the victim of a coincidence. Six-fingered children are, it is well known, born occasionally of five-fingered parents: and as the deformity existed only on one hand in the child, while it was on both hands in the parent, the medical proof that it was actually transmitted by generation was certainly not clearly made out. In some instances attempts have been made to fix the paternity of a child by the colour of the hair, but this evidence is far less conclusive than that afforded by the colour of the skin. In the case of Frazer v. Bagley (Feb. 1844) it was alleged that the wife of the plaintiff had had criminal intercourse with the defendant, and the last two children were stated to be the offspring of the latter. The plaintiff and his wife had dark hair, as well as all the children with the exception of the two last:—These had red hair; and it was further proved that the defendant had red whiskers and sandy hair. No particular stress was laid upon this evidence, but it was received as a kind of indirect proof. Not much confidence can be placed in facts of this description, since red-haired children are often born to parents who have dark hair; and in one case the children born in wedlock were observed to have dark and red hair alternately.

Affiliation.—Questions of paternity are involved in those relating to affiliation. A man may allege that he is not the father of a particular child, by reason of certain circumstances upon which a medical opinion may be required. The necessary transmission of gonorrhœa or syphilis by intercourse may thus become a medical question. In September 1844, a man was required, under the law of bastardy, to support two children alleged by a woman to be his; the time of gestation was within nine months. The accused denied that he had had intercourse with the deceased, or that he could have been the father, since he was at the time under medical treatment for the venereal disease. The medical questions may therefore assume this shape:—1. Are these diseases invariably transmitted by intercourse? 2. Do they interfere with the act of procreation? Under common circumstances they must both be answered in the negative.
CONTESTED PATERNITY.

A singular case of bastardy is reported to have occurred in Appenzell, Switzerland. The question was, which of two persons, who had had intercourse with the same woman within a period of seventeen days, was the father of an illegitimate child borne by the woman? The Council, to which the case was referred, gravely resolved to postpone their decision until the features of the child were so far developed as to enable them to decide from paternal likeness. The equity of this difficult case would have been met by compelling each man to contribute to the support of the child! (Schneider's 'Annalen der Staatsarzneikunde,' 1836, 1 B. s. 470.) The following, which is a more doubtful case, was the subject of a communication to the 'Lancet' (March 13, 1847, p. 336):—Two men, A and B, had intercourse, unknown to each other, with a young woman of delicate health; and after this had continued for some years, she was delivered of a female child—nine calendar months and three days after sexual intercourse with A, and nine calendar months, less five days, after similar intercourse with B; or at the end of 279 days after intercourse with A, and at the end of 271 days after intercourse with B:—that is, a period of eight days elapsed between the periods of intercourse with the two men. The woman had no menstrual discharge in the meantime, and it is not believed that she knew any other man; she went her full time, had a good labour, and produced a fine healthy girl; she had a plentiful supply of milk, and enjoyed better health during her pregnancy and suckling than at any other time. The woman died, and the circumstances of the mixed intercourse having become known to A and B, they both refused to maintain the child. A contended that, as the woman was not delivered until nine months and three days after the connection with him, it was physically impossible the child could be his. B contended, on the other hand, that 280 days, and not nine months, is the period of gestation; and that the child having been born 279 days after connection with A, and only 271 days after connection with B, it was therefore probable that the child was begotten by A. There was no perceptible likeness to either of the men in the child, but a marked likeness to the mother. It is obvious from the remarks elsewhere made (ante, p. 607), that the periods of 271 and 279 days are comprised within the ordinary range of gestation: hence there would be no medical ground for affiliating the child to one more than to the other. When two men have had intercourse with the same woman on the same day, it is impossible to settle the paternity except by the accident of likeness; as in the former case, justice to the offspring and to each possible father requires that each should be bound to support the child. In cases of affiliation under the law of bastardy, the evidence of the mother, if corroborated, is received in support of a question of disputed paternity; but sometimes these cases are decided by the length of the period of gestation. A man may prove, or a woman may state, that the intercourse took place at such a remote period as to be inconsistent with the ordinary duration of pregnancy. On
this point some remarks have been made elsewhere (ante, p. 613). In the United States it appears that very long dates are allowed in bastardy cases; while in this country the tendency is to reject medical evidence altogether. In a case at Cheltenham (July 1853) the date of intercourse was proved to have been 319 days before the birth of the child. The medical evidence on the whole was in favour of this prolongation—one of the witnesses having met with two cases in which gestation was protracted, as he believed, to 310 days from intercourse—but the case was summarily dismissed.

These questions of affiliation, when the interval is less than six or eight weeks, can rarely be determined by medical evidence; in a twin-case, it would be only just that one child should be affiliated to each individual. In a recent case of affiliation, an attempt was made to set aside the order of a magistrate fixing the paternity on the putative father, on the ground that, as the intercourse was had and the child conceived in France, although born in England, it was removed from the jurisdiction of an English magistrate, and should be left to the French Courts. The objection was properly overruled, and the alleged father was ordered to pay the usual sum for maintenance. The place of birth should properly fix the liability, as any other rule would be too vague. From what has been elsewhere stated it will be perceived that intercourse might take place in Scotland followed by conception in England and birth in Ireland. So that there is a due relation between the date of intercourse and the date of birth, no other proof is required.

Posthumous children.—It has been supposed that a case involving a question of paternity might present itself on the marriage of a widow soon after the death of her first husband. If a child were born after the lapse of ten months, it might be a question whether it was a child of the first or second marriage—of the dead or the living husband; and although there might be no dispute concerning its legitimacy, yet it would be difficult to settle its paternity. Such a case appears hypothetical. In order that any doubt should exist, a woman must marry within, at the furthest, six weeks after the death of her first husband, or the birth of the child would fall beyond the furthest limit of gestation, so far as he was concerned. The customs of society are, however, a bar to such marriages; and admitting that a child was so born, and that it might be the offspring of either husband, then the fact of its having been born during the marriage of the second husband would presumptively fix the offspring upon him, unless it could be shown that there was no possibility of access on his part. If there was a supposed greater likeness to the first than to the second husband, still this would not be allowed to defeat the legal presumption of the real parentage of the child. It appears to me that evidence much stronger than this would be required for such a purpose. (See Henke's 'Zeitschrift,' 1838, vol. 2, p. 432.)

Superfetation in relation to legitimacy.—Most medico-legal
writers, in treating legitimacy, have considered it necessary to introduce the subject of superfetation. By this we are to understand that a second conception may at any time follow the first, and that gestation may go on to its full period in each instance independently of the other: so that if a woman were impregnated when in the third month of gestation, she would bear the first child mature in nine months, and the second child, also mature, at the end of twelve months after the first conception. This subject has been said to involve "not only the conjugal fidelity of a wife, but the disposition of property, and much of the comfort and happiness of society." Its importance to a medical jurist appears to me to have been here considerably exaggerated. So far as I have been able to ascertain, not only is there no legal case involving this question to be met with in the judicial records of this country, but none in reference to this state is ever likely to occur which would create the least practical difficulty. If we admit that a woman may, during marriage, present such a deviation from the common course of nature as to produce two perfectly mature and fully-developed children, the one three or four months after the other, how can such an event be any imputation on her fidelity? Superfetation, if it occur at all, may occur as readily in married life during connubial intercourse, as among unmarried women. The following appears to be the only possible case wherein a medical opinion might be required respecting this alleged phenomenon. A married woman, six months after the absence or death of her first husband, gives birth to an apparently mature child, that dies: three months afterwards, and nine months after the absence or death of her husband, she may allege that she has given birth to another child, also mature. A medical question may arise, whether two mature children could be so born that the birth of one should follow three months after the birth of the other; or whether this might not be a case, by no means uncommon, of twin-children—the one being born prematurely, and the other at the full period. (For a case of this kind, at two months' interval, see 'Med. Gaz.' vol. 37, p. 27; and for another, at eight days' interval, see the same journal, vol. 47, p. 227; for a third, at thirty-two days' interval, 'Am. Jour. Med. Sci.' April 1845, p. 503.) In one case the abortion of one fetus occurred at the third month, while the other attained the full period. ('Assoc. Medical Journal,' November 11, 1853, p. 997.)

Admitting that each child when born was mature and fully developed, and therefore that the second child presented a case of superfetation, the first delivery must have taken place in the presence of witnesses, and it would then have been known whether another child remained in the uterus or not. If the two children were born within the usual period of gestation after the absence or death of the husband, then their legitimacy would be presumed, until the fact of non-access had been clearly established. The
mere circumstance of their being apparently mature, and born at
different periods, would per se furnish no evidence of their ille-
gitimacy. On the other hand, if one or both of them were born
out of the ordinary period, then, according to the evidence given,
they might or might not be pronounced illegitimate. The law
therefore appears to have no sort of cognizance of the subject
of superfetation, as such: it is generally merged in the question
of protracted gestation, which has already been fully considered
(p. 607).

Dr. Bonnar has lately examined the subject of superfetation in
another aspect, and some of the facts which he has brought forward
are not consistent with the theory of the births of twins at dif-
ferent intervals (‘A Critical Inquiry regarding Superfetation,
with Cases,’ 1865.) The first question to which his researches
were directed was,—At what period after parturition are the female
procreative organs capable of again exercising their functions?
It has been supposed that a period of thirty days must elapse in
order to enable the organs to reacquire procreative power; but,
according to Dr. Bonnar, the earliest period may be taken at the
fourteenth day after delivery. Impregnation is not likely to take
place until the organs have resumed their natural condition, and
this will depend on the disappearance of the signs of recent delivery
—such as the tender and swollen state of the vagina, the enlarge-
ment of the uterus with its relaxed mouth, and the lochial dis-
charge. The persistence of the lochial discharge, the average
duration of which after delivery Dr. Bonnar considers to be from
one to three or four weeks, is of the greatest importance, as it is
most likely to interfere with impregnation. The time for the
restoration of the sexual organs to their natural state varies in
different women, so that the date for re-impregnation must be
more or less conjectural.

It has been usually considered that after the second or third
month of pregnancy the cavity of the uterus is so sealed up in
the development of the embryo as a result of impregnation, that
it is impossible that any fruitful intercourse can take place. In
two instances, however, according to Dr. Bonnar, viable children
were born of the same woman at five-and-a-half and four months
respectively after the first delivery. On the theory of supercon-
ception the uterine organs must have been susceptible of a second
impregnation up to the fourth month of gestation. But if the
children were not born mature, the power of re-impregnation
must have existed for one or two months longer than the period
usually assigned—i.e. up to the fifth and sixth month of a preg-
nancy already existing. These researches may help to explain
some legal difficulties which have occurred in reference to gesta-
tion. They furnish a curious comment upon the suggestion made
by some medical jurists, that superfetation involves the conjugal
fidelity of a wife, for no suspicion of illegitimacy could be for a
moment entertained simply on account of the shortness of the
interval between the two deliveries of the same married woman.
Supposititious children.—Another medico-legal case, in relation to legitimacy, occurs when a woman feigns delivery, and represents the child of another person to be her offspring. She may substitute the living child of another woman for a dead child of which she herself has been delivered, or for a mole which may have passed from her. So, again, a male may be substituted for a female child, and vice versa. The practising of a fraud of this nature may seriously affect the rights of inheritance of parties; but it cannot be accomplished without great dexterity and cunning, or without the co-operation of several accomplices. Frauds of this kind have, in general, been committed by the aid of a low class of midwives. One instance occurred at Chelsea, in July 1842, where the fraud was brought to light by the death of the supposititious child. The calling-in of a professional man would infallibly lead to discovery, when the question was simply whether delivery had or had not taken place; but if it be alleged that one living child has been substituted for another, the proof of this can depend on medical evidence, only when the age of the supposititious child does not happen to correspond to the date of the pretended delivery. (See ‘Ann. d’Hyg.’ 1829, vol. 2, p. 227.) The legitimacy of the claimant of the Douglas Peerage was disputed on this ground, but apparently without foundation. A remarkable case of this description will be found in Henke’s ‘Zeitschrift der S. A.’ (1845, vol. 2, p. 172); and a trial took place some years since in England, involving the alleged substitution of a child, but requiring no medical evidence for its elucidation. (Day v. Day, Leicester Lent Ass. 1845.) In another case it was proved that a woman had substituted a doll for the dead body of a child of which she pretended she had been delivered. In a case mentioned by Dr. Chevers, one Mussamat Janoo, a midwife of Hisaar, being employed to attend a woman in her confinement, persuaded her that the child of which she had been delivered was a monster with two heads, not fit to be looked at: she afterwards said that it was dead, and she would take it away and bury it. She accordingly went away. Next morning, the midwife’s services being required, she was sent for. She excused herself from going under the pretence that she (the midwife) had just been delivered of a child. This improbable story excited suspicion, and the police were called in: she declared that the child was her own. This she also maintained at the trial. It appeared, however, from the evidence of midwives who examined her shortly after the discovery of the child in her house, and also by the deposition of the civil surgeon, that she exhibited no signs of recent confinement. Several of the neighbours who were constantly in the habit of seeing her, deposed that she had not exhibited any outward signs of pregnancy. She did not attempt to prove how she had disposed of the body of the child which she alleged had died immediately after its birth. She was convicted, and sentenced to imprisonment for seven years. (‘Med. Jur.
for India,' p. 512, from the 'Nizamut Adawlut Reports,' 26th April 1853.)

Cases involving a question of substitution are not very common. One of these (Hutchins v. Hutchins) was heard in the Vice Chancellor's Court in May 1851; and in this the amount of ingenuity required to perpetrate the fraud was only equalled by the skill with which the facts were exposed, and justice ultimately done to the rightful claimant. In another (Gedney v. Smith, Rolls Court, Nov. 1864) the fraud was nearly successful, and, but for the dying declaration of the woman herself, would probably have escaped detection and exposure. The cases that have hitherto been tried, illustrate the importance of accurate observation on the part of medical men in their practice as accoucheurs. Notes of all cases should be made and preserved, including dates of attendance, &c.—daily symptoms and treatment. This should be an invariable rule when a medical man is suddenly called upon to attend in her confinement, a woman who may not have previously consulted him. If he has had no previous knowledge of the pregnancy of a woman, and if when he arrives, the child is said to have been born and is in the hands of a nurse, he should most distinctly satisfy himself, by a personal examination, that the woman has been actually delivered. He should also observe whether the child presents the appearance of a new-born child in reference to the state of the skin; the appearance of the cut navel-string and other circumstances. It is an awkward thing for a medical man to hear at a trial many years afterwards, that his patient was not delivered of a child, that a post-mortem examination of her body had shown that she had never borne a child, and that the supposed new-born babe was, at the date of his first visit, several days old—in short, to find that he himself has been cleverly made to give support to a fraud.

Sexual malformation.—The legitimacy of a child is open to be contested under other circumstances than those connected with the duration of gestation. The alleged parent may have laboured under physical incapacity: if a male, he may have been affected with impotency—if a female, she may have laboured under sterility; and if either of these conditions be proved, the illegitimacy of a child will be established, although the alleged period of gestation may be comprised within the ordinary limits. The sexual conditions now about to be considered have also important bearings in relation to divorce, and occasionally to the civil rights of a child that may be the subject of the malformation. One of the most common and obvious causes of impotency or sterility is malformation of the sexual organs, to which species of monstrosity the term Hermaphroditism is commonly applied.

Owing to arrested development, during the growth of the foetus, the sexual organs, which can scarcely be distinguished at the fourth month, occasionally assume an abnormal arrangement. These organs appear to be at that time more or less mixed; and sometimes the
male and at others the female characters predominate. With this
defective sexual development, the other peculiarities of the sexes
are either wanting, or more or less blended. When the being has
the general characters of a male with malformation of the generative
organs, it is called, androgynus—when the characters are those of a
female with a like malformation, androgyna. There can be no
difficulty in identifying such cases, and, according to the degree of
malformation, a medical jurist can have no hesitation in pronouncing
these persons to be physically impotent. The organs are commonly
so defective as to be wholly unfitted for the functions of either sex.
It is not intended to be said that it is in all cases easy to assign the
sex, but this is of minor importance: the main question is, whether
the malformation is or is not such as to justify divorce, or to throw
the imputation of illegitimacy upon children claiming to be the off-
spring of these beings?

Distinction of sex.—The determination of sex in these cases of
deformity has been considered to be necessary under certain circum-
stances; as when, for instance, a title or entailed inheritance of lands
is in question. Lord Coke has stated that, according to the law of
England, an hermaphrodite may be either male or female, and it
shall succeed according to the kind of sex which doth prevail. Thus
it is obvious that the law will decide each case according to the
special circumstances attending it, but it must not be supposed that
the decision is so easy as Lord Coke's dictum would imply. There
are many cases in which neither sex can be said to prevail: the
beings are positively neuter. The chief character of the male
consists in the presence of testicles, and of the female in the
presence of a uterus and ovaries, but in one instance both the tes-
ticles and the ovaries were wanting; there were no essential charac-
ters of either sex, and during life it would have been impossible to
say whether this being was male or female. (Cormack's 'Monthly
Journal,' July 1845, p. 492.) In the same journal (page 531) is
reported another case, in which, notwithstanding the external re-
semblance to a female, the presence of one testicle in a scrotum
showed that the being was of the male sex: yet this person passed
for a woman until he had reached his 26th year! It is rare that
there is external malformation without internal defect, and even
when the female character preponderates, it is not improbable that
the uterus or the ovaries may be absent, or the former may be mal-
formed. Such beings are not known to menstruate, and even if
there should be capacity for intercourse, they are permanently
sterile. Sexual desires are, however, commonly absent. When the
person is young, mistakes respecting the sex are more common than
at an advanced period of life. So soon as the age of puberty is
past, certain changes take place in the configuration of the body,
which may aid a medical practitioner in forming an opinion. Thus
a grave tone of voice, the presence of a beard, the width of the
shoulders, and narrowness of the pelvis will indicate, ceteris
paribus, the male sex; while when these conditions are absent,
and there is a rotundity of the members, with want of prominence in the muscles, and a great development of the breasts and pelvis, the female sex predominates. Although no testicles are apparent, still the being may be of the male sex, since it is well known that in persons otherwise well-formed these organs are not always found in the scrotum.

An external examination will sometimes entirely fail to indicate the sex, and even the opportunity of an examination of the dead body may leave the case in doubt. An ingenious writer has laid it down that there are analogous organs in the two sexes which are never found in the same subject, and the separate existence of which would enable us to determine the sex. These analogous parts are the penis and the clitoris; the scrotum and the labia; the testicles and the ovaries: the prostate gland and the uterus. This however, is an artificial and, as facts show, an incorrect means of distinction: see report of a case in which a body resembling the prostate gland and a uterus coexisted in the same being. ('Med. Times and Gaz.' February 18, 1860, p. 177.) If a penis could always be clearly distinguished from a clitoris, and a scrotum from the labia, the rule might be serviceable; but it fails where it is most required, i.e. in the mixed conditions. As to the other means of distinction, even if correct, they will only enable an examiner to form an opinion of sex in the dead, whereas it is during the life of one of these beings that the law requires the aid of medical science in the solution of the question. A case has been already mentioned in which neither testicles nor ovaries were found after death, and more than one instance has occurred in which both have been found. This last condition is a case of intermixture of the sexes, or, physically speaking, real hermaphroditism, but of course without the functional power of self-impregnation.

Medico-legal relations.—Persons in whom the sexual organs are defective or imperfectly developed, are impotent and sterile. Questions connected with the legitimacy of offspring, divorce, and affiliation may, therefore, be raised with respect to them. Sexual monstrosity is not a ground for depriving a being of the rights of inheritance, except under peculiar legal conditions. Thus a right of succession or inheritance to landed estate may depend upon the sex of the offspring: as where, for instance, two children are born, the first an hermaphrodite, the second a well-formed male child. The parents die, and a title of nobility or lands may fall to the firstborn male. Here the sex of the firstborn must be determined before possession can be had. In a case of this kind, if medical evidence should establish that male peculiarities predominate in the first-born, the second child would be cut off. Again, if an estate were limited by entailment, as where it is settled upon heirs (male or female) of a particular family, the birth of an hermaphrodite, an only child, would create a legal necessity for a positive determination of the predominance of sex. So, if an hermaphrodite live but a few minutes after its birth, and then die, the rights
of persons may be subsequently much affected by the opinion of the medical attendant respecting its sex. Since we cannot determine under what circumstances litigation may ensue, it is always right in a doubtful case to observe the sex, and make notes on the spot when a child thus malformed, survives its birth but for a short period. The question of tenancy by courtesy, or the right of the husband to landed estate of which the wife was seised, will depend entirely upon the attention of the accoucheur to this point.

When these beings have reached adult age, other questions may arise with respect to them. According to an old law of France, an hermaphrodite was permitted to choose one sex, and thereafter compelled to keep it! The English law is not so liberal: it does not allow them to select their sex, but determines it for them by medical evidence. Hermaphrodites, or sexual monsters, were formerly ranked with infamous persons; and it has been a grave question in our Courts, whether the calling a man an hermaphrodite was not such a libel or slander upon him as to render it a ground for a civil action. In a case reported by Chitty ("Med. Jur." p. 374), the use of this term was held not to be actionable unless it was proved that it had been attended with special damage. A dancing-master brought an action against a person for calling him an hermaphrodite, and it was decided that it was not sustainable:—1. Because such a union of the sexes cannot exist in fact, and every one must be supposed to know it; consequently the assertion could not be supposed to prejudice 2. Because, admitting the possibility of such a double function, the party would be just as good, and perhaps even a safer dancing-master than if only one perfect sex had been discoverable; consequently, the words would not, in legal presumption, injure him in his profession or occupation!

It would appear that in the United States the rights of citizenship, and the privilege of voting for members of Congress, have depended on the determination of sex. In March 1843, Dr. Barry was requested to examine a person named Levi Suydam, aged 23 years, a native of Salisbury, Con. At the exciting and warmly-contested election of the spring of that year, almost everything bearing the semblance of the human form and of the male sex, is stated to have been brought to the ballot-box. It was at this time, and under these circumstances, that the above-mentioned person was presented by the Whigs to be made a freeman; he was challenged by the opposite party, on the ground that he was more a female than a male, and that in his physical organization he partook of both sexes. Without going into the details of his physical organization, it may be stated that, as he was found to have a penis and one testicle, the privilege of a vote as a male citizen was conceded to him. It was, however, subsequently proved that this being regularly menstruated, and that it had other female peculiarities. This was certainly an embarrassing case,—one to which
Lord Coke's rule for a decision, i.e. the prevalence of either sex, is hardly applicable. The presence of a penis and one testicle referred the being to the male sex, while the bodily configuration, and still more strongly a periodical menstrual discharge, referred him to the female sex. The right of voting might have been fairly objected to, because, while the female characters were decided, the organs indicative of the male sex are described as having been imperfectly developed.

IMPOTENCY. STERILITY.

CHAPTER 57.

Definition.—Impotency is defined to be an incapacity for sexual intercourse. It may depend—1st, upon physical, 2ndly, upon moral causes. With regard to the moral causes of impotency, they do not concern a medical jurist. Such causes are not recognized by law, and he has no duty to perform beyond the application of the principles of medicine to the purposes of the law.

Causes.—Impotency may arise from age,—from certain physical causes, e.g. disease,—or from congenital malformation or defect. With regard to physical causes, a distinction must be made between those which are remediable and those which are not. The presence of a disease of the testicle, such as atrophy or fungous tumour, may give rise to incapacity; but this incapacity may be sometimes removed by an operation or by medical treatment, and therefore the physical cause may be removed:—in other words, it is remediable. To such cases as these, the law does not extend; but it is always expected, in alleged incapacity, that the practitioner examined on the subject should be able to say whether there is or is not a prospect of cure. In forming a judgment upon this point a good knowledge of his profession can alone assist him; no rules can be laid down for his guidance, for there may not be two cases that will precisely resemble each other in their features. Hence it will be necessary in this place to point out the chief causes of impotency which are of an irremediable nature, or those in which the incapacity is absolute and permanent; a point upon which medical opinion is chiefly required.
CAUSES. PROCREATIVE POWER.

In strictness of language, the definition of impotency as above given, may be applied to a female as well as to a male; and undoubtedly, a physical incapacity for sexual intercourse may exist in either sex. As an instance of this incapacity in the female, may be mentioned occlusion of the vagina—a condition not necessarily indicative of sterility. The mere occlusion of the vagina may be a remediable form of the malady; but its entire obliteration would be absolute and irremediable. This latter condition, however, is the only instance of complete impotency in a female. A protrusion of the uterus or of the bladder into the vagina is mentioned by some writers as a cause of physical incapacity for intercourse; but these forms of disease may commonly be remedied by art, and therefore require no further notice in this place.

In professional language, the term impotency has been hitherto applied exclusively to a defect in the male sex; and the term sterility is usually confined to all those conditions in the female which not only render intercourse impossible, but which render it unfruitful. A male may, however, be sterile without being impotent—a condition observed in some cryptorchides; or he may be impotent without being sterile, as where proper intercourse is prevented by reason of physical defect in the virile member, although the testicles may be in a normal condition. See on this subject, Curling on 'Sterility in Man' (1864). This author points out that sterility in the male, apart from impotency, may depend on three causes—1st, malposition of the testicles; 2ndly, obstructions in the excretory ducts; and 3rdly, impediments to the escape of the seminal fluid. A man may not be impotent, i.e. incapable of intercourse, but, by reason of one of the conditions above-mentioned, such intercourse would be unfruitful. In reference to the male, the English law does not appear to go beyond the establishment of impotency from some clear and demonstrable cause, and unless the alleged sterility were accompanied by impotency, it would take no cognizance of that condition. Further, sterility from such causes could hardly be demonstrated during the life of a person—it would rest chiefly on presumption or probability.

Procreative power in the male. Puberty. — Until the period of puberty the testicles are small, and they increase very little in size in proportion to other parts. Mr. Curling found that the size of the seminal tubes differed but little at the ages of 18 months and 8 years. The sexual function in the male depends entirely on the development of the testicles; but the age at which it appears, differs in different persons. The age of puberty in a healthy male in this country varies from 14 to 17 years; its appearance is, however, affected by climate, constitution, and the moral circumstances under which the individual is placed; in some cases it is not fully developed until the age of 21.

The access of puberty in the male is indirectly connected with the subject of rape. A boy under the age of fourteen years is.
presumed in law to be incapable of committing a rape. (1 Hale, p. 631, and Mathew's 'Digest,' p. 57.) This presumption is probably based on the supposition that a boy at that age is impotent. The statute law, however, now merely requires proof of penetration, and rape therefore may be physically perpetrated by a boy at or even under 14 years of age. In Reg. v. King (York Winter Ass. 1853), a boy aged 16 was convicted of rape on a girl under 10 years of age. In a case elsewhere related (see Rape), a boy aged 19 communicated syphilis to a girl of 6 years of age. It appears that in India puberty shows itself much earlier in the male. Dr. Chevers, quoting from the 'Nizamut Adawlut Reports,' states that a boy of 13 or 14 years of age was found guilty of rape and sentenced, in consideration of his youth, to three years' imprisonment. A lad of 14 was convicted of rape on a girl of the same age; and in another case a boy only ten years old, was convicted of rape on a girl 3 years of age! He was sentenced to a year's imprisonment. ('Med. Jur. for India,' p. 463.)

The seminal secretion in the male is not considered to be prolific until it contains those peculiar filiform bodies which are known under the name of spermatozoa or zoosperms. These are regarded by some physiologists as parasitic animals, but by others, with some probability, as freely moving cilia. ('Recent Advances,' Baly and Kirkes, 1848.) All agree that they are normal and essential constituents of the healthy and prolific seminal fluid. They are peculiar to the spermatic secretion, and, in healthy males, are always present in it after the age of puberty. They disappear in certain states of disease, and sometimes in advanced age: they have not been found in the undeveloped testicles of cryptorchids. In cases in which they are absent, from whatever cause, it is a fair inference that the person is impotent, or that he has lost the power of procreation. (See on this subject 'Observations on Sterility in Man,' by T. B. Curling, 1864.) In this pamphlet one case is related in which a man, aged 42, who was married, and whose wife had borne a son then eight years of age, had died after four days' illness from strangulated hernia. The testicles, from the fact of their being found in the inguinal canal, were examined separately by Drs. Gosselin and Godard, and no spermatozoa were discovered in the fluid contained in either of them; but these may have been merely absent at the time of examination, as the child begotten, was then eight years of age. During this long interval, the secretion may have undergone a change, and have become unprominent.

Impotency from age.—It may be fairly assumed that a male is incapable of precreating until spermatozoa have appeared in the seminal secretion, and that he loses this power when they disappear. The age at which they are formed, varies with all the causes that affect puberty. In one instance they were found by Casper in the seminal fluid of a cryptorchid boy only 14½ years old, and Mr. Curling found them in the secretion of a boy aged
18. This gentleman found spermatozoa in the liquid taken from the testicles of a man upwards of 70 years of age, and on one occasion in the testicles of a person aged 87. Wagner states that they are to be found in the secretions of men between 70 and 80 years of age. M. Rayer found them in the secretion of a man aged 82 years (‘Gaz. Méd.’ June 2, 1849). Other cases of a similar kind are recorded by Debrou (‘Gaz. Hebdom.’ 4th Janvier, 1861, p. 6.) Facts tend to render it highly probable that a fecundating power may be retained by the male up to the age of 100. According to Dr. Duplay, the seminal fluid of old men contains spermatozoa even when they are beyond the age of fecundation (‘Med. Times and Gaz.’ June 4, 1853, p. 581); but he does not state the circumstances which enabled him to arrive at this conclusion. Sexual propensities are often strongly developed in children, and thus they may be prolific at an early age. Dr. Rütter met with a case in which a female at the age of 14, became pregnant by a boy of the same age. (Henke’s ‘Zeitschrift der S. A.’ 1844, p. 249.) This is the earliest age at which, so far as I can ascertain, the procreative power has appeared in the male. Dr. Hartshorne refers to an instance of extraordinary development of the male sexual organs in a child 4 years old. (‘Amer. Jour. Med. Sci.’ Oct. 1852, p. 561.) In a case of contested legitimacy or affiliation, this question regarding the age at which a procreative power appears in the male, may have an important bearing on the issue. Thus the person may be so young as to render it impossible that he should be the father of a child imputed to him. Cases involving questions of legitimacy on this ground are not heard of in the present day: but in ancient law-books there are decisions relative to the illegitimacy of children born during marriage, because the alleged fathers were 7, 6, and even 3 years old! (Amos.)

The following case in reference to the affiliation of children occurred in 1840:—A woman wished to affiliate a child on a youth who was in his sixteenth year. The boy denied that he was the father of the child; and there was reason to suspect that the imputation had been wrongly thrown upon him in order to divert suspicion from the real offender. There was some difficulty in this case; but it appears to me that the rule for a medical man to follow on these occasions is this:—not to regard the mere age of the youth, whether he is above or below the average age of puberty, but to observe whether the sexual organs are fully developed, and whether there are about him any of the marks of virility, indicated by muscular development, the growth of a beard, and a change in the voice. If these signs are present, whatever may be his age, there is strong reason to suppose that the sexual functions are developed. We occasionally hear of instances of extraordinary precocity; but the development of sexual power is generally accompanied by other well-marked changes in the person. Sometimes these changes do not make their appearance until after the age of 21.
LOSS OF VIRILITY IN OLD AGE.

On the other hand, it may be a question at what time the procreative power disappears in a male. That impotency is one of the natural consequences of advanced age is undoubted; but this, as we know, forms no legal impediment to the marriage of parties, however old. The legal presumption is, that the generative faculty does not disappear through age; and if this be alleged, and legitimacy disputed on this ground, it must be satisfactorily proved by those who would benefit by the allegation. This amounts to almost an impossibility, because it is well known that there is no fixed age at which the sexual functions cease either in the male or female; and individuals at least of the male sex, who had passed the ages of 60, 70, and even 80 years, have been known to be capable of fruitful intercourse. M. Duplay believes, from his anatomical observations on the bodies of aged persons, that the causes of impotency (sterility) in advanced age, are to be found rather in the excretory than in the secretory apparatus. Thus he has met with obliterations in the canal of the epididymis, the vas deferens, and the vesicule, the effect of which is to prevent the accumulation and passage of the seminal fluid. ("Med. Times and Gaz." June 28, 1856, p. 650.) Lord Erskine, in the Banbury Peerage claim, quoted the case of Sir Stephen Fox, who was married at 77, and had had four children, the last when he was 81. Dr. Schneider met with a case in which a man of 71 had a child by his wife, who was only 17. (Henke's "Zeitschrift," 1842, vol. 2, p. 165.) Dr. Rütte1 mentions the case of a man who, at the age of 92 years, married and had two children by his wife. When the procreative power even appears to be lost at an advanced age, the stimulus for intercourse is often very great. The same authority mentions cases in which these erotic feelings were remarked by him in reference to men between 75 and 86 years of age. (Henke's "Zeitschrift," 1844, p. 252.) In all cases of prolonged virility, it is observed that the bodily and mental powers are also retained in an extraordinary degree, showing the close relation which exists between the sexual function and corporeal and mental development, even to the latest period of life. Sir S. Romilly remarked, in reference to the retention of procreative power in advanced age, that the liberality of the English law on this subject was excessive; for there was no age, from seven upwards, at which a man had been denied the power of procreating children! (See, in reference to this subject, Henke's "Zeitschrift der S. A." 1842, p. 332.) Males at the age of 14, and females at the age of 12, are legally competent to contract marriage.

Impotency from local disease or accident.—The loss or destruction of the penis or testicles, either by disease, accident, or from necessary operations, would be sufficient to render a man irremediably impotent. The loss of one or both testicles, from any of these causes, would be indicated by the presence of distinct cicatrices in the scrotum. When both have been removed by operation, the person is incurably impotent; but if the organs are healthy, a suffi-
Impotency from Disease.

631

ciency of the spermatic fluid to confer procreative powers may remain in the ducts for two or three weeks after the operation. Thus it is that animals have been known to be prolific for a certain time after castration; and one case is on record, in which a man, both of whose testicles had been carried off by a gunshot, is said to have retained the power of impregnating his wife after the healing of the wound. (See a paper by Dr. Krügelstein, Henke's 'Zeitschrift,' 1842, vol. 1, pp. 349 and 352.) The loss of one testicle only, by accident or operation, does not render a man impotent. Monorchides, as they are called, have been known to be prolific. Cases of this kind must not be confounded with those in which one or both testicles have not descended into the scrotum.

In some rare instances the testicles do not descend into the scrotum at the usual period: but one or both may remain either in the abdomen or in the inguinal canals, and only descend some time after birth; or one may be found in the scrotum, and the other remain during life in the abdomen, or both may be retained in the abdomen. In some cases of partial descent, the organs have been mistaken for, and treated as, ruptures by the application of a truss! (Henke's 'Zeitschrift der S. A.' 1844, vol. 1, p. 249; Curling on 'Disease of the Testis,' 2nd ed. p. 31.) In one instance the attempt to reduce the tumour, mistaken for hernia, and the application of a truss, caused the death of the person. ('Med. Times and Gaz.' March 2, 1861, p. 240.) When one testicle only has descended, there is no ground, ceteris paribus, to impute impotency: the descended organ has been found healthy and to contain spermatozoa. Mr. Curling has collected six cases in which the retained testicle and its ducts did not contain spermatozoa: four of these fell under his own observation. ('On Sterility in Man,' 1846, p. 6, and 'Med. Times and Gaz.' Feb. 23, 1861.) When neither testicle has descended, the scrotum will be found empty, without any scar indicative of a removal by operation, but the other marks of virility may still be present. These persons have been called Cryptorchides. It has been stated that in such cases the testicles are to be regarded as congenitally defective, and further that the individual, although capable of sexual intercourse, is incurably sterile.

The non-descent of the testicles is a state rarely seen. Mr. Marshall met with only one case of non-descent of one testicle in 1,000 recruits, and with one case of non-descent of both testicles in 10,000 recruits. There are three preparations, showing the non-descent of these organs, in the Museum of Guy's Hospital; one of them was taken from a gentleman who shot himself from despondency at his supposed defective condition. Hunter thought that the undescended testicles were always imperfect both in their structure and functions, and that cryptorchides were invariably impotent (sterile). Some recent researches have tended to support the views of Hunter. In January 1860, Mr. Partridge communicated to the Pathological Society the case of a man of 25, in whom both testicles were found in the abdomen. Several specimens of the secretion from
these organs were examined, and no spermatozoa were detected. Another case was examined with a like result ('Lancet,' January 1860, p. 66), and a third by Mr. Curling ('Med. Times and Gaz.' February 23, 1861). The conclusion to which these observations have led is, that although in cases of non-descent there may be a capacity of sexual intercourse, it would not be prolific: the person will be sterile. According to this view malposition of the organs must be taken as synonymous with defective condition: as a result of this malposition they are not capable of secreting prolific spermatic fluid, and the person is as sterile as if he had no testicles. The cases of monorchides reported by Mr. Curling (op. cit. p. 8) to some extent support this theory, since spermatozoa were found only in the fluid of that testicle which occupied its usual position in the scrotum. He has also collected from various sources seven cases of crypsorchides, in which both testicles were either in the abdomen or in the inguinal canals; the fluid contained in them was destitute of spermatozoa, and although impotency did not exist, these persons either were or were presumed to be unprolific. M. Godard has noticed that horses whose testicles are retained in the abdomen, although capable of intercourse, are sterile.

On the other side of the question there are, however, facts which are wholly inconsistent with this theory. Many years since I published the account of two cases of crypsorchides communicated to me by my friend and colleague, Mr. Cock. The testicles in these men had not descended, but their virile functions were undisputed. One of them, before he had reached the age of 30 years, had been twice married, and had had children by each wife, besides illegitimate children which were affiliated on him during the time he lived in service. In a report of cases of hernia by the late Mr. Poland ('Guy's Hospital Reports,' 1843, vol. 1, p. 163), there is the case of a man, aged 29, a crypsorchid, whose testicles had not descended. Mr. Poland states that there was not the slightest trace of scrotum; the penis was well-developed, and there were all the other signs of virility. This man had married when he was 20: he had had two children by his first wife, and at the time of his admission into the hospital, had been married two years to a second wife. In January 1862 I saw, in Guy's Hospital, a patient under Mr. Durham: the testicles of this man had not descended— they were lodged in the inguinal canals. The man was 32 years of age, well-developed, with every appearance of virility about him, and with the same masculine development which is seen in other men of the same age. This man was married, and had had two children by his wife. Since puberty he had always been competent, and he ridiculed the idea that his testicles were insufficient. Another case is referred to by Mr. Curling (op. cit. p. 9), which occurred to Dr. Debrout, of Orleans. The testicles were in the inguinal canals: there was no scrotum. The man had been married, and had had one son by his wife. These facts prove that crypsorchides, in some cases, have a power of procreation like normally constituted men.
Casper relates a case in which a cryptorchid was charged with an unnatural offence. He was a boy between 14 and 15 years of age, and it appeared that he had been guilty of unnatural conduct towards another boy 8 years of age. Spermatozoa were detected by Casper on his shirt sixteen days after the act. On examining the boy, both testicles were found in the inguinal canals. (‘Ger. Med.’ vol. 2, p. 187.)

By these facts, therefore, it is satisfactorily established that cryptorchides are not necessarily sterile, and that no absolute rule can be laid down respecting the existence or non-existence of prolific power under such circumstances. It has been objected that in the above instances of prolific power, spermatozoa had not been demonstrated to exist in the spermatic secretions of the individuals, and that the evidence was therefore incomplete. But these bodies were not proved to be absent, and most persons will agree that there is no better evidence of prolific power than the procreation of children, whether spermatozoa are or are not detected—a matter which will sometimes depend on the accuracy of observation or experience of the examiners, or, it may be, on a morbid state of the secretion. If none were found under these circumstances, it would prove only that our present theories of generation would require to be modified. One affirmative instance is sufficient for all the purposes of law, to overthrow ninety-nine negative instances; and as a physiological fact, it is obvious that the organs which have not descended, are not always defective in structure or function. The cases hitherto observed are so nearly balanced that it is difficult to say whether it is the rule or the exception that cryptorchides should be found prolific: the facts above mentioned clearly prove that there is no reasonable ground for pronouncing them to be absolutely sterile or unprolific, merely because their testicles are not in the scrotum. If with a non-descent of these organs there should be a non-development of the other external organs, and this is accompanied by a total want of the characters of virility, then the person may be regarded as impotent or sterile. The testicles may, in such a case, be either congenitally absent or physically imperfect—a fact only ascertainable by an examination of the body after death. On the other hand, in cases in which there are no external marks of effeminacy, or other grounds for suspecting a want of procreative power, and the person is capable of sexual intercourse, this imperfection does not offer any bar to marriage, nor is it a sufficient ground for divorce. It would not justify a medical man in denying the paternity of a child on a question of affiliation, bastardy, or inheritance; and so long as a power of sexual intercourse existed, it would not justify him in pronouncing a person to be incurably sterile. The capacity for sexual intercourse is the fact to which the English law commonly looks on these occasions. If this exists, then it will hardly entertain the question—surrounded as it may be with conflicting medical opinions,—whether, from the mere retention of the organs in the abdomen, the fluid secreted is or is not, microscopically speaking, of a prolific nature.
Women may be sterile from a variety of causes affecting the internal organs, only ascertainable after death. The ovaries may be so diseased that no prolific intercourse can take place, although there may be no physical incapacity. In a case related elsewhere, the incapability of conception on the part of a woman was held by Dr. Lushington not to be a sufficient ground for pronouncing a sentence of nullity of marriage (p. 644, post); and doubtless a want of power on the part of a man to effect impregnation, unless it depended on some visible physical defect, would be viewed in a similar light. Such persons are not impotent but sterile, and sterility in an irremediable form, is rather assumed than demonstrated to exist.

The presence of what have been called supernumerary testicles does not affect the virile powers of a person. These have in general been found, by dissection, to be tumours connected with the healthy glands, and not at all adding to, or interfering with their functions. Even the presence of two or three penes, according to Mendel, is no bar to the exercise of sexual power, provided only one possesses the normal characters of the male organ. ('Ausführl. Handb. d. ger. Med.' vol. 4, p. 337.) In the summer of 1865, a Portuguese youth, aged 19, I. B. dos Santos, was seen by many medical men in London. He was well formed except in reference to the sexual organs. He had two complete and well-formed penes, placed side by side: the right somewhat smaller than the left, and both subject to erection at the same time. He stated that he used the left in sexual intercourse. On the outside of each penis was a scrotum with one testicle fully developed. Between them was a shrunken scrotum which contained two testicles until he was 10 years old, when they ascended into the abdomen. When the bladder acted, urine issued from both penes. An engraving of this remarkable malformation is given with the history of the case in the 'Lancet' of July 29, 1865, p. 124.

In some instances there is an arrest of development in the external organs: and with this there is generally an absence of sexual desire. Certain diseases of the appendages of the testicles may, however, render a person sterile. The spermatic secretion is commonly suspended in most severe diseases which affect the body. A frequent cause of impotency (sterility) in the adult, when the organs are apparently sound, is spermatorrhœa, arising from abuse or excess. This, however, is remediable to a greater or less extent by treatment. (See Curling, 'Diseases of the Testis,' 2nd ed. p. 386; also 'Med. Times and Gaz.' Jan. 23, 1858, p. 95.) The incapacity for intercourse in either sex may arise from extensive disease affecting parts in and around the organs of generation. The medical opinion here must be regulated entirely by the circumstances attending each case.

On the absence of the penis, as well as on its defective organizations, as causes of incapacity, some remarks have been already made. Sometimes the defect is merely connected with the urethra. Thus the orifice may be on the dorsum penis, and in other cases
underneath the organ, so that the urethra may terminate at a variable distance from the glans penis. Those labouring under the former defect are said to have *epispadia*, and under the latter *hypospadias*. The power to have fruitful intercourse will in either case depend on the situation of the urethral aperture. Some doubt has existed respecting the virile powers of those who are affected with *hypospadias*; but Rüttel knew an instance of an *hypospadian* having several children. (Henke's *Zeitschrift,* 1844, p. 258.) In September 1850, a lad, aged 17, was summoned before the magistrates of Kidderminster on a charge of *affiliation*, in reference to the pregnancy of a girl aged 18. The defence was that he could not be the father of a child, because there was such a malformation of the penis as to prevent prolific intercourse. On examination, the urethra was found to terminate on the under surface of the penis, about an inch and a-half from the glans, by a small elliptical orifice, which allowed the urine to pass, but with some difficulty. One medical witness gave it as his opinion that it was not impossible, but highly improbable, that the defendant should possess procreative power; another freely admitted the boy's capacity, and the case was decided against him. ('Med. Times,' Sept. 21, 1850. p. 321.) This decision was physiologically correct. When the urine can pass, the seminal fluid can pass; and the only question is, whether the intromission can be such as that the misplaced orifice should come in contact with any part of the vagina or even the vulva? This must depend on the situation of the orifice. [Cases illustrative of the prolific powers of *hypospadians* will be found in the *Med. Times,* Sept. 14, 1850, p. 292, and Oct. 12, 1850, p. 392. An instance of the virility of an *hypospadian* has also been published by Mr. Noble, of Manchester, in the *Assoc. Med. Jour.* March 1853, p. 236.] Similar remarks apply to *epispadians*. These malformations are sometimes remediable: but whether remediable or not, they are not, under any circumstances, to be regarded as absolute causes of impotency.

Impotency from general disease.—The influence of local disease in affecting virility has been already considered. But there is a class of cases which may come before a practitioner, in which, with well-formed and healthy organs in the male, there will be a state of impotency, or incapacity for intercourse. Sometimes this may depend on natural weakness of constitution, or on a want of proper development of the muscular and nervous systems: at other times it may be due to certain diseases, and it is then of a temporary nature—persisting while the body is still suffering from the disease and disappearing on recovery. As a converse fact, there are some diseases which appear to bring out the dormant virile powers of persons, or to excite to a higher degree of intensity those which already exist. Thus it is said that in convalescence from fever there is, occasionally, extraordinary salaciousness: but this statement requires confirmation. Again, there are diseases which neither interrupt nor affect the exercise of the sexual functions. As a general rule, diseases which do
not affect the brain or spinal marrow, and which are not attended with
great bodily debility, do not prevent fruitful intercourse. On the
other hand, diseases which are attended or followed by great debility
or cerebral exhaustion, suspend or destroy sexual power. Among
these may be mentioned water in the chest, general dropsy especially
if attended with effusion in the sexual organs,—nervous and malign-
ent fevers which affect the brain,—apoplexy, palsy, and other
diseases which directly attack the brain or spinal marrow. These
last-mentioned diseases probably act by suspending the secretion or
altering the nature of the prolific fluid, as well as by preventing that
eraction of the male organ without which intercourse cannot take
place. The sexual function is so intimately allied to bodily vigour
and nervous energy, that the integrity of the one may be pro-
nounced to be essential to the integrity of the other. Habits of
drunkenness and the abuse of alcoholic liquids, tobacco, or opium,
may give rise to impotency by the injury done to the brain and
nervous system. (The reader will find this subject fully discussed

In Wood v. Hotham, Jan. 7, 1864, the defendant, a surgeon, was
sued for a sum of money for his wife’s maintenance. He alleged,
in defence, that his wife had been guilty of adultery, and that one
of two children born during the marriage was not his. He assigned
as a reason for this, that he was so ill at the time that it was impos-
sible he could have had connection with his wife. It appeared,
however, that he was then in the habit of sleeping with her, and
he was sufficiently strong to go his round of daily visits. The
learned judge, in remarking upon this point, said if such evidence
were to be held sufficient proof of illegitimacy, the whole of the
law relating to the access and non-access of a husband must be set
aside. The jury returned a verdict for the plaintiff.

Diseases and injuries of the spinal cord producing paraplegia
have no direct effect on the testicles, but destroy the power to
copulate. (Curling, op. cit. p. 371.) When there is a wasting
of the testicles, as a result of general paralysis of long standing,
there can be no doubt of impotency; but Mr. Curling quotes a case
from a foreign writer in which, under paralysis (paraplegia) of some
years’ duration, a man retained sufficient sexual power to have pro-
licof intercourse. When the paralytic person is advanced in age, it
is highly probable that he is impotent. In December 1857 a case
was referred to me, in a question of bastardy, for my opinion on a
capacity for intercourse under the following circumstances. A wo-
man required an order of affiliation on the putative father of her
bastard child. She was a widow, and the illicit connection took
place about two months before her husband’s death. The husband
was at the time 84 years of age; he was bedridden, and for many
weeks before his death he could not move in his bed, and was unable
to pass his urine without assistance. The medical opinion of those
who examined him was that he was impotent from physical infirmity,
and in this opinion I concurred; stating, however, that unless the
male organs were diseased or destroyed, it could not be said that intercourse was impossible. It was, however, wholly improbable that the husband could have been the father of the child.

Blows on the head or spine, by affecting the brain and spinal marrow, may produce impotency. Several cases of impotency from this cause are related by Curling (op. cit. p. 362). It has been noticed that blows on the under and back part of the head, in the region of the cerebellum, have been followed by loss of sexual power on recovery. Sometimes this is temporary; but at other times, when there is wasting of the testicles, it is permanent and irremediable.

Of moral causes it is unnecessary to speak. The sexual desire, like other animal passions, is subject to great variation; and there are instances on record in which men, otherwise healthy-looking and healthily formed, have experienced no desires of this kind. They are in a state of natural impotency—a condition which the Canon Law designates as frigidity of constitution. This is not to be discovered by external examination, but rather from their own admission. Under this head we may class hypochondriacal affections.

Sterility. Definition.—Sterility is usually defined to be 'the inability to procreate, or a want of aptitude in the female for impregnation.' It is not usual to speak of sterility in the male, although there may be procreative incapacity; because the defective condition in this sex, from whatever cause, is, in a legal point of view, included under the term 'impotency' (see p. 626, ante). In the strictness of language, a male who has been castrated is sterile; but it is commonly said that he is impotent. Many apparently well-formed males may be sterile without being impotent, i.e. they may have intercourse without procreating; for the power of copulating must not be confounded with that of procreation. Mr. Curling has pointed out that various causes may render a male sterile, although he may retain a power of sexual intercourse, and thus cannot be regarded as impotent in a legal sense. ('Diseases of the Testis,' ed. 2, p. 216.) Some cryptorchidæ may be sterile or deficient in procreating power, while at the same time impotency or incapacity for intercourse may not exist. In reference to women, sterility implies that condition in which there is an 'inability to conceive.' This appears to be the true meaning of the term, and the sense in which it is used not only by the best writers but in common phraseology.

Procreative power in the female. Puberty.—In the female, the procreative power is supposed not to exist until after the commencement of menstruation, and to cease upon the cessation of this periodical secretion. The menstrual function is commonly established in females in this climate between the ages of fourteen and sixteen; but it may occur much earlier—indeed, in some rare instances, a discharge resembling the menstrual has been known to occur in mere infants. In other cases its appearance has been protracted to a much later period. Dr. Cohnstein states that the average duration of this function among women in 400 observed cases, was 31 years. ('Brit. Med. Jour.' May 1873). According to Dr. Rütte, the menstrual
function appears in the smallest number of females at 12, 13, and 14, and in the largest number at 16, 17 and 18 years. In some it is only first established from 19 to 21 years; and he states that at this age he has often found the uterus small and quite undeveloped. The earliest and latest periods in a large number of cases were respectively 9 and 23 years. ('Lancet,' Nov. 30, 1844, p. 283.) Perhaps in this country, the most frequent age for the commencement of menstruation may be taken at 16 years. It is liable to be accelerated in its appearance by certain moral and physical conditions under which a girl may be placed. The most common intervals for its appearance are twenty-eight and twenty-one days. It sometimes does not appear until late in life. Dr. Campa found that it had not appeared in a married woman, aged 30, who had borne no children. ('Med. Gaz.' vol. 32, p. 409.) Another case is mentioned in the same volume where it appeared for the first time at the age of 47 (p. 567.) So soon as this function commences, a woman may be considered to have acquired procreative power; but a female may conceive before the function has commenced, during the time of its occurrence, or even after it has ceased. From facts elsewhere stated, there is some reason to believe that the period which immediately precedes or follows the discharge is most favourable to conception: although the experience of many accoucheurs has shown that impregnation may take place at any time between one menstruation and another (p. 588, ante).

It is important to remember that these changes in the uterus may produce remarkable effects by sympathy with the brain and nervous system. At or about the time of puberty, especially if any cause of obstruction exists, some girls are observed to become irritable, easily excited, and they have been known to perpetrate without motive, crimes of great enormity, such as murder and arson. A propensity to steal is also stated sometimes to manifest itself. (See post, KLEPTOMANIA.) It has been remarked that acts of arson and murder have been frequently committed by girls at this period of life without any apparent motive or for the most trivial reasons, and the crime has spread by imitation. The case of Brizey, tried for the murder of an infant, and acquitted on the ground of insanity, will serve as an illustration of the morbid effect produced on the brain by disordered menstruation. (See post, INSANITY.) Other cases have been already referred to in this work in which crimes of the greatest magnitude have been traced to girls of this age, but without any apparent ground for imputing actual insanity. The only suggestion that could be advanced in favour of insanity was the atrocity of the act without any of the ordinary motives which actuate criminals, and the fact that the acts of murder had been perpetrated on helpless children incapable of giving offence. In the case of Vamplew (Lincoln Aut. Ass., 1862) it was proved that a girl under 13 years of age, acting as nurse in a family, had destroyed by strychnia an infant entrusted to her care. It transpired that in two other families she had previously destroyed with poison, infants placed under her charge. The case of Constance Kent,
a girl between 15 and 16 years of age, furnishes another illustration. She was convicted on her own confession of the murder of her infant step-brother, under circumstances showing great atrocity and cunning, and for which no motive could be suggested. Lastly, there is the case of the girl Norman (p. 415, ante), aged 15 years, convicted of an attempt to murder, by suffocation, a child placed under her care as nurse. It came out that four other children to whom she had been nurse, had died under her hands from suffocation! There was no evidence of intellectual insanity in any of these cases, nor was there anything to show that the uterine sympathy, if it existed, was beyond the power of self-control. They were all convicted of the crime of murder. At this period of life, the state of the mind should be closely watched, and any causes of irritation or violent excitement removed. Irregularity, difficulty, or suppression of the menstrual secretion, may give rise to temporary insanity, indicated by taciturnity, melancholia, capricious temper and other symptoms. Puberty in the male may be attended with similar morbid propensities, but these are not so commonly witnessed as in the female.

Pregnancy before menstruation—The previous occurrence of menstruation is not indispensable to pregnancy: many cases are on record in which women who had never menstruated have conceived and borne children (p. 461, ante). One case is reported in which a woman, aged 25, became pregnant and bore a child, and menstruation was only regularly established afterwards. (‘Lancet,’ February 1842.) Dr. Murphy mentions another instance of pregnancy previous to menstruation in a woman aged 23. (‘Obstetric Reports,’ 1844, p. 7.) Numerous cases of conception without previous menstruation, are quoted by Capuron (‘Méd. Lég. des Acc.’ p. 96); and no fewer than nine instances of pregnancy before menstruation have been collected by Mr. Whitehead. The women were all in excellent health during the whole time, and one did not menstruate until more than two years after the marriage had been consummated. (‘On Abortion,’ p. 223; see also Orfila, ‘Méd. Lég.’ 1848, vol. 1, p. 257.) Another case will be found reported in the ‘Medical Gazette’ (vol. 44, p. 969.) Dr. W. Taylor met with an instance in which a girl aged 13 bore a child before menstruation had appeared. (‘Med. Times and Gazette,’ March 12, 1853, p. 277; see also for remarks on this subject, ‘Edin. Monthly Jour.’ July 1850, p. 73.) The late Dr. Reid has reported a case in which a patient of his bore a child at the age of 17 without having previously menstruated; he also collected from various authorities other cases of pregnancy occurring in women who had not menstruated. (‘Lancet,’ September 3, 1853, p. 296.)

Instances of premature puberty in the female are now numerous: they are far more common than in the male sex. Mr. Whitmore met with the case of a female child who, from a few days after birth, menstruated regularly, at periods of three weeks and two or three days, until she had attained the age of 4 years, when she died. On inspection after death she appeared like a much older girl. The breasts were unusually large, and the female organs and lower abdomen.
were considerably developed. (‘North Jour. Med.’ July 1845, p. 70.) Another case is reported in the ‘Lancet’ (January 29, 1848, p. 137); this was a child aged 3 years. The breasts were as healthily developed as in an adult of 20 years, and the sexual organs were also as much developed as in a girl at the age of puberty. It was observed that this child, who had been regularly menstruating for twelve months, had the appearance of a little old woman. (For other cases of menstruation at 5 years, see ‘Med. Gaz.’ vol. 25, p. 548; at 3 years, vol. 47, p. 244; and at 3½ years, ‘Med. Times and Gaz.’ July 24, 1858, and ‘Brit. Med. Journal,’ Dec. 1873, p. 666.) In these instances there is great reason to believe that a procreative power is also early developed; but it is not common to hear of such young females becoming impregnated. A case is mentioned by Dr. Beck, in which a girl menstruated at one year; she became pregnant, and was delivered of a child when little more than ten years old. Dr. Walker met with a case in which the menstrual function was established at the age of 11½ years, and the girl was delivered of a living child when only 12 years and 8 months old. (‘Amer. Jour. Med. Sci.’ October 1846, p. 547.) In another observed by Rütte1, already referred to, a girl of the age of fourteen, became pregnant by a boy of the same age. He also quotes three other cases, where one girl of the age of nine, and two of the age of thirteen, became pregnant (loc. cit.) The first of these three cases represents the earliest age for pregnancy yet assigned by any author. Dr. Wilson met with an instance in which a girl at the age of 13 years and 6 months gave birth to a full-grown child: conception must have taken place when she was 12 years and 9 months old. (‘Edin. Med. Jour.’ October 1861. See also Casper’s ‘Vierteljahresschrift,’ January 1863, p.180.) Mr. Robertson mentions the case of a factory-girl who became pregnant in the eleventh year of her age. In a case communicated to me, a girl menstruated at 10 years and 2 months, and became pregnant when 11 years and 8 months old.

Age at which menstruation ceases. Menstrual climacteric.—The average age at which this function ceases in women, is usually from 40 to 50 years: but as it may commence early, so it may continue late in life. In one case it has been known to cease at the age of 23, and in other instances it has continued up to the age of 66 and even of 75 years. (Whitehead, op. cit. p. 145 et seq.) Dr. Royle describes three cases, in two of which menstruation continued up to the age of 67. (‘Med. Times and Gaz.’ Nov. 1860.) Mr. Thomas met with a case in which a woman had ceased to menstruate at the age of 45, but the discharge suddenly reappeared after an attack of illness when she had reached the age of 69. The discharge appeared several times, but not with monthly periodicity. It seems that her mother and sister had also menstruated at the ages of 69 and 60. (‘Med. Times and Gaz.’ Aug. 7, 1852, p. 148.) In a case which occurred to Capuron, it continued beyond the age of 60 (op. cit. p. 98); but a more remarkable case, both of late menstruation and late pregnancy, is quoted by Orfils from Bernstein. A woman, in whom the function appeared at 20, menstruated until her ninety-ninth
year. Her first child was born when she was 47, and her seventh and last when she was 60. (‘Méd. Lég.’ 4ème ed. 1848, vol. 1, p. 257; see also Briand, ‘Man. Complet de Méd. Lég.’ 1846, p. 137.) From these facts, it is clear that it is impossible to fix the age of a woman by the period at which this ‘change of life’ occurs. At the best, it can only be an average of a certain number of instances.

Other cases are recorded on good authority. Dr. Whitehead communicated to the ‘Lancet,’ 1866, the following facts. He was called to a lady aged 77, suffering from uterine hemorrhage. Upon inquiry, he found that she had menstruated monthly up to the time at which he saw her. The discharge lasted from four to five days, and had then left her; but on this occasion it had been very profuse. She was restored by the usual remedies. Other cases are reported in the ‘Amer. Jour. of Med. Sciences’ (Jan. 1845, p. 107). In one of these, a nun, the menses ceased at 52: at the age of 62 they reappeared, and so continued regularly, until she was last seen at the age of 73. In another instance, a nun aged 90 had regularly menstruated from 15 to 52. The menses then ceased, but they reappeared at the age of 60 without pain, and had occurred regularly every month since that date. Her health has been good throughout.

From observations made on four hundred women by Dr. Johnstein, it appears that the menstrual function is of the longest duration in women who menstruate early, are married, have more than three children, nurse their children themselves, and cease child-bearing between the ages of 38 and 42. (‘Brit. Med. Jour.’ May 1873.)

Is it possible for a woman to become pregnant after menstruation has ceased?—It is commonly asserted and believed that, after the cessation of menstruation, a woman is sterile. This is doubtless the general rule; but in a medico-legal view it is necessary to take notice of the exceptions. Mr. Pearson, of Staleybridge, communicated to the ‘Lancet’ some years ago, the case of a lady, aged 44, who up to September 1836 had given birth to nine children. After this the menses appeared only slightly at the regular periods until July 1838, when they entirely ceased. Owing to this, she supposed that she was not liable to become pregnant; but on the 31st December 1839—therefore eighteen months after the entire cessation of the menses—she was delivered of her tenth child. Hence conception must have taken place at from eight to nine months after the final cessation of the discharge.

Latest age for pregnancy. Fecundity.—As a rule, women rarely conceive after the age of 45. At and beyond this age, they have not often intercourse with young and vigorous men. Menstruation may continue up to 50 and 62 years. The age at which women commonly cease to be impregnated, ranges from 45 to 50. It has been observed, that out of 10,000 pregnant women, there were only three above the age of 50 years. (‘Ann. d’Hyg.’ 1873, 2, p. 150.) Many exceptional instances are recorded of women advanced in life bearing children. A case is reported in which a well-formed woman, who had been married nineteen years, did not bear a child until she had reached
the age of fifty. (Schmidt's 'Jahrbücher d. Med.' 1838, S. 65; Henke's 'Zeitschrift,' 1844, S. 261.) In this case it is stated that menstruation had ceased two years before conception. Rüttei observed in twelve women that they bore their last children at ages varying from 45 to 50 years. Ottinger met with an instance of a woman bearing a child at 50; Cederschjald with another, where the woman was fifty-three, and menstruation still continued. Haller records two cases in which women at sixty-three and seventy respectively bore children. (Briand, 'Man. Complet de Méd. Lég.' p. 137.) Neumann has drawn up a table in reference to the late ages of life in which women have borne children. Out of 1,000 cases in 10,000 births, he found that 436 children were borne by females at the ages respectively—

<table>
<thead>
<tr>
<th>Age</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>101</td>
</tr>
<tr>
<td>42</td>
<td>113</td>
</tr>
<tr>
<td>43</td>
<td>70</td>
</tr>
<tr>
<td>44</td>
<td>58</td>
</tr>
<tr>
<td>45</td>
<td>43</td>
</tr>
<tr>
<td>46</td>
<td>12</td>
</tr>
<tr>
<td>47</td>
<td>13</td>
</tr>
<tr>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
</tr>
</tbody>
</table>

A case was communicated to the 'Medical Gazette' (vol. 39, p. 950), by Dr. Davies, of Hertford, in which a woman was fifty-five years of age when her last child was born; she had menstruated up to that time.

In Lord v. Colwin (Vice-Chancellor's Court, July 1859), one of the questions raised was whether a woman at 52, who had been married thirty years without having children, had then passed the age of child-bearing: her issue would in that case take the benefit of certain property under a will. It was decided that the woman had not reached an age at which it could be said to be impossible that she might bear children. In a return of the Registrar-General for Scotland (Feb. 1862), it is stated in the Table for Glasgow, that one mother who was only 18, had had four children, one who was 22 had had seven children, and of two who were only 34, the one had had thirteen and the other fourteen children. On the other hand, two women became mothers as late in life as at 51, four at 52, and one mother was registered as having given birth to a child in the 57th year of her age. We cannot therefore pretend to fix the age beyond which pregnancy may not occur. Questions of this kind have an important bearing on the subject of legitimacy; and unless the law looks to something more than ordinary professional experience in such matters, the decisions of Courts must be inequitable. In two recent cases, however, it appears to have been assumed that a woman could not bear a child after the age of 53. This was the decision of the Master of the Rolls in Price v. Bonsted, and more recently the decision has been followed by Kindersley, V.C., in Haynes v. Haynes (Feb. 1866). The petition in this case, involved the question whether a single lady, aged 53 in December 1865, could be considered as past child-bearing, and it was decided in
favour of this assumption. These decisions are not reconcileable with the cases given above.

In France the legitimacy of a child was disputed because the mother at the time of its birth was 48; but the claim was allowed. M. Stolz refers to three cases of married women bearing children at the ages of 45, 48, and 51 respectively. In two of these cases the pregnancy was mistaken for dropsy and treated as such. (‘Ann. d’Hyyg.’ 1873, 2, p. 161.)

Causes of sterility.—The causes of sterility in the female system are very numerous. Some of them depend upon peculiarities of constitution, the sexual organs being well formed and developed, others upon latent changes or congenital defects in the uterus and its appendages, only discoverable by an examination after death. Sterility rarely becomes a medical question in contested cases of legitimacy; for a claim on the part of a person to be the offspring of a particular woman, unless she were in collusion with the claimant, could only be made after her death: and if not disproved by medical evidence, showing that the woman could not have borne children, it would in general be easily set aside by circumstances. It may be most important to prove that a woman was in such a bodily condition that she never could have conceived or borne a child. If the uterus, ovaries, or other parts were congenitally defective or absent, or if there were external sexual malformation, accompanied by occlusion or obliteration of the vagina, a medical witness could have no difficulty in saying that the woman must have been sterile. (‘Med. Times and Gaz.’ Jan. 23, 1858, p. 96.) A mere occlusion of the vagina, removable by operation, does not necessarily indicate sterility, for the internal parts may be healthy and sound.

Medico-legal relations of the subject. Divorce.—Sexual malformation, involving impotency or sterility, constitutes one of the canonical impediments to marriage, and if matrimony be contracted by a party labouring under such malformation, the contract is voidable. The impediment constituting impotency may arise either from malformation, from that which the law calls frigidity of constitution, or any physical cause of whatever nature which may render intercourse impossible. When the physical defect is not apparent, or when it is alleged to be irremediable, a continued cohabitation of three years is required before a suit can be entertained (Ayliff’s ‘Parergon’); but according to Oughton—‘haec triennalis expectatio non est necessaria ubi statim possit constare de impotentia coeundi.’ A suit for a sentence of nullity may be promoted by either party, and the medical proof required to found a sentence, must be such as to satisfy the Court that the incapacity pleaded was in existence at the time of the marriage, and that it still remained without remedy. There should be no delay in instituting the suit, and there should be proof that the impediment was not known to the complaining party at the time of the contract. A longer delay in making the complaint is allowed to a female, without prejudicing her case, than to a male, by reason of the modesty of her sex.
In a suit which came before the Ecclesiastical Courts in 1845, a singular question arose whether, when there was a capacity for sexual intercourse on the part of a woman, with a certainty that from physical defect it could never be prolific, this was sufficient to entitle the husband to a divorce. On the part of the woman it was insisted that in order to entitle a party to a sentence of divorce, there must be an utter impossibility of sexual intercourse. The case, it was argued, was one of mere sterility, which was no ground for a sentence. Dr. Lushington, in pronouncing sentence, said that mere incapability of conception is not a sufficient ground whereon to found a decree of nullity. The only question is, whether a female is or is not capable of sexual intercourse: or, if at present incapacitated, whether that incapacity admits of removal. A power of sexual intercourse is necessary to constitute legally the marriage-bond; and this intercourse must be ordinary and complete, not partial and imperfect; yet it would not be proper to say that every degree of imperfection would deprive it of its natural character. If it be so imperfect as to be scarcely natural, it is legally speaking, no intercourse at all. As to conception, there is no doubt that the malformation is incurable. If there was a reasonable probability that the female could be made capable of natural coitus, the marriage could not be pronounced void; if she could not be made capable of more than an incipient, imperfect, and unnatural coitus, then it would be void.

From cases hitherto decided, it appears that in order to justify a decree of divorce on the ground of impotency or sterility, the impediment to intercourse or procreation should be established by good medical evidence, and it must be apparent and irremediable; it must also have existed before the marriage of the parties, and have been entirely unknown to the person suing for the divorce; if it has supervened after the marriage, this is no ground for a suit. The nature of the impediment is to be determined by private medical opinions or affidavits, based on an examination of both parties. Such an examination must be voluntary on the part of the man or the woman. The judge of the Court cannot order it against the wish of the party. All that he can do is to decide in the absence of evidence of the kind, and this may be adverse to the party refusing. In the case of Hewitt v. Pery (Divorce Court, July 1873), a suit for nullity, Sir J. Hannen gave his decision in favour of the husband and against the wife. She refused to submit to an examination, and abstained from presenting herself as a witness in the case. The case was remarkable in other respects. The evidence of the husband was to the effect that there had been more than three years' cohabitation, but no consummation of the marriage. There was no structural impediment in the way of consummation in the wife's person; but whenever an attempt at intercourse was made, it brought on an attack of hysteria and this rendered it practically impossible. A decree nisi for annulling the marriage was granted to the husband; but the learned judge at the same time
observed, that such a decree could only be granted on the ground that there was a physical difficulty. Thus it must not be merely a wilful refusal on the part of the wife. This alone would not justify legal interference; it must be shown, as in this case, that injury may be done to health by inducing an attack of hysteria or other disorder. Dr. Oldham has informed me that several cases of this kind have come before him. It may be regarded as incapacity, not from structural defect, but from a general disturbance to the system induced by the attempts at intercourse.

Dr. St. Clair Gray has recently pointed out another condition in a woman, which may prevent consummation of a marriage and give rise to a suit of nullity. This has been called vaginismus. In this disease there is a peculiarly sensitive state of parts, whereby from excessive nervous irritability of the vagina, any attempt at sexual intercourse or even any pressure made in the vicinity, causes intolerable pain to the woman. He describes three cases which have fallen under his notice. In one,—a woman set. 38, had been married thirteen years, but in consequence of the intolerable pain produced, her husband had not been able to have intercourse with her. An examination showed that the hymen was persistent, but the parts were so highly sensitive that a touch with the finger only produced great suffering. Nine years passed without any change in her condition. In two other cases of married women there was a similar state of parts,—the hymen being also persistent in both. One had been married four and the other seven years, and they had had no children. The hymen was destroyed by operation; the sensibility of the parts disappeared; and one gave birth to four and the other to three children. ('Glasgow Med. Jour.' May 1873.) It is clear, therefore, that vaginismus would be no legal ground for divorce according to the law of England, because the defect is remediable—a fact proved by two of the cases described. In the three cases, the women laboured under no physical malformation. They were in every respect healthy and well-formed.

There is one remarkable circumstance with respect to these suits of nullity; namely, that in nearly all of them, the suit is by the woman against the man; although there is no reason whatever to suppose that impotency and sexual malformation are more common in males than malformation and sterility in females. We rarely hear of a husband instituting a suit of divorce on the ground of sterility (incapacity of procreation) in the wife; it is, I believe, in most instances, that the wife promotes the suit on the ground of impotency or incapacity of intercourse in the husband. The difficulty of establishing incapacity in the female, and the facility of proving impotency from physical causes in the male, may probably account for this difference. Suits of this kind are sometimes instituted many months and years after the union of the persons; but it is pretty certain that the desire for separation in such cases, often depends on some cause which the law would not recognize as sufficient of itself, while it would admit a plea of impotency. The
French law very judiciously applies the principle of condonation to such cases, so that no suit for nullity of marriage can be entertained, if cohabitation has continued for six months after the discovery of the personal defect. The laws of England and France differ in reference to personal defects. Impotency or incapacity of intercourse in a woman is in England a sufficient ground for annulling the contract, but not so in France. In a case reported by M. Tardieu, it is distinctly stated that the law has not placed impotency in the female among the causes for nullity of marriage. ('Ann. d'Hyg.' 1872, 2, pp. 153, 155.)

In treating of sexual identity (loc. cit.) M. Tardieu remarks that marriage implies the lawful union of a man and woman. That such a contract cannot be entered into except between persons who are of different sexes. When the sex is disputed, the doubt can be removed only by an anatomical and physiological examination of the person. The intervention of a medical expert is indispensable in such a case, and the object of such intervention is perfectly defined. The problem for solution may be stated in these simple terms. Is the person married as a woman—a malformed woman—impotent and incapable of sexual intercourse? In this case, according to the strict interpretation of the law of France, there is no ground for nullity of marriage. Is the person a malformed man, presenting some doubtful appearances of the female sex? In this case there has been no legal marriage. It is null ab initio. Assuming that there are no beings entirely deprived of sex, there may be cases, although rare, in which a mixture of the organs of the two sexes may be found in the same person. Such a being is incapable of entering into the marriage contract, since whatever may be the sex of the person with whom the contract is made, there must be identity of sex, and therefore nullity of marriage.

RAPE.

CHAPTER 58.

SOURCES OF MEDICAL EVIDENCE.—RAPE ON INFANTS AND CHILDREN.—MARKS OF VIOLENCE.—PURULENT DISCHARGES FROM THE VAGINA.—EVIDENCE FROM GONORRHEA AND SYphilis.—RAPE ON GIRLS AFTER PUBERTY.—DEFECATION.—SIGNS OF VIRGINITY.

Rape is defined in law to be the carnal knowledge of a woman by force, and against her will. Medical evidence is commonly required to support a charge of rape, but it is seldom more than corroborative; the facts are, in general, sufficiently apparent from the statement of the prosecutrix. There is, however, one case in which
RAPE ON INFANTS AND CHILDREN.

medical evidence is of some importance,—namely, when a false accusation is made. In some instances, as in respect to rape on infants and children, the charge may be founded on mistake; but in others there is little doubt that it is often wilfully and designedly made for motives into which it is here unnecessary to inquire. The late Professor Amos remarked that for one real rape tried on the Circuits, there were on the average twelve pretended cases! In some few instances these false charges are at once set aside by medical evidence—in others, medical men may be sometimes the dupes of designing persons; but in the majority, the falsehood of the charge is proved by inconsistencies in the statement of the prosecutrix herself. I am informed that in Scotland, where there is a public prosecutor, and a careful preliminary inquiry, false charges of rape are exceedingly rare. The consent of the girl does not excuse or alter the nature of the crime when she is under ten years of age, since consent at this period of life is invalid; and the carnal knowledge of such a girl is rape in law, and is made a felony by the 24 & 25 Vict. c. 100, s. 50. Even the solicitation of the act on the part of a child does not excuse it.

The duty of a medical witness on these occasions is very simple; and perhaps this will be best understood by considering the subject in relation to females at different ages. On being called to examine a person on whom a rape is alleged to have been committed, the first circumstance which a practitioner should notice is the precise time and date at which he is summoned, taking an early opportunity of comparing his watch with some neighbouring clock. This may appear a trivial matter, and one wholly irrelevant to the duties of a medical practitioner; but it is to be observed that the time at which a surgeon is required to examine a prosecutrix, may form a material part of the subsequent inquiry. It will be highly important to the defence of a person accused, if it can be proved that the female did not take the earliest opportunity to complain; and it may be also the means of defeating an alibi falsely set up for the defence. Medical evidence in cases of rape may be derived from four sources:—1. Marks of violence about the genitals. 2. Marks of violence on the person of the prosecutrix or prisoner. 3. The presence of stains of the spermatic fluid or of blood, on the clothes of the prosecutrix or prisoner. 4. The existence of gonorrhoea or syphilis in one or both. This evidence will vary according to the age of the female and other circumstances:

RAPE ON INFANTS AND CHILDREN.

The sexual organs should in these cases present marks of injury if the crime has been completed, and there has been any resistance on the part of the child: for it is impossible to conceive that forcible intercourse should take place without the production of ecchymosis, the effusion of blood, or a laceration of the pudendum. Even without reference to manual violence on the part of the assailant, if an adult, the size of the male organ must generally cause much
local injury in the attempt to enter the vagina of a child. If the
violation has taken place within two or three days, the appearances
presented by the parts may be as follows:—1. Inflammation, with
more or less abrasion of the lining membrane. 2. A muco-purulent
discharge from the vagina of a ropy consistency, and of a yellowish
or greenish-yellow colour, staining and stiffening the linen worn by
the girl; the mucous membrane of the urethra is inflamed, ren-
dering the discharge of urine painful. 3. In recent cases blood may
be oozing from the abraded membrane, or clots of blood may be
found deposited in the vulva. 4. The hymen may be entirely
destroyed, or (what is more commonly observed) it may present
on careful examination one or more slight lacerations. Owing
to the inflamed state of the parts, the proper examination of the
hymen is rendered difficult—any attempt to separate the thighs
for this purpose causing great pain. For this reason also, the child
walks with difficulty and complains of pain in walking. 5. Lastly,
the vagina may be unnaturally dilated.

It has been propounded as a serious question whether a rape can
be perpetrated on children of tender age by an adult man; and
medical witnesses at trials have adopted conflicting opinions. Some
are inclined to regard all such charges as unfounded, and to seek
for other medical explanations of the symptoms above described.
This practice has been carried of late years to an undue extent,
simply because many of these charges have been proved to be false:
but common experience, supported as it is by the accurate observa-
tions of Casper (‘Ger. Med.’ vol. 2, p. 130), show that there is too
frequently a real foundation for the charge in reference to children,
and that a girl is not to be discredited merely because of her tender
age. This would be conferring impunity on the acts of a vile class
of offenders. In all cases there should be good medical evidence
and a corroboration from circumstances.

For the legal establishment of the crime, proof of penetration
only is demanded (24 & 25 Vict. c. 100, s. 63), and a sufficient
degree of penetration to constitute rape in law may take place
without necessarily rupturing the hymen. There must be medical
evidence to show that, in a special case, there was actual penetra-
tion—the degree of penetration being quite immaterial. It is true
that there could not be a complete introduction of the adult male
organ into the vagina of a child without a rupture or laceration of
the soft parts; but the absence of such marks of violence would
not justify a medical witness in denying the perpetration of the
crime, since the law does not require proof either of a complete or
of a violent introduction. It has been decided that penetration to
the vulva alone is sufficient to constitute this crime. Medical men
have sometimes fallen into an error on this point, considering that
when the hymen was entire, rape could not have been committed;
but the Statute Law says nothing about the rupture of the hymen
as a necessary part of the medical evidence; it merely requires
from the medical witness proof of vulval penetration,—this may
occur and the hymen remain intact. In *Reg. v. Harris*, Bristol Lent Ass. 1873, the prisoner, an adult, was convicted of rape on an infant only *seven months* of age. According to the medical evidence there was no great amount of violence to the genital organs. The parts were swollen, and there was slight excoriation about the labia minora, with a small discharge of blood. The hymen and the vagina had escaped laceration. According to the medical evidence, seminal fluid was found on the person of the child. In this case there might have been penetration of the male organ to the vulva. In so young a child there could have been no resistance, and the act might therefore have been perpetrated without leaving any serious marks of violence.

In Scotland this question came formally before the judges in the case of *Macrae* (High Court of Justiciary, 1841). It was insisted by the prisoner’s counsel that there should be proof of full and complete penetration; and there was no sufficient evidence to show that penetration had taken place into the canal of the vagina beyond the vulva. Lord Meadowbank charged the jury to the effect that the evidence of the prisoner’s guilt was complete; that scientific and anatomical distinctions as to where the vagina commenced were worthless in a charge of rape; and that by the law of Scotland it was enough if the woman’s body was entered. In a case like this, where there was no evidence of the emission, and the girl was young, he did not consider it necessary to show to what extent penetration of the parts had taken place,—or to prove that it had gone either past the hymen, into what was anatomically called the hymen, or even so far only as to touch the hymen. The prisoner was convicted. (‘Cormack’s Edin. Jour.’ January 1846, p. 48.) I am informed that, up to the date of the case of *Macrae*, it had been the practice with the Scotch judges to require proof of *full* and *complete* penetration. See on this question a paper by the late Dr. Easton. (‘Glasgow Med. Jour.’ July 1859, p. 129.)

Marks of violence on the pudendum.—When there are no marks of violence or physical injury about the pudendum of a child, whether because none originally existed, or they existed and had disappeared in the course of time, a medical witness must leave the proof of rape to others. He can only answer questions of possibility or probability, according to the special facts proved. It is, however, in all cases his duty to be guarded in giving an opinion that a rape has been perpetrated, when there is a total absence of marks of violence on the genitals. It is true that rape in a legal sense may be perpetrated without necessarily producing such marks on a child, but the proof of the crime will not depend on *medical evidence* only. The absence of marks of violence on the genitals, when an early examination has been made, furnishes a strong presumption that rape has *not* been committed on these young persons. It is obvious that a false charge might be easily made and sustained, if medical opinions were hastily given on the statements of a mother and child, when there was no physical appearance to corroborate
the accusation. See on this subject a paper by M. Toulmouche. ('Ann. d'Hyg.' October 1, 8, p. 338.)

Supposing at the period of examination no marks exist, it may be necessary to consider whether there has been time for them to disappear after the alleged perpetration of the offence; but in such cases it is rarely in the power of a medical witness to express an affirmative opinion of the perpetration of the crime; he should leave this to be proved by the general and circumstantial evidence. Casper met with a case in which a man aged 37 committed a rape on a girl only eight years of age; he was seen in the act, and defended himself on the plea of drunkenness. The girl was examined by a medical man on the day following,—the labia were then reddened, and there was an injection of the membrane at the entrance of the vagina which was very sensitive. As an illustration of the rapidity with which the marks of rape disappear in young children, when not attended with great physical injury, it may be stated that this girl was carefully examined by Casper eleven days after the assault. The sexual organs were then in their natural state; there was not the least appearance of local injury, and no inference could have been drawn at this date that the girl had been subjected to any violence.

Medical practitioners are not always sufficiently careful in the inferences which they draw from an examination of children at distant periods after an alleged rape. They allow themselves to be deceived by a plausible story, apparently consistent, and thus see or think they see, proofs of rape on examining the sexual organs of a girl many weeks after the alleged perpetration of the crime; whereas, had the girl been brought before them as a casual patient, and no suggestion of violent intercourse had been made, they would have probably ridiculed the idea of basing a charge of rape on so slender a foundation. The delay in having the examination made, unless satisfactorily explained, is in itself always a suspicious circumstance. In one case sent for trial to the assizes, but rejected by the Grand Jury, a medical man gave strong evidence that a rape had been committed on a girl seven years of age, although he did not examine her until six weeks had elapsed from the date assigned by the parents for the alleged perpetration of the crime!

On the other hand, when marks of violence on the genitals are present, they must not be hastily assumed as furnishing proofs of rape; for cases are recorded in which such injuries have been purposely produced on young children by women, as a foundation for false charges against persons with a view of extorting money. The proof or disproof of facts of this kind must rest more upon general than on medical evidence, unless the injuries obviously indicate the use of some weapon or instrument. It should be remembered that the hymen is not always present in young children: it may be, according to some, congenitally deficient, or what is more probable, it may have been destroyed by ulceration or supplicative inflammation of the parts, a disease to which female infants of a scrofulous
FALSE CHARGES OF RAPE.

habit are very subject. The mere absence of this membrane, therefore, can afford no proof of the perpetration of the crime, unless we find traces of its having been recently torn by violence.

Other and more important deductions may, however, be drawn from the presence of severe injuries on the genitals, i.e. of rupture, or laceration of the vagina or perineum. It is difficult to obtain accurate medical reports of these cases as they occur in England: but it is quite clear that the male organ may produce much physical injury whether the child does or does not resist the attempt. (Casper's 'Vierteljahrschrift,' April 1863, p. 337.) Dr. Chevers, in referring to Indian experience, says that in a large proportion of rapes on children, it was very clearly proved that rather severe injuries had been inflicted on them. In the 'Nizamut Adawlut Reports' (1853-5), there are several instances recorded in which the vagina was lacerated. Out of 66 trials for rape, there were 25 convictions: and in one-half of these, the females were under the age of twelve years. In one case of a girl, aged 12, there was a rupture of the lower part of the vagina to the extent of half an inch. In another, a child of six but apparently much younger, had suffered as a result of rape, from rupture of the hymen and laceration of the perineum and vagina. In one instance the violence proved fatal, but the medical particulars were not given. ('Med. Jur. for Indis,' p. 468.)

When it is alleged that injuries have been intentionally produced on the genitals of a child by mechanical means, with a view of extorting money in laying a false charge of rape, the medical evidence can do no more than show that a girl with such appearances about her sexual organs, has suffered from some violence applied to the parts, but whether by the human member, or any other physical means, it would be impossible to say. The only chance of getting at the truth in such a case is by a rigorous cross-examination of the mother and child in the absence of each other.

In April 1840, Dr. Brady communicated to the Dublin Association of Physicians, a case of alleged rape on a female infant only eleven months old, in which the violence done to the genitals proved fatal.

In January 1858, a girl seven years old was brought into Guy's Hospital, owing to injuries resulting from a perpetration of rape by a boy under seventeen years of age. About half an hour had elapsed; she was then examined by Mr. Hicks, the house-surgeon, and he found that there was a complete destruction of the hymen with a laceration of about one-eighth of an inch extending into the perineum. There had been profuse bleeding, as the clothes were saturated with blood. There was then no complaint of pain, and there were no scratches or marks of violence on any part of the body. There was no discharge of a purulent kind. The child was of a scrofulous habit: but she was not suffering from vaginitis, and appeared in other respects perfectly healthy. I saw the girl with Mr. Hicks about forty-eight hours after the occurrence; the bleeding had then ceased, and the extent of the lacerations was very perceptible. There was no discharge of any kind from the vagina,
and no inflamed or swollen condition of the parts. The boy was examined by Mr. Hicks about an hour after the perpetration of the rape, and although he had been under strict custody, and had had no opportunity of changing his clothes, there was no blood found about his private parts, or on his clothing. It is probable, as the boy was interrupted in the act by the screaming of the girl, that he suddenly withdrew after having caused the laceration, and that the bleeding was an after effect of oozing from the ruptured vessels. This is an important fact, because, had not the circumstances been known, the absence of blood on his person might have been construed into a strong proof of innocence. Dr. Sawyer met with a case in which a rape was committed on a girl st. 5. There was a bruised and swollen state of the genitals: the hymen was not ruptured, and there was no laceration of parts. In spite of this, a large amount of blood had been lost. This bleeding, in his opinion, took place from the hymen, which was in a highly congested state. The man who had perpetrated the crime was examined soon afterwards, but no appearance of blood was found on his organs; there were a few stains only on the front of his clothing. (‘New Orleans Med. Gaz.’ 1858, p. 283.) A case occurred to Mr. Sells of Guildford, in 1863, in which he found, on examining the person of a girl said to have been violated, laceration of the hymen, a clot of blood recently effused lying on the vulva, and the thighs of the child smeared with blood, quite fresh; there was also blood on the sheets of the child’s bed. The next morning he examined the accused, but he could find no trace of blood upon him or on the clothing which he wore at the time of the alleged assault. In this case as there was a failure of identity, the accused was discharged.

Sometimes owing to the violence used, the parts are much lacerated; and inflammation, followed by sloughing or mortification, may set in and destroy life, especially in children of an unhealthy habit. Care should be taken that the symptoms of a malignant form of disease (noma), to which female children when in a dirty or neglected state are liable, are not mistaken for the results of criminal violence.

Some cases are reported, from which it would appear that men have narrowly escaped conviction for a crime which had really not been perpetrated. Dr. Percival, in his ‘Medical Ethics’ (3rd ed. 1849, p. 117), has related a case which has been the subject of frequent quotation and comment in reference to false charges of rape. A girl st. 4 was admitted into the Manchester Infirmary in February 1791, on account of a mortification of the female organs and general depression of strength. She had been in bed with a boy fourteen years old, and it was supposed that he had taken criminal liberties with her. The mortification increased, and the child died. The boy was tried on a charge of rape at the Lancaster Assizes, but acquitted on evidence being adduced that several instances of a similar disease had appeared among girls about the same period of time, in which there was no reason to suspect injury
or guilt. In one of these cases there was typhus fever with a mortification of the genitals. There was no cause of death discoverable on inspection: the lumbar glands were of a dark colour, but all the viscera were sound. This case, with the whole of Mr. Kinder Wood's paper on the subject, has been republished by Mr. Kesteven. ('Med. Times and Gaz.' 1859, April 23 and 30.) A case of this disease (noma pudendi), but in which no charge of rape was made, was referred to me in December 1865. E. A. R., a girl aged 5, died suddenly under circumstances which led to a suspicion that poison had been administered to her. There was congestion of the lining membrane of the stomach, but no poison was found in the body, and there was no trace of the action of poison. When the body was inspected, the genitals externally and the skin around and beyond the anus, were intensely inflamed, swollen and ulcerated, and in an approaching state of gangrene or slough. The hymen at the entrance was ruptured, and the lining membrane of the vagina and uterus was highly inflamed—of a dark purple colour with softening and disorganization of substance. The inguinal glands were enlarged on both sides. The child was in a neglected and dirty state, and died from exhaustion produced by the disease and want of proper food and support. Deceased was seen by a medical man shortly before her death, and the state of the genitals was only discovered by accident, the mother having made no observation about it. When questioned on the subject, she said the girl had been blown down about a fortnight before and had injured herself by falling on some thorns. This was quite inadequate to account for the condition of the parts. There was no doubt that this was a case of noma rendered fatal by neglect in an unhealthy child. Had any man been seen noticing this child, a charge of rape might easily have been founded upon the state of the genital organs.

On the other hand fatal injury may be done to these organs in criminal assaults. Mr. Colles has reported a case in which a rape was committed by an adult on a child eight years old; it terminated fatally from peritonitis, as a result of the violence, six days after the assault. The child stated that the accused had had forcible connection with her, causing much pain and loss of blood. There were no marks of violence (bruises?) externally, but the orifice of the vagina was lacerated in its entire circumference, and the perineum was nearly torn through. It was found, on inspection, that the orifice, as well as the whole of the vagina, was in a state of gangrene, and its posterior wall had been lacerated at its line of junction with the uterus to the extent of an inch. There was no ulceration; the labia and clitoris had not undergone any change. ('Med. Times and Gaz.' June 2, 1860, p. 560.) The prisoner subsequently confessed his guilt. A case was communicated by Dr. M'Kinlay to the 'Glasgow Medical Journal' (July 1859, p. 140), which proves that extensive injuries may be produced on a child by the act of violation. The girl in this instance was about six years of age, and very intelligent. From her description of the assault,
it appears that she fainted, probably owing to the severity of the pain. When examined, it was found that the vagina was ruptured in various directions. One laceration extended from the lower part downwards, dividing the recto-vaginal septum and perineum down to the verge of the anus. There was a lacerated opening in the coats of the rectum; the orifice of the vagina was lacerated upwards as well as laterally; the parts were raw, swollen, and very tender. When the child was first seen, there was blood on the limbs and clothes: she recovered from these serious injuries in about two months. In a case of alleged rape, it was a question raised in favour of the prisoner, whether rupture of the perineum could or could not be produced in rape on a girl. Some eminent members of the profession appear to have doubted the possibility of a rupture being produced under these circumstances (see Sir W. Wilde's paper, 'Dub. Med. Journal,' February 1856); but the facts here recorded show that such an opinion is erroneous.

Purulent discharge from the vagina. Vaginitis. Infantile leucorrhoea.—The existence of a purulent discharge from the vagina as a result of vaginitis or inflammation of the vagina, has been frequently adduced as a sign of rape in girls. The parents, or other ignorant persons who examine the child, often look upon this disease as a positive proof of impure intercourse; and perhaps lay a charge against an innocent person, who may have been observed to take particular notice of the child. A purulent discharge with aphthous ulceration of the mucous membrane is occasionally a result of vaginitis or inflammation of the vagina. It may arise from dentition, or local causes of irritation—as worms or uncleanly habits—and is observed especially in children of a scrofulous habit. It is frequently met with in girls up to six or seven years of age: and children thus affected have been tutored to lay imputations against innocent persons for the purpose of extorting money. This state may commonly be distinguished from the effects of violence, either by the hymen being entire—or by the non-dilatation or laceration of the vagina or perineum—by the red and inflammatory condition of the mucous membrane—and the abundance of the purulent discharge, which is commonly much greater than that which takes place as a mere result of violence. Capuron mentions two cases in which charges of rape on children were falsely made against innocent persons, on account of the existence of a purulent discharge the nature of which had been mistaken. ('Méd. Lég. des Accouchemens,' p. 41.) Sir Charles Locock observes that the purulent discharges of female children are attended with redness and swelling of the sexual organs, and are sometimes accompanied with excoriation and sloughing of the skin, owing to the irritating nature of the matter. They are so connected with dentition that they not only appear with the first and second set of teeth, but even when the wisdom-teeth are irritating the system at a mature age. Mr. South, commenting on this statement ('Chelus's Surgery,' vol. 1, p. 161), justly remarks that a knowledge of these facts 'is highly necessary, and is very
properly insisted on, as there is no doubt that many men have suffered capital punishment from the ignorance of practitioners on this point; and even now, with our better knowledge, it is by no means unfrequent to hear of medical men giving a decided opinion which is almost certainly erroneous upon the gonorrheal character of pudendal discharges, and thus jeopardizing the character if not the life of an innocent man. In giving his opinion or evidence in such cases, a practitioner is bound to speak with extreme caution, and only on the most incontestable proof (which by a mere examination of parts it is almost impossible for him to attain), before he makes a positive statement as to the gonorrheal character of a discharge. Although the facts are or ought to be well known to medical men, there is still much popular ignorance in reference to this disease, and false charges of rape on children are now not unfrequently made. Mr. Kesteven met with a case in which a discharge from the vagina of a child nine years of age, was supposed by the parents to prove that intercourse had been had with her. There was no mark of contusion or violence on or about the pudendum or in the vagina, and the case was very properly pronounced to be one of vaginitis. (‘Med. Gaz.’ vol. 47, p. 372.) A similar case was referred to me, in which a soldier was supposed to have infected a child: but an investigation showed that it was a purulent discharge depending on inflammation of the vagina. In February 1872, I was consulted in reference to a charge against a father for criminal intercourse with two of his daughters, one of them nine and the other fourteen years of age. If the purulent discharges were gonorrheal, there was a strong presumption of his guilt; if only of the ordinary kind, arising from vaginitis, he might be innocent, and the accusation made against him false. (See also ‘Ann. d’Hyg.’ 1864, 2, 333, and 1860, 2, 131, 345.)

A gonorrhoeal discharge is generally very profuse—much more profuse than that purulent discharge which is simply the result of such violence as is produced in the commission of rape. There is another fact worthy of notice, namely, that the last-mentioned discharge besides being less profuse lasts for a much shorter time. Casper has recommended that in doubtful cases another examination of the sexual organs should be made in ten or twelve days. If the purulent discharge has then ceased or is ceasing, there is good reason to believe that it was not the result of gonorrhoea, but of some temporary cause of inflammation in the mucous membrane. (‘Klinische Novellen,’ 1863, p. 10.) Of false charges of rape arising from mistakes on this subject, he furnishes various instances (p. 19). The power of distinguishing gonorrhoeal or syphilitic discharges from ordinary purulent discharges has been much debated in reference to the examination of women under the Contagious Diseases Act. Mr. Henry Lee has especially called the attention of the profession to this subject in a lecture before the Medical Society. In a case which occurred under his own observation a free purulent discharge from the vagina with a reddened and inflamed mucous membrane, led him to believe that it was derived from
gonorrhoeal infection; but a week afterwards the inflammation had disappeared, the mucous membrane was of its usual colour, and the discharge not more than natural. This caused him to reverse his opinion, and to congratulate himself that he had not unjustly accused the patient. (‘Lancet,’ Feb. 8, 1873, 1, 218.)

Assuming that the surgeon is satisfied, from a careful examination, that the purulent discharge must have existed before the alleged assault, and that it is of the ordinary inflammatory character with which young girls are liable to be attacked, this would not justify him in affirming that no rape had been attempted or perpetrated on the child. Girls labouring under this disease may be the subjects of rape, and it will then be necessary to seek for further evidence in the condition of the hymen, the lining membrane of the vagina and the vulva. If nothing is found beyond what is consistent with disease, there is an absence of medical evidence to prove that any rape has been committed. An aphthous state of the membrane of the vagina must not, under these circumstances, be ascribed to injury caused by mechanical violence. (Casper's 'Gerichtliche Medicin,' vol. 2, p. 148.)

Infantine leucorrhoea has been fully investigated by Sir W. Wilde, of Dublin. ('Medico-legal Observations,' &c., 1853.) This gentleman has collected numerous instances illustrating, in a remarkable manner, the great danger to which innocent persons are exposed by reason of false charges of rape on children. Two of these are especially noticed in his essay. A charge was raised against a respectable man, that he had had intercourse with, and produced disease in, two children. The day and hour were circumstantially given, extorted as it appears from the children by their parent, and the man was put upon his trial. The appearances were such as are usual in these cases,—a purulent discharge from the vagina with some excoriation, but no bruise, laceration, or mark of violence on the pudendum. There had not been any penetration of the vagina. The charge against the prisoner, although unsupported by any affirmative circumstances, received some strength from the admission made by one medical witness for the prosecution,—namely, that the appearances might have been the result of violence, and that the discharge might have been produced by friction with the member of a healthy man. (Wilde, op. cit. p. 14.) It was proved that the prisoner was not affected either with leucorrhoea or syphilis. Dr. Geoghegan, Churchill, and other medical witnesses of repute, gave testimony to the effect that the child was really labouring under an ordinary form of disease, and that there was no medical indication that it had been subjected to any kind of violence. This testimony was not considered by the Court to furnish a complete answer to the charge, since it was inferred that the appearances on the child might have been caused by the accused, without any marks of violence being left on the pudendum! So strong was this feeling that, had the case rested here, it is probable the accused would have been convicted upon the unsupported statement of the child. An alibi
was, however, clearly proved, and the man was acquitted. In this instance, it will be perceived it was alleged that a man who laboured under no disease had caused a purulent discharge in a child! At the same time, it was admitted that the pudendum had sustained no violence whatever. Medically speaking, there appears to have been not the slightest pretence for charging the accused with the perpetration of rape; the appearances might have or might not have been caused in the manner suggested. Under such loose medical evidence as this no person would be safe. An acquittal from an unfounded charge would depend upon the man who is accused being able to prove a distinct alibi, i.e. he must prove his innocence. The statement of the child may be simple and artlessly made. At this tender age a girl may be easily induced by the fear of punishment, and by the aid of leading questions put by a parent, to admit that some one had committed an assault upon her. The statement once made may be persevered in, and its inconsistency may not always be brought out by cross-examination.

If the child is really labouring under syphilis or gonorrhoea, this is, ceteris paribus, evidence of impure intercourse, either with the ravisher or some other person; but we should be well assured, before giving an opinion, that the discharge is really of a gonorrhoeal and not simply of a common inflammatory (purulent) character. The party accused may have been at the time free from the disease, or, if labouring under it, then we should expect to find that the discharge had suddenly made its appearance in the child, with its usual severe symptoms, at a certain interval of time after the alleged intercourse, i.e. from the third to the eighth day. When these conditions do not exist, it is extremely difficult to form a medical opinion on the subject; since there are no certain means, by the microscope or otherwise, of distinguishing common purulent discharges from those which are gonorrhoeal or syphilitic. A case occurred to M. Biesse, in which a merely mucous discharge in a girl was pronounced to be syphilitic, and the person who was falsely accused of rape, narrowly escaped conviction. (Briand, ‘Man. Complet de Méd. Lég.’ 1846, p. 81.) The purulent matter of gonorrhoea does not differ microscopically from that produced in other forms of disease.

We should further distinctly satisfy ourselves that gonorrhoea in a child, if it exist, could not have arisen from infection by any accident irrespective of intercourse. This limitation is rendered necessary by the publication of a report of two cases by Dr. W. B. Ryan (‘Med. Gaz.’ vol. 47, p. 744), in which two sisters, one of one year and the other of four years of age, received the infection by reason of their being washed in a vessel of water with a sponge used by a young woman affected with profuse gonorrhoeal discharge. Dr. Ryan clearly traced the origin of the discharge to this unexpected accident. Had an accusation of rape been made against a man labouring under gonorrhoea, it is not at all improbable that this condition of the children, resulting from an unsuspected
accident, would have been taken as an unanswerable proof of his guilt. Cases of this kind, thus accurately observed, convey an important caution to medical witnesses, i.e. that they should not infer criminal intercourse merely from the existence of a gonorrhoeal discharge in the absence of marks of violence to the genitals or of other strong corroborative proofs.

As a summary of these remarks with respect to purulent discharges, we may observe that they should not be admitted as furnishing corroborative evidence of rape, except,—1st, when the accused party is labouring under gonorrhoeal discharge; 2ndly, when the date of its appearance in a child is from the third to the eighth day after the alleged intercourse; and 3rdly, when it has been satisfactorily established that the child had not suffered from any such discharge previously to the assault. It may be said, however, that all these conditions may exist, and yet the accused be innocent; for a child may either through mistake or design accuse an innocent person. This, however, removes the case entirely from the hands of a medical jurist. (The reader will find much useful information on this subject in a paper by Dr. Penard, 'Ann. d'Hyg.' 1860, vol. 2, pp. 130, 345.)

With respect to marks of violence on the body of a child, these are seldom met with, because no resistance is commonly made by mere children. Bruises or contusions may, however, be found occasionally on the legs.

Rape on Young Females after Puberty.

When the crime is committed on a girl from the age of ten to twelve years, the facts are much the same as those already referred to with respect to children below the age of ten years. There is, however, some difference in the legal complexion of the offence. If carnal intercourse be had with the consent of a female between the ages of ten and twelve years, the offender is guilty of a misdemeanor only (24 & 25 Vic. c. 100, s. 51); above the age of twelve years, the consent of the girl does away with any imputation of a legal offence. Girls who have passed this age are considered to be capable of offering some resistance to the perpetration of the crime; and therefore, in a true charge, we should expect to find not only marks of violence about the pudendum, but also injuries of greater or less extent upon the body and limbs. It is probable that in these cases, if the charge were well-founded, the hymen would be ruptured, as the intercourse is always presumed to be violent; but there might be some degree of penetration without this being a necessary result, especially if the membrane were small, or placed far up. At any rate, a girl at this age may sustain all the injury, morally and physically, which the perpetration of the crime can possibly bring down upon her, whatever may have been the degree of penetration; and for this reason, it is very properly laid down by our law, that the crime consists in the mere proof of penetration. The fact, however, is generally clearly made out by the statement
of the girl. Girls of tender age are sometimes violated by boys; the amount of physical injury inflicted in such cases is less than when the assailant is an adult. In addition to other cases reported, Dr. Geoghegan of Liverpool communicated to me one which was the subject of a trial at the Liverpool Winter Assizes of 1862. A boy aged seventeen committed a rape on two children, one aged eight years, and the other ten years; he then attempted to commit a rape on a third girl, aged eleven years. These crimes were perpetrated in about half an hour, during which time he was alone with the children. He was convicted of felony for rape on the youngest child, and sentenced to four years' penal servitude.

With respect to marks of violence on the person, the exact form, position, and extent of these should be noticed, also their appearance, whether recent or of old standing. A false accusation of rape may be sometimes detected by the violence being in a situation in which it is not probable that the ravisher could have produced it. When bruises are found, the presence or absence of the usual zones of colour may occasionally throw light upon the time at which the alleged assault was committed. As these marks of violence on the person are not likely to have been produced with the concurrence of the girl, they are considered to furnish some proof of the intercourse having been against her will. But the physical appearances of rape about the genital organs may be found, whether the connection has been voluntary or involuntary. Thus rupture of the hymen, laceration of the vagina with effusion of coagula of blood, swelling and inflammation of the vulva, and stains of blood upon the person, dress, or furniture may be met with in both cases. In making an examination, the greatest care should be taken by the practitioner to fix, at the time of examination, a probable date for the marks of injury to the genitals or other parts of the body, as it is by the aid of such observations that the truth or falsity of a charge may be sometimes clearly established.

Girls and unmarried young women are liable to mucous-purulent discharges from the vagina, as a result of which the hymen may be destroyed. This kind of discharge arises from inflammation of the vagina (vaginitis), and it has been observed to follow an attack of scarlatina. When it exists, its real cause requires the closest scrutiny. At a more advanced age, young women are frequently subject to leucorrhoea. These cases are not likely to be mistaken for gonorrhoea; as here the female has it in her power to give some account of the circumstances, from which a medical opinion may be easily formed. It is possible, however, that a woman labouring under leucorrhoea may charge a man with the crime of rape, and affirm that this discharge had arisen from the act of the man. An inflamed and partially ulcerated (aphthous) state of the lining membrane of the vulva may apparently give support to the accusation. The discharge in leucorrhoea is of a mucous nature—that of gonorrhoea is of a purulent character—but purulent discharges
may take place from the vagina as the result of intense inflammation, and quite irrespective of impure intercourse. ('Chelius's Surgery,' by South, vol. 1, p. 160.) It would be impossible to distinguish such discharges from those of gonorrhoea; while a leucorrhoeal discharge under great inflammatory action may resemble that of gonorrhoea. Such discharges commencing before, but continuing and sometimes becoming aggravated after marriage, have given rise to unfounded suspicions of infection from venereal disease imparted by the husband, and have thus led to suit of divorce. In a case reported by M. Legneau a young married woman suffered from a discharge which was pronounced by a medical man whom she consulted to be gonorrhoeal. This led to an application for a divorce. A further examination by other medical practitioners, with a complete history of the symptoms from which she had suffered, justified the conclusion that she was labouring under severe leucorrhoea when she was married, and that this was followed by granular vaginitis which accounted for the mucous-purulent discharge. ('Ann. d'Hyg.' 1870, 2, 192.)

Defloration. Signs of virginity.—It will be necessary to say a few words respecting the signs of virginity,—a subject upon which, in some medico-legal works, a great amount of poetical discussion appears to me to have been wasted. Independently of cases of rape, this question may occasionally assume a practical bearing in relation to the signs of defloration. In civil cases a medical witness may be asked whether a woman has ever had intercourse or not: and proof of the fact may be necessary in order to confirm or rebut statements made by her in evidence. The question may be not whether a woman has had a child, for this would resolve itself into a proof whether delivery had or had not taken place: it may be limited to the probability or possibility of intercourse on her part at some antecedent period. Now, a medical jurist, when consulted in such a case, can be guided only by the presence or absence of the external signs of virginity. The hymen may be intact, but this does not prove non-intercourse, because females have been known to conceive with the hymen uninjured; and an operation for a division of this membrane has been actually rendered necessary before delivery could take place. (Henke's 'Zeitschrift der S. A.' 1843, vol. 2, p. 149.) Two instances of impregnation without rupture of the hymen are reported in the 'New Orleans Medical Gazette' for June 1858 (pp. 217, 220). The hymen in each case required to be divided to allow of the delivery of the child. Other cases are reported in the 'American Jour. Med. Sciences' for April 1869 (p. 576). Two have been recently published by Dr. Broun in Eulenberg's 'Vierteljahresschrift' for 1873, 2, p. 197, and one well-marked case by Dr. St. Clair Gray, in the 'Glasgow Medical Journal' for May 1873. A woman set. 29 had been seven years married before this her first confinement. It was found that she
had a persistent hymen of such size and form as completely to occlude the meatus except in its central part, where there was a small aperture. This had admitted of the menstrual flow and of impregnation. A crucial incision was made through it, and the woman was then delivered.

These facts generally admit of explanation by the membrane being of abnormal structure. Thus it has been found hard, fibrous, resisting, and at the same time small in extent, i.e. partially closing the vagina. Under opposite conditions, the persistence of this membrane might fairly lead to the inference that the female was chaste, and that there had been no intercourse; but the hymen may be destroyed by ulceration, as a result of inflammation of the genital organs. When the membrane has been thus destroyed by disease or other causes, or when it is congenitally absent, a medical opinion must be more or less conjectural; for one intercourse could hardly so affect the capacity of the vagina as to render the fact evident through life, and there is no other datum upon which an opinion could be based. The presence of the hymen is usually considered to be quite incompatible with the assumption that a woman has borne a child. A question of this kind incidentally arose in Frazer v. Bagley (Common Pleas, Feb. 1844). It was alleged by defendant that the plaintiff, a married man, had had adulterous intercourse with a young woman, and that at an antecedent period she had left her home for the purpose of giving birth to a child privately. The late Dr. Ashwell was called upon to examine the woman, and he deposed that, in his opinion, she was a virgin and had never borne a child. In spite of this evidence, the jury returned a verdict for the defendant. It is quite possible, however, that abortion may take place at the early periods of pregnancy, without the necessary destruction of the hymen. (See Henke, ‘Zeitschrift,’ 1844, vol. 1, p. 259.)

M. Stolz, after remarking on the fact that women may conceive without the destruction of the hymen being necessarily involved, alleges that this membrane may still remain even after a woman has been delivered of a child. He quotes an instance within his own knowledge in which a young woman, whose hymen was in the form of a ring or loose diaphragm open in the centre, was delivered without any alteration being produced in it. It was only destroyed at her second delivery (‘Ann. d’Hyg.’ 1873, 2, p. 148). The peculiar form of the hymen in this case might account for its persistence. Such cases must depend upon some exceptional conditions of the membrane.

This question is of importance not only as it may affect the reputation of a woman, but the credibility and character of a person who makes an imputation of unchastity. In 1845, a gentleman, then assistant-surgeon in the Bombay Army, was brought to a court-martial on a charge of having deliberately and falsely asserted that on several occasions he had had connection with a native woman. This was denied by the woman, and evidence
was adduced to show that she had still what is commonly regarded
as the main sign of virginity, namely an unruptured hymen. In
consequence of this the medical officer was found guilty, and
cashiered. The woman was at the time about to be married, and
this rendered the investigation all the more important to her. An
assistant-surgeon who examined the girl, deposed that he found
the membrane of a semilunar form and tensely drawn across the
vagina; and his evidence was corroborated by that of a midwife.
The inculpated person took up a double line of defence—1st, that
the examination of the woman was incomplete; and 2ndly, that
the hymen, if present, would not justify the witnesses in saying
that intercourse could not possibly have taken place. On the first
point, it is unnecessary here to make a remark; but it appeared
from their own admissions, that the witnesses had never before
examined women with this particular object. Assuming that there
was no mistake, it becomes a question whether non-intercourse
could in such a case be inferred from the presence of the membrane.
Fruitful intercourse, it is admitted, may take place without rup-
ture of the hymen. Some instances of this kind were referred
to at the court-martial: but such cases may be regarded as of an
exceptional nature (p. 660, ante). The real question is, whether, unless
the hymen be in an abnormal state, intercourse can possibly occur
between young and active persons without a rupture of this mem-
brane. Intercourse is not likely to be confined, under these cir-
cumstances, to a mere penetration of the vulva. The membrane
in this woman is stated to have been tensely drawn across the canal,
and it was not tough; it was therefore in a condition to render it
most easy for rupture. In the case of an old man, or of one of
weak virile power, vulval intercourse might be had without destroy-
ing the membrane; but such a case could only be decided by the
special circumstances which accompanied it. The presence of an
unruptured hymen affords a presumptive but not an absolute proof
that the woman is a virgin; and if of the ordinary size and shape,
and in the ordinary situation, it shows clearly that, although
attempts at intercourse may have been made, there can have been
no vaginal penetration. Admitting the statements of the examiners
to have been correct, it is improbable that this woman had had
sexual intercourse several times, or even on one occasion; hence
the imputation on her chastity was unfounded.

In the case of Delafosse v. Fortescue (Exeter Lent Ass. 1863),
which involved an action for defamation of character, the plaintiff,
a married man, aged 64, had been charged with committing adultery
with a certain woman. Several witnesses for the defendant posi-
tively swore that they had seen these persons in carnal intercourse.
This was denied by the plaintiff; and, as an answer to the case,
medical evidence was tendered to the effect that the woman with
whom the adulterous intercourse was alleged to have taken place
had been examined, and the hymen was found intact. In cross-
examination this was admitted not to be a conclusive criterion of
virginity. A verdict was returned for the defendant. The form and situation of the hymen in this case were not described; but it is to be presumed that these were not such as to constitute a physical bar to intercourse, or this would have been stated by the medical witness. Hence the persistence of the membrane was not considered to disprove the allegations of eyewitnesses. A somewhat similar case (Howes v. Barber) was tried in the Common Pleas in June 1866. Defendant alleged that he had seen plaintiff, as he believed, in intercourse with an unmarried lady. This was denied by plaintiff and the lady, and to support this denial medical evidence was called to show that there had been no intercourse. Drs. Oldham and Barnes examined the lady, and deposed that the hymen was entire, and that she was virgo intacta. In Scotland this kind of medical evidence is not admissible. I am indebted to Mr. Traynor, a member of the Scotch Bar, for the subjoined case, in which a wife sued the husband for divorce, on the ground, inter alia, that he had committed adultery with C. In defence, the defendant denied the adultery, and adduced C. as a witness, who swore that such connection had never taken place. She also swore that she had submitted to an inspectio corporis by Sir James Simpson. The defendant then proposed to examine this gentleman, that he might speak to the result of his examination. He argued that this was the best evidence that he could adduce in support of his innocence, as, if the girl were still a virgin, the adultery alleged could not have been committed. The Court refused to admit the evidence, on the ground that it was merely in the form of an opinion from the learned professor; that other medical men might differ from him, even from the same observations; and that, as the Court could not compel C. to submit to another examination, the proposed evidence must be considered ex parte and inadmissible. (Sessions’ Cases, Edinburgh, Feb. 11, 1860.) In Hunt v. Hunt a verdict was obtained at common law against the alleged paramour in a case of adultery, and the damages were assessed at 50L. It was subsequently proved that the lady was virgo intacta! But so long as there are facts which show that women have actually conceived with the hymen still in its normal state, it is inconsistent to apply the terms ‘virgo intacta’ to women merely because this membrane is entire. A woman may assuredly have an unruptured hymen, and yet not be a virgo intacta. This can be decided only by the special circumstances proved in each case. Such virgines intactæ have frequently required the assistance of accoucheurs, and in due time have been delivered of children! (p. 660 ante.)

A question of this kind arose in Reg. v. Harmer (C.C.C. June 1872). Prisoner was indicted for perjury. He was a waiter at a tavern, and being called as a witness in a divorce suit, swore that he had seen the parties in adulterous intercourse on more than one occasion. The lady with whom the adultery was alleged to have been committed, denied this on oath, and Dr. R. Lee and another medical expert gave evidence that they had examined this lady,
and found her to be a *virgo intacta*, no doubt from the persistence of the hymen. The Recorder, in summing up, told the jury that this evidence was of the highest importance, and it was for them to consider whether it was sufficient to satisfy them of the guilt of the prisoner. He was found guilty and sentenced to imprisonment.

In reference to these cases of persistent hymen, it is a question whether medical men in forming an opinion, have sufficiently considered the variable structure of this membrane. It has been found to consist in some instances of tough fibrous or fibro-elastic tissue, and in such cases, it might remain unruptured in married life as well as in cases of actual rape. Dr. St. Clair Gray has properly directed the attention of the profession to this subject. What may be true of a thin semilunar membrane placed in its normal position, will not be applicable to those instances in which its structure is abnormally firm, hard, and resisting. In the 'Glasgow Medical Journal' for May 1873, this gentleman has published several cases which show that the hymen may be persistent for years in married women, in spite of attempts at intercourse. In one case, a woman set. 43, who had been married twenty-four years, the hymen was found by him entire—closing the meatus with the exception of a small aperture which allowed of the menstrual flow. In a second case a woman set. 30 had been married ten years and was childless. On examination, the hymen was found entire, and its persistence was evidently due to the presence in the tissue of fibrous or fibro-elastic bands, which rendered the structure as a whole very resilient. In this case, the hymen was forcibly ruptured by a speculum. In three cases of women who had been living in habits of prostitution for seven, eight, and eleven years respectively—the hymen was found unruptured. Its structure in these cases also accounted for its persistence. In all it was firm and elastic, and in one of them it had almost a cartilaginous hardness.

From cases already quoted, these facts, it will be seen, acquire some medico-legal importance. Intercourse may have taken place although the hymen is found entire. In spite of its presence, a woman may have been guilty of a want of chastity. Even rape might be attempted, and legally perpetrated in adult women without necessarily rupturing this membrane. Married women have not always been conscious of this abnormal condition, but a woman desirous of separating from a husband might sue for a divorce, on the ground that the marriage had never been consummated; and a medical man unacquainted with these facts, might give an erroneous opinion from this persistent condition of the hymen.
CHAPTER 59.

RAPE ON MARRIED AND ADULT WOMEN.—CIRCUMSTANCES UNDER WHICH IT MAY BE PERPETRATED ON ADULT WOMEN.—LOSS OF PHYSICAL EVIDENCE.—PREGNANCY FOLLOWING RAPE.—MICROSCOPIICAL EVIDENCE.—SODOMY.

On married and adult women.—The remarks already made apply generally to married women, with this difference,—that when a woman has already been in habits of sexual intercourse, there is commonly much less injury done to the genital organs. The hymen will in these cases be found destroyed and the vulva dilated. Still as the intercourse is presumed to be against the consent of the woman, it is most likely that when there has been a proper resistance some injury will be apparent on the pudendum; and there will be also, probably, extensive marks of violence on the body and limbs. Such cases are generally determined without medical evidence, by the deposition of the woman, corroborated, as it should always be, by circumstances. An experienced barrister has suggested to me that this statement regarding the presence of marks of violence on the pudendum of a married woman, on whom a rape is alleged to have been committed, requires some qualification. He informed me that he was engaged in the prosecution of two cases of rape on married women, in which the crime was completed in spite of the resistance of the women, and there were no marks of violence on the genital organs in either case. (Reg. v. Owen and others, Oxford Circuit, 1839.) This may happen when the assailant is aided by accomplices.

On the other hand, the vagina alone may be the seat of violence, and no marks to indicate a struggle or the application of force be found on the body. I was consulted in April 1862, on a case of this description. A woman was knocked down, her clothes were pulled over her face, and the crime of rape was perpetrated by the assailant. In the position in which she was held, with her arms and hands covered over, she was half suffocated and unable to offer any effectual resistance. She was examined on the evening of the day of the assault by Dr. Mayne. He found no marks of violence on her body, but the mucous membrane of the vagina at its commencement was contused and in some portions lacerated; blood was oozing from these parts. It was properly considered that, under these circumstances, the statement of the woman was consistent with the fact that there were no marks of violence on her body. There was no reason to suppose that the injury to the vagina had been caused in any other way than by a criminal assault.

When a charge of rape is made by a prostitute, it is justly received with suspicion, and the case is narrowly scrutinized. Something more than medical evidence would be required to establish a charge under these circumstances. The question turns here, as
in all cases of rape upon adult women, on the fact of consent having been previously given or not. This is the point at which the greater number of these cases of alleged rape break down; and it need hardly be observed, that this question has no relation to the duties of a medical witness:—all that he can do is to establish, occasionally, whether or not sexual intercourse has been had with or without some violence. It is obvious that there may be marks of violence about the pudendum, or on the person, and yet the conduct of the woman may have been such as to imply consent on her part: we must not suppose that medical proof of intercourse is tantamount to legal proof of rape.

Possibility of perpetrating rape on adult women.—Some medical jurists have argued that a rape cannot be perpetrated on an adult woman of good health and vigour; and they have treated all accusations made under these circumstances as false. Whether, on any criminal charge, a rape has been committed or not, is of course a question of fact for a jury and not for a medical witness. The fact of the crime having been actually perpetrated, can be determined only from the evidence of the prosecutrix and of other witnesses; still a medical man may be able to point out to the Court, circumstances which might otherwise escape notice. Setting aside the cases of infants, idiots, lunatics, and weak and delicate or aged women, it does not appear probable that intercourse could be accomplished against the consent of a healthy adult, except under the following conditions:

1. When narcotics or intoxicating liquids have been administered to her, either by the prisoner or through his collusion. It matters not, in a case of this kind, whether the narcotics have been given merely for the purpose of exciting the female, or with the deliberate intention of having intercourse with her while she was intoxicated,—the prisoner is equally guilty. (See Reg. v. Camplin, ‘Law Times,’ June 28, 1845; also ‘Med. Gaz.’ vol. 36, p. 443.) The nature of the substance whereby insensibility is produced is of course unimportant. Thus the vapours of ether and chloroform have been criminally used in attempts at rape. In a case which occurred in France, a dentist was convicted of a rape upon a woman, to whom he had administered the vapour of ether. The prosecutrix was not perfectly unconscious, but she was rendered wholly unable to offer any resistance. (‘Med. Gaz.’ vol. 40, p. 865.) A dentist was recently convicted of rape under somewhat similar circumstances in the United States, but it was thought that the woman had made the charge under some hallucination or delusion. In Reg. v. Snarey (Winchester Lent Ass. 1859), there was a clear attempt at fraud. The prosecutrix asserted that she was instantly rendered insensible by the prisoner forcibly applying a handkerchief to her face, and she accused him of having committed a rape on her. The charge was disproved by a distinct alibi, as well as by the improbability of all the circumstances.

When the state of unconscionability arises from natural infirmity,
as in idiocy or insanity, carnal intercourse with a woman is regarded as rape. (Reg. v. Ryan, Cent. Crim. Court, September, 1846.) The woman was in this case an idiot, and it was proved that her habits were not loose or indecent. Platt, B., held that if she was in a state of unconsciousness at the time the connection took place, whether it was produced by any act of the prisoner or by any act of her own (1), any one having intercourse with her, would be guilty of rape. The prisoner was convicted. In a more recent case, Reg. v. Fletcher (Crown Cases Reserved, May 1866), in which the prisoner had been convicted of rape on an idiot, the Chief Baron delivered the judgment of the Court to the following effect:—This was an indictment for a rape upon the prosecutrix, who was an idiot. The prisoner had admitted the intercourse, but added that it was with consent. The point had been reserved for the purpose of ascertaining whether this was such an offence that the prisoner could be convicted of it. No doubt there was the clearest evidence that an offence had been committed, but, it was said, with the consent of the prosecutrix. The Crown had given no evidence that the act was done against her will, which was the allegation in the indictment. The Court considered that, as no such evidence was given, the prisoner ought not to have been convicted. Conviction quashed. It would seem, therefore, that an idiot may, under certain circumstances, give consent which will exonerate the accused.

In Reg. v. White (Northampton Winter Ass. 1856), the learned judge, in charging the jury, stated that some doubts were entertained whether the crime of rape could be committed (in law) on the person of a woman who had rendered herself perfectly insensible by drink, so as to be unable to make any resistance: he thought it could not be alleged as an excuse for the man. The question was not reserved, as the prisoner was acquitted of rape, and found guilty of an indecent assault.

It may be a question whether a man can have intercourse with a woman without her knowledge while thus in a state of unconsciousness from natural sleep. Casper met with a solitary case in which a girl aged 16 accused a man of having had intercourse with her while she was sleeping in her bed, of which she was not conscious until he was in the act of withdrawing from her. On her own statement she was virgo intacta up to the date of this occurrence. Upon the facts of the case, Casper came to the conclusion that, if her statement was true, the man could not have had intercourse with her without causing pain and rousing her to a consciousness of her position. The hymen was not destroyed, but presented lacerations in two places. This and other facts showed that there had been intercourse, but did not prove that this had taken place without the consciousness of the woman. ('Klinische Novellen,' 1863, p. 31.) A man was charged with rape before a police magistrate, and the prosecutrix swore that he had effected his purpose during her sleep. The bare possibility of the offence
being perpetrated under these circumstances cannot be denied but the admission could only apply to a case in which the woman had been accustomed to sexual intercourse, and in which the sin was premeditated or lethargic. In this instance the woman was a prostitute, and the charge improbable. A respectable married woman who had had children, the wife of an innkeeper, threw herself on her bed with her clothes on, late one evening, and fell asleep. She was first awakened by finding a man upon her bed in the act of withdrawing from her. This man, William McEee, a servant in the house, was given into custody on a charge of rape. In the first instance he did not deny the act, and there was reason to believe that the pro-cenix was aware of the crime until the crime was completed, and she was awakened in the manner described, apparently by the weight of the prisoner's body. The prisoner was convicted, and sentenced to ten years' penal servitude. (Edin. Month. Jour. December 1862, p. 55.)

A case which may serve to throw a little light upon this point occurred to Casper. (Gerichtliche Medicin, vol. 2, p. 574.) A married woman alleged that a man had had intercourse with her while in bed, and when she was asleep. In her deposition, however, she admitted she was conscious that some one was lying up her, and that she asked who it was: showing, as Casper remarks, that she had a knowledge of what was going on, and some degree of whether the person was her husband.

In reference to this question whether it is possible to commit rape upon a woman while asleep, a majority of the Scotch judiciaries, in the case of Sereno (Irvine's 'Justiciary Reports,' x 3, p. 109), that the feloniously having connection with a woman while asleep, was not indictable under the name of rape, insane, or treason, apart from the force implied in the act of connection, there was no force used to overcome the will of the woman. But they have however improbably it might be, it was quite possible that a man might have connection with a woman while asleep. (Edin. Month. Jour. December 1862, p. 570.)

The condition of the so-called magnetic or unnatural sleep given rise to a question connected with the alleged perpetrator of rape. A girl (aged 18) consulted a therapeutic magnetizer as her health. She visited him daily for some days. Four and a half months afterwards she discovered that she was pregnant, and made a complaint to the authorities against the magnetizer. That directed a physician and surgeon to determine the date of her pregnancy, and whether the complaint might have been voluntary or induced by a person contrary to her will, i.e., whether her condition could have been completely or partially ameliorated by magnetism. The medical inspectors were satiated that the pregnancy did not extend further back than four and a half months, and founding their opinion on M. Hussin's report, made to the Medical Academy in 1831, concluded that as a person in magnetic sleep is insensible to every kind of torture, sexual intercourse might
take place with a young woman without the participation of her will,—without consciousness of the act, and consequently without the power to resist the act consummated on her. This opinion was confirmed by that of Degergie. ('Gazette Médicale de Paris,' and 'Edin. Month. Jour,' December 1860, p. 566.) There is another view of this case which does not seem to have occurred to the French medical experts, namely: 'Non omnes dormiunt quae eius habent oculos.'

2. A rape may be committed on an adult woman if she falls into a state of syncope, or is rendered powerless by terror and exhaustion from long struggling with her assailant. An eminent judicial authority has suggested to me that, in his opinion, too great distrust is commonly shown in reference to the amount of resistance offered by women of undoubted character. Inability to resist from terror, or from an overpowering feeling of helplessness, as well as horror at her situation, may lead a woman to succumb to the force of a ravisher, without offering that degree of resistance which is generally expected from a woman so situated. As a result of long experience, he thinks that injustice is often done to respectable women by the doctrine that resistance was not continued long enough.

3. When several are combined against the woman, in which case we may expect to find some marks of violence on her person, if not on the genital organs.

4. A woman may yield to a ravisher, under threats of death or duress: in this case her consent does not excuse the crime, but this is rather a legal than a medical question. An aged woman can scarcely be expected to resist a strong man. Dr. Chevers mentions a case in which a man was convicted of rape and aggravated assault on a woman of seventy years of age.

Loss of physical evidence.—It is necessary to observe, in relation to the examination of married women, that the indications of rape on the genitals, however well-marked they may have been in the first instance, either soon disappear or become obscure, especially in those who have been already habituated to sexual intercourse. After two, three, or four days, unless there has been an unusual degree of violence, no traces of the crime may be found about the genital organs. In the case of an adult married woman examined by Dr. Mayne, the appearance of injury which he discovered in and about the vagina, had begun to heal in less than forty-eight hours; but in a case examined by Casper, on the ninth day the lining-membrane of the vagina was still reddened, and the parts were still painful. In this case the hymen had been completely torn through. ('Gerichtliche Medicin,' vol. 2, p. 157.) In married women, or in those accustomed to sexual intercourse, no inference can be drawn from a dilated state of the vagina. In unmarried women, and in children when there has been much violence, these marks may persist and be apparent for a week or longer. If there has been great laceration of the sexual organs, then certain appearances in the form of
PREGNANCY FOLLOWING RAPE.

cicatrices may remain; but in all cases great caution should be observed in giving an opinion of rape having been perpetrated, from an examination made two or three weeks after the alleged commission of the offence. Marks of violence on the person can never establish a rape; they merely indicate, ceteris paribus, that the crime may have been attempted.

Pregnancy following rape.—It has been a question, whether when intercourse has taken place against the will of a woman, i.e. in the perpetration of rape by violence, pregnancy could possibly follow. It was at one time thought that the will of a woman was always necessary to the act of impregnation, and therefore if she became pregnant, she must have consented to the act, and that the charge of rape was unfounded. Such a defence would not be admitted as an answer to a charge of rape or to show, under any circumstances, that intercourse had been had with consent. Conception, it is well known, does not depend on the consciousness or volition of a woman. If the state of the uterine organs be in a condition favourable to impregnation, this may take place as readily as if the intercourse had been voluntary: even penetration to the vagina is not absolutely necessary for impregnation. (See case by Dr. Oldham, 'Med. Gaz.' vol. 44, p. 48.) In a case communicated to me by the late Mr. Carrington, a woman became pregnant after a rape committed on her by a man who subsequently married her: the date of intercourse was accurately fixed, and a child was born after 263 days' gestation. (See also a paper by M. Stolz, 'Ann. d'Hyg.' 1873, vol. 2, p. 146.)

It has been supposed, that in cases of pregnancy following rape, in spite of resistance at first, a woman may in the end have voluntarily joined in the act. I know of no ground for adopting this theory: the general opinion is, that conception may occur, and is neither accelerated nor prevented by the volition of the sexes. Many women in married life who anxiously wish for children have none, and vice versa; and physical impediments do not suffice in all cases to explain these facts. Women are reported to have conceived during the states of asphyxia, intoxication, and narcotism. Dr. Ryan mentions a case in which a young woman became unconscious pregnant from intercourse had with her by a man while she was in a state of intoxication, and in which it was clearly impossible that her volition could have taken any share. ('Med. Juris.' p. 245.) In married life there is no doubt that women frequently become pregnant against their will, and in a great number of cases without any consciousness of their condition until pregnancy is far advanced. Those who affirm that without the active will of the woman there can be no conception, must deny the existence of cases of impregnation in a state of unconsciousness (p. 471, ante); but the facts are too strong and too numerous to be met with a simple denial. A medical jurist, therefore, who relied upon pregnancy following alleged rape, as a proof of consent on the part of the woman, and who would infer from this result that the intercourse must have been voluntary
on her part, would inflict great injustice by such an opinion. The extrusion of an ovum does not depend on the will of a woman, but is a periodical condition; the action of the spermatozoa on this ovum is as much removed from the will of the woman, as it is from that of the man.

This subject would have hardly required so much notice, but for the fact that in some recent trials it has been put forward with a view to discredit the evidence of a woman, where pregnancy has followed intercourse in a state of alleged unconsciousness. Any statement of this kind certainly requires a close examination, because, generally, there is a strong motive for falsehood on the part of the woman. In the case of Bromwich v. Waters (pp. 596, 601, ante), the young woman Whalley had had a child, but stated that she had not been conscious of any intercourse. The fact that she had borne a child did not prove that her statement was false, although a suggestion to this effect was made. We may fairly doubt whether a woman could have intercourse unconsciously, but because impregnation follows, this is no proof that she is guilty of falsehood or perjury.

Microscopical evidence.—As part of the medical evidence in cases of rape, it may be necessary to examine spots or stains on the linen of the prosecutrix and the accused. Cases of rape are, however, commonly tried in this country without reference to this species of evidence; and it is not easy to perceive how this can be necessary to the proof of the crime in the living, when the present law of England demands only proof of penetration, and not of emission. (24 & 25 Vict. c. 100, s. 63.) Thus, a rape may be legally completed without reference to emission; and, medically speaking, it appears quite possible that there might be marks of emission without any penetration, as in a protracted resistance on the part of a woman. Admitting that certain stains of this description are found on the clothes of an accused person—are these to be taken as furnishing undeniable proof of the legal completion of rape by penetration? It appears to me that without corroborative evidence from the state of the female organs they cannot be so taken; and therefore the affirmative evidence from the microscope, under these circumstances, is as liable to lead to error as that which is purely negative. The fact that spermatic stains are found on the linen of the prosecutrix, may however become occasionally of great importance in charges of assault with intent. (Reg. v. Hamilton, Edinburgh, Nov. 27, 1843.)

Examination of stains.—There are no chemical tests on which we can safely rely for the detection of spermatic stains. The appearance produced by a dried spermatic stain on linen or cotton is like that produced by a diluted solution of albumen. The fibre of the stuff is stiffened, and the stain, particularly at the margin, has a slightly translucent appearance, as if the stuff had been wetted by diluted gum or albumen, but without any shining lustre. In the dry state the stains present no well-marked colour or odour. Slips of the
stained linen, when soaked in a small quantity of distilled water, yield an opaque muco-albuminous liquid, slightly alkaline. It was long since noticed by Orfila that this liquid, unlike a solution of albumen, was rendered rather strongly yellow by diluted nitric acid. By the action of warm water, the stained linen, even although it may have been kept dry for a considerable period, has been observed to evolve the peculiar faint odour of the spermatic secretion.

The stained linen, or a part of it, should be cut into small pieces, taking care that it is not roughly handled. These should be placed in a small porcelain capsule or watch-glass, with a sufficiency of distilled water (eight or ten drops) to soak it thoroughly, and to allow the fibre of the stuff to become quite penetrated by the water. It is advisable not to move the stuff or agitate the liquid, but to allow it to be quietly imbibed. The watch-glass or capsule should be covered so as to prevent evaporation and to keep out foreign matters. After half an hour the fibres may be turned and allowed to macerate for some time longer. The stained linen may then be removed, and the soaked fibres of the stuff gently pressed on several glass slides, already well cleaned and prepared for the purpose. The liquid thus obtained by pressing the stained linen is slightly opalescent. It is found that this opalescence is removed by the addition of a small quantity of ammonia or diluted acetic acid; these liquids do not affect the forms of the spermatozoa. The stains are more completely dissolved by water which is slightly tepid. Care must be taken not to use more water than is actually required to moisten the stained stuff and to allow a small portion to be pressed out of it.

The liquid on the slide may be then covered with microscopic glass, and examined in a good light under a power varying from 350 to 500 diameters. The dead spermatozoa may then be seen as in the annexed engraving. (Fig. 54.) They have flattened ovoid heads, with long tapering tails which are from nine to twelve times the length of the head. They are usually associated with granular bodies and epithelial scales. Fibres of cotton, linen, or woollen may be mixed with them, and there may be also pus, mucus, or blood-globules. Their form is so peculiar, that when once well seen and examined, they cannot be confounded with any other substance, vegetable or animal, nor with ordinary care can any vegetable fibres be mistaken for them, although these may be mistaken for their tails or filaments. Particular notice should be taken of any hairs or fibres found in such stains. They may be human or animal hairs, and the fibres may
EXAMINATION OF SPERMATIC STAINS.

by their nature, form, and colour be connected with some article of
dress, worn by the woman or the person accused of rape. Some
remarkable cases in which evidence was furnished by these stains
and substances associated with them, will be found in the Russian
Official Report, 'Anleitung zur Untersuchung verdächtiger Flecke
für Aerzte und Juristen. St. Petersburg, 1871.'

Some observers have advised that the expressed liquid obtained
from spermatic stains should be allowed to dry spontaneously on the
slide and then examined in the dry state. When humid, the bodies
and especially the tails are so transparent that the whole sperma-
tozoon may escape observation. One part only may come into focus
at a time. They become opaque by drying, and may be seen in
darker lines, sometimes in their whole length. (See Casper's 'Viertel-
recommends the addition of a solution of iodine in iodide of
potassium to the liquid submitted to examination. He has found
that it brings out the entire form of the spermatozoon of a deep
yellow colour, and thus makes a distinction between it and other
fibrous substances. ('Ann. d'Hyg.' 1867, vol. 1, p. 154.)

As it has been elsewhere stated, the spermatozoa, although pecu-
lar to the seminal fluid, are not found in the very young, the very
old, or in those who are labouring under long-standing disease of
the testicles (p. 328). Even in the cases of healthy married men,
who have had children, spermatozoa are not always found in the
spermatic secretion; their presence, size, and number are subject
to great uncertainty. Exhaustion from frequent intercourse, or
constitutional causes without actual bodily disease, appear to influ-
ence their production. There are also various other conditions in
which they are not found; these have been fully examined by
Casper ('Gericlhliche Medicin,' vol. 2, p. 141). Hence the dis-
covery of spermatozoa in stains on articles of clothing demonstrates
that they have been produced by the spermatic
liquid; but their non-discovery, under these
circumstances, does not prove that the stains
have not been caused by this liquid. Dr. Kob-
laneck's conclusions on this subject are therefore
not borne out by facts.

The detection of dead or motionless sperma-
tozoa in stains, may be made at long periods
after emission, when the fluid has been allowed
to dry. (Fig. 55.) In three cases, at intervals of
from one week to seven weeks after the perpe-
tration of the crime, Casper was enabled to
demonstrate the presence of spermatozoa on
articles of clothing, and thus to furnish strong
Dr. Koblanek made experiments on this subject,
in reference to different periods of time; he found these bodies dis-
tinctly, after twelve months. The discovery of one distinct and entire
body is quite sufficient to justify a medical opinion of the spermatic nature of the stain. M. Bayard states that he has been able to detect spermatozoa in stains after six years, (‘Man. Prat. de Mé Lég.’ p. 277); and M. Roussin, after the long period of eight years! (‘Ann. d’Hyg.’ 1867, vol. 1, p. 152.)

A medical witness must be prepared to consider the precise value of evidence furnished by the microscope, in the examination of stains on the dress of a man accused of rape. A shirt may present stains of blood, urine, mucus, or gonorrhoeal discharge, some of which but for the microscope, might be mistaken for spermatic stain. Admitting that, by the process above described, the microscope enables an examiner to affirm that the stains have really been caused by the spermatic secretion, this does not prove that a rape has been committed, or even that intercourse has been necessary with a woman. Such stains may arise from spontaneous discharge, or from disease (spermatorrhoea), and therefore in themselves they afford no proof of intercourse. If from other circumstances in the case, it should be clearly and satisfactorily proved that there has been intercourse, then the presence of blood mixed with the spermatic stains might, in certain cases, justify an opinion that violence had been used. The discovery of spermatic stains on the dress of a woman, furnishes stronger evidence of intercourse, attempted or perpetrated, than their discovery on the dress of a man; but admitting that intercourse is thus proved, it may at have taken place with the consent of the woman. These stains when found on the clothing of girls and infants, afford a stronger corroborative proof of the perpetration of the crime.

Microscopical evidence from the woman.—It may become necessary to determine, in reference to a woman, whether intercourse has or has not recently taken place. All observers agree that, within a certain period after connection, the fact may be established by examination of the vaginal mucus. A small quantity of this mucous fluid placed upon glass, and diluted with water, will be found to contain spermatozoa, if the suspicion be correct. In addition to other characters, it may be remarked that the living spermatozoa move for many hours out of the body when kept at a temperature of 95° and they even retain their rapid motions when the spermatic liquor is mixed with water; but these motions cease immediately on the addition of urine or chemical re-agents. According to Müll, the spermatozoa may retain vitality (or free motion) in the body of a woman for the period of seven or eight days, and even longer. M. Bayard states that he has thus detected them in the vaginal mucus of females not subject to morbid discharges, at various intervals up to three days after intercourse (op. cit. p. 277); and Donné found them under similar circumstances in a woman who had been admitted into the hospital the day before (op. cit. p. 30). This evidence may become of value in a charge of rape, but it may be easily destroyed by the presence of leucorrhoea: and it is open to an objection, that in certain morbid states of the vaginal muc
of the human female, there is found in it a microscopic animalcule, called by Donné the Trichomonas vaginae; but this has a much larger body and a shorter tail than the spermatozoan. Other substances may be sometimes found in the vaginal mucus; see case by Dr. Lender (Horn’s ‘Vierteljahrschrift,’ April 1865, p. 355).

Marks of blood on clothing.—Marks of blood upon the linen can, of course, furnish no evidence unless taken with other circumstances. The linen may be intentionally spotted or stained with blood for the purpose of giving apparent support to a false accusation. Dr. Bayard met with a case of this kind, in which a woman charged a youth with having committed a rape upon her infant child. On examination, the sexual organs were found uninjured; and on inspecting the marks of blood on the clothes of the child, it was observed that the stains had been produced on the outside of the stuff, and bore the appearance of smearing; the whole fibre had not even been completely penetrated by the liquid. The falsehood of the charge was thus established. (‘Ann. d’Hyp.’ 1847, vol. 2, p. 219.) A case involving a false charge of rape was tried at the Glasgow Autumn Circuit in 1859. One of the witnesses, an accomplice, proved that she had purchased some blood and handed it to the woman who made the charge, and she saw her smear it over her person and on some sheets on which it was alleged the rape was perpetrated. The woman (Boyle) and her husband, who made this false charge, were convicted of conspiracy.

It may be a question whether marks of blood on the linen of a prosecutrix were caused by effusion as a result of violence or by the menstrual fluid. In its normal state this fluid is said to contain no fibrin; but in respect to the presence of red corpuscles and of serum, it resembles blood. That fibrin is, however, frequently present, and in large quantity, is obvious from its being occasionally discharged in a clotted state: hence the discovery of fibrin in a stain would by no means necessarily imply that the blood was not derived from the menstrual fluid. Supposing the blood-stain to have been caused by imbibition from another article of dress already stained, the secondary stain would be free from fibrin, which would remain in the stuff originally wetted. A man might thus wrongly pronounce this secondary stain to be due to menstrual blood. Even the presence of epithelial scales and mucus would not prove the stain to be menstrual, unless it could be shown that the mucus was actually effused with the blood which caused the stain. The epithelial scales naturally found in vaginal mucus are flat nucleated cells, oval, round, or polygonal in shape, and varying in size. They are spread over the mucous membrane not only of the vagina, but of the mouth, pharynx, cesophagus (gullet), conjunctiva, and the serous and synovial membranes. (‘Kirk’s Physiology,’ p. 304.) There must be great caution in relying upon this microscopical evidence.

It may be right to state, for the information of medical practitioners who have hitherto thought that they could easily distinguish
menstrual blood, and swear to it on charges of rape, that, a few years since, the French Academy of Medicine appointed as a committee MM. Adelon, Moreau, and Le Canu, to examine this question in the most comprehensive manner. These gentlemen reported that in the present state of science, there is no certain method by which menstrual blood can be distinguished from that effused from the blood-vessels in a case of child-murder or abortion. ('Ann. d’Hym 1846, vol. 1, p. 181; see ante, pp. 240, 510.)

Evidence of violation in the dead.—The body of a child or woman is found dead, and a medical witness may be required to determine whether her person has or has not been violated before death. There is here some difficulty, because there will be no statements from the prosecutrix herself. The witness can seldom do more than express a conjectural opinion, from the discovery of marks of violence on the person and about the genital organs. Even if spermatozoa were detected in the liquid mucous of the vagina, or on the dress of a woman, this would merely prove that there had been intercourse whether it had been violent or not, and against the will of the woman, would depend on the circumstantial evidence. In a case alleged murder tried at Edinburgh some years ago, the first point to be determined in examining the dead body was, whether a rape had or had not been committed. The examination of the stains on the dress was conclusive, when taken in conjunction with the other evidence. The jury convicted the man of a rape, but acquitted him of the murder. For another case in which evidence was obtained on the examination of a dead body, see Casper’s ‘Klinische Novellen,’ p. 1.

Rape by females on males.—So far as I can ascertain, this crime is unknown to the English law. Several cases of this kind have however, come before the French Criminal Courts. In 1845, a female, aged eighteen, was charged with having been guilty of an act of indecency, with violence, on the person of Xavier T., a boy under the age of fifteen years. She was found guilty, and condemned to ten years’ imprisonment. In another case, which occurred in 1842, a girl, aged eighteen, was charged with raping two children—the one eleven, and the other thirteen years of age. It appeared in evidence that the accused enticed the two boys into a field, and there had forcible connection with them. This female was proved to have had a preternatural contraction of the vagina which prevented intercourse with adult males. She was found to be labouring under syphilitic disease, and the proof of her offence was completed by the disease having been communicated to the two boys. She was condemned, by the Court of Assizes of the Seine, to fifteen years’ hard labour at the galleys. (‘Ann. d’Hym. ’ 184 vol. 1, p. 463.) Casper describes cases of this description which have fallen under his observation. (‘Handbuch der Gerichtliche Medicin,’ vol. 2, p. 129; and ‘Klinische Novellen,’ 1863, p. 16.) By the Penal Code of France, it is a crime in either sex to attempt intercourse with the other, whether with or without violence, when the child is under eleven years of age. That this offence is perp
trated in England cannot be doubted. It is by no means unusual to find, in the wards of hospitals, mere boys affected with the venereal disease. In some instances this may be due to precocious puberty; but, in others, it can only be ascribed to that unnatural connection of adult females with male children, which is punished as a crime in the other sex. The only accessible medical proof would consist in the transmission of gonorrhoea or syphilis from the woman to the child.

Unnatural Offences.

Pederastia. Sodomy.—This crime is defined to be the unnatural connection of a man with mankind, or with an animal. The evidence required to establish this crime is the same as in rape, and therefore penetration alone is sufficient to constitute it. There are, however, two exceptions: 1st, it is not necessary to prove the offence to have been committed against the consent of the person upon whom it was perpetrated; and 2ndly, both agent and patient (if consenting) are equally guilty; but the guilty associate is a competent witness. In one case (Rex v. Wiseman), a man was indicted for having committed this offence with a woman, and a majority of the judges held that this was within the statute. Unless the person is in a state of insensibility, it is not possible to conceive that this offence should be perpetrated on an adult of either sex against his or her will; the slightest resistance would suffice to prevent its perpetration. In August 1849, a question on this point was referred to me from Kingston, Jamaica. A man was convicted, and sentenced to transportation for life, for the crime of sodomy, alleged to have been committed on the complaining party while he was asleep. The only evidence against him was the statement of the complainant. The opinion given was in conformity with that of Dr. J. Ferguson, who referred the case to me, namely, that the perpetration of the act during a state of natural sleep was contrary to all probability. The remarks already made in reference to rape during sleep may be applied with greater force to acts of this nature (p. 667, ante). If this crime is committed on a boy under fourteen years, it is felony in the agent only; and the same, it appears, as to a girl under twelve. (Archbold, p. 409.) The act must be in the part where it is usually committed in the victim or associate of the crime.

Sodomy is commonly understood to signify unnatural intercourse between man and man, while bestiality implies unnatural intercourse with animals. Continental medical jurists have invented a new term, _Pederastia_ (παιδική ἀπατή, pueri amator), comprising those cases, not unfrequent, in which boys at about the age of puberty are made the victims of the depraved passions of a certain class of men, but this term is not applicable to the crime committed by and between adults. The medical aspects of this subject have been very fully examined by M. Tardieu, _Ann. d’Hyg._ 1857, 2, 133, 397, and 1858, 1, 137, 152; also by M. Toumouche, _Ann._
d’Hyyg., 1868, 2, 121; and by Dr. Louis Penard, ‘Anu. d’Hyyg. 1860, 2, 367. The symptoms indicative of this unnatural intercourse both in agent and patient are very fully described by the writers. Casper has also dealt with this crime and the medical evidence required to prove it. (‘Gerichtliche Medicin,’ vol. i., p. 176.)

The facts are commonly sufficiently proved without medical evidence, except in the cases of young persons, when marks of physical violence will in general be sufficiently apparent. In some instances, proof of the perpetration of the crime may be obtained by resorting to microscopical evidence. (See Donne, op. cit. p. 308.) Stains upon the linen of young persons may thus furnish evidence that the crime has been attempted, if not actually perpetrated. For a case of this kind see p. 671.

Unless an examination is made soon after the perpetration of the crime, the signs of it will disappear. In the case of one for habituated to these unnatural practices, certain changes have been pointed out as medical proofs,—among them a funnel-shaped state of parts between the nates, with the appearance of dilatation stretching, or even a patulous state of the anus and a destruction of the folded or puckered state of the skin in this part. There may be also marks of laceration, cicatrices, &c., and sometimes evidence may be derived from the presence of syphilitic disease. This condition of parts would represent the chronic state induced by these practices in the patient or succubus. In the recent or acute form fissure and laceration of the sphincter ani, with bruising and effusion of blood, would be found.

Trials for sodomy and bestiality are very frequent, and conviction of men and boys have taken place for unnatural intercourse with cows, mares, and other female animals. Medical evidence is seldom required to sustain the prosecution. There may be, however, circumstances which can only be properly interpreted by a scientific expert. The hair of the animal may be found on the perpetrator or marks of blood or feculent matter upon his dress, and in such cases chemistry or the microscope may enable a witness to express an opinion in proof or disproof of the charge. In one case tried at the assizes, where a man was charged with having had unnatural intercourse with a cow, the prosecution was able to show that some short coloured hairs found on the prisoner’s person resembled those of the animal. This crime is punishable by penal servitude for life under the 24 & 25 Vict. c. 100, s. 61. False charges of sodomy were at one time frequent; they were made for the purpose of extortion.

A question may arise here respecting the examination of an accused person which has already been considered in reference to the examination of women charged with infanticide. The examination should be with the consent of the accused, and not made against his will, since no one is bound to furnish evidence against himself (see ante, p. 582). In reference to the evidence derivable from the hair of animals, see Horn’s ‘Vierteljahrs.’ 1865, i, 160.
DEFINITIONS OF INSANITY.

INSANITY.

CHAPTER 60.

WHAT IS INSANITY?—MEDICAL DEFINITIONS.—DISTINCTION OF SANE FROM INSANE PERSONS.—MORAL INSANITY.—LEGAL DEFINITIONS.—‘NON COMPOS MENTIS.’—SYMPTOMS OF INCIPIENT INSANITY.—HALLUCINATIONS AND ILLUSIONS.—LUCID INTERVALS.

What is insanity? Medical definitions.—The terms insanity, lunacy, unsoundness of mind, mental derangement, madness, and mental alienation or aberration, have been indifferently applied to those states of disordered mind in which a person loses the power of regulating his actions and conduct according to the ordinary rules of society. In all cases of real insanity, the intellect is more or less affected—hence the term intellectual insanity. In a medical sense this implies a deviation of the mental faculties from an assumed normal or healthy standard. In an insane person there may be no bodily disease, but his language and habits are changed,—the reasoning power which he may have enjoyed in common with others is lost or perverted, and he is no longer fitted to discharge those duties which his social position demands. Further, from perversion of reason, he may show a disposition to commit acts which may endanger his own life or the lives of those around him. It is at this period that the law interferes for his own protection, and for that of society.

Many attempts have been made by psychologists to define insanity; but the definitions hitherto given are so imperfect that it would be difficult to find one which includes all who are insane, and excludes all who are sane. This difficulty is fully accounted for by the fact that mental disorder varies in its degree as well as in its characters; and the shades of disordered intellect in the early stages are so blended as to be scarcely distinguishable from a state of sanity. It is this twilight condition of the mind, when it is fluctuating between sanity and insanity, which no definition can comprise, especially as the mind differs in its power and manifestations in most persons, and it is therefore difficult to fix upon a standard by which a fair comparison can be made. The vulgar notion of insanity is, that it consists in an entire deprivation of reason and consciousness; but the slightest acquaintance with the insane, proves that they are not only perfectly conscious of their actions in general, but that they reason upon their feelings and impressions. The late Dr. Abercrombie considered insanity to consist in a loss of the faculty of attention,—that power by which we are capable of changing, controlling, arresting, or fixing the current of our thoughts. Dr. Conolly regarded it as a disorder of the power of
comparison or judgment, and Professor Marc as a loss of the faculty of volition; so that, in the latter point of view, the acts of the insane are involuntary, and depend upon impulses which they cannot control.

These definitions are defective, inasmuch as they are not adapted to the various forms of the disease. In some cases of insanity, as in confirmed idiocy, there is no evidence of any exercise of the intellectual faculties; but in most instances these faculties and the moral feelings are partially diseased or partially destroyed, in every variety and degree. Thus we may meet with cases in which the faculties of attention, comparison, and volition are more or less impaired or absent, or if present, they are never perfect, although each may not be equally affected. When no two cases are precisely similar, no definition can include all varieties of the disorder. A medical witness who ventures upon a definition, will therefore generally find himself involved in numerous inconsistencies, for no words can possibly comprise the variable characters which this malady is liable to assume. Those who take an interest in definitions of insanity and who think they can defend them from the critical acumen of lawyers, will find them fully set forth in their medical and medico-legal aspects in a paper by Dr. Rorrie ("Ed. Monthly Journal," July 1865, p. 13). There are, however, cases in which a medical man may find himself compelled, if not to define insanity, at least to show some clear distinction between a sane and an insane person. Thus in cases in which there has been an alleged breach of the law regarding the custody of lunatics, it may be pleaded that the person is sane, and a medical expert must then be prepared to say whether the person concerning whom the question is raised, is idiotic, lunatic, or of unsound mind, and to assign satisfactory reasons for his opinion.

Moral insanity.—In addition to that form of insanity in which the mind is affected, known as intellectual insanity, Dr. Prichard and other medico-legal writers have described a state which they call moral insanity (Mania sine delirio), which is manifested simply by a perverted or disordered state of the feelings, passions, and emotions, irrespective of any apparent intellectual aberration. There are no hallucinations or illusions, and there is no evidence of delusion, but simply a perversion of the moral sentiments. Thus it is alleged that this form of insanity may appear in the shape of a causeless suspicion, jealousy, or hatred of others, especially of those to whom the affected person ought to be attached; and it may also manifest itself under the form of a wild, reckless, and cruel disposition towards mankind in general. It does not seem probable, however, that moral insanity, as thus defined, ever exists or can exist in any person without greater or less disturbance of the intellectual faculties. The mental powers are rarely disordered without the moral feelings partaking of this disorder; and conversely, it is not to be expected that the moral feelings should become to any extent perverted without the intellect being affected,
for perversion of moral feeling is generally observed to be one of
the early symptoms of disordered reason. The intellectual dis-
turbance may sometimes be difficult of detection; but in every
case of true insanity it is more or less present, and it would be a
highly dangerous practice to pronounce a person insane, when some
evidence of its existence was not forthcoming. The law does not
recognize moral insanity as an independent state; hence, however
perverted the affections, moral feelings, or sentiments may be, a med-
cal jurist must always look for some indications of disturbed reason.
Medically speaking, there are, according to Dr. Prichard, two forms of
insanity, moral and intellectual: but in law there is only one,—
that which affects the mind. Moral insanity is not admitted as a
bar to responsibility for civil or criminal acts, except in so far as it
may be accompanied by intellectual disturbance. Dr. Mayo denies
its existence, and contends that no abnormal state of mind should
confer irresponsibility unless it involves intellectual as well as moral
perversion. ("Medical Testimony," p. 69.) The late Sir B. Brodie
also considered that there are no reasonable grounds for admitting
this to be an independent form of insanity. There has been, as
he suggests, much mystification on the subject. The term has been
applied to cases in which the name of insanity ought not to have
been applied at all, i.e. to 'moral depravity,' and also to cases in
which delusions have really existed, and which might therefore
have been more properly classed with cases of ordinary mental
aberration. ("Psychological Inquiries," p. 99.) Of one fact we
may be well assured: if in these cases of alleged moral insanity,
there is no indication of a perversion of intellect, medical evi-
dence is not required to determine the degree of responsibility in
reference to such persons. Those who administer the law, and
any man endowed with plain common-sense, will be as well qualified
as a medical expert, to decide the question of criminal responsi-
bility. Further, until medical men can produce a clear and well-
defined distinction between moral depravity and moral insanity,
such a doctrine, employed as it has been for the exculpation of
persons charged with crime, should be rejected as inadmissible.

Legal definitions—The law of England recognizes two states
of mental disorder or alienation: 1. Dementia naturalis, corre-
sponding to idiocy; and 2. Dementia adventitia, or accidentalis,
signifying general insanity as it occurs in persons who have once
enjoyed reasoning power. To this state the term lunacy is also
applied, from an influence formerly supposed to be exercised on
the mind by the moon. Lunacy is a term generally applied to
those disordered states of mind which are known to medical men
under the names of mania, monomania, and dementia; and which
are frequently, although not necessarily, accompanied with lucid
intervals. The main character of insanity, in a legal view, is con-
sidered to be the existence of delusion, i.e. that a person should
believe something to exist which does not exist, and that he should
act upon this belief. Many persons may labour under harmless
delusions, and still be fitted for their social duties; but should these delusions be such as to lead them to injure themselves or others in person or property, then the case is considered to require legal interference.

In addition to the terms Idiocy and Lunacy, we find another frequently employed in legal proceedings, namely, 'unsoundness of mind'—(*non compos mentis*)—of the exact meaning of which it is impossible to give a consistent definition. According to Dr. Forbes Winslow, the phrase 'unsoundness of mind' was first used by Lord Eldon to designate a state of mind not exactly idiotic, and not lunatic with delusions, but a condition of intellect occupying a place between the two extremes, and unfitting the person for the government of himself and his affairs. (Lancet,' 1872, 1, 108.) This definition has been since generally accepted and acted on by all the judges. From various legal decisions, it would appear that the test for unsoundness of mind in law has no immediate reference to the existence of delusion in the mind of a person, so much as to proof of incapacity from some morbid condition of intellect to manage his affairs with ordinary care and propriety. (Amos.) Neither condition will suffice to establish unsoundness without the other; for the intellect may be in a morbid state, and yet there may be no legal incompetency; or the incompetency alone may exist and depend on bodily infirmity or want of education—conditions which must not be confounded with mental disorder. Thus, then, a person may be of unsound mind, i.e. legally incompetent to the control of his property, and yet not come up to the strict legal standard of lunacy or idiocy.

Some medical practitioners have attempted to draw a distinction between insanity and unsoundness of mind. A case occurred in 1839, in which a medical man hesitated to sign a certificate for the confinement of an alleged lunatic, because in it the words 'unsound mind' were used. He said he would not have hesitated to sign if he had the term 'insane' been employed. The difference, if any exist is purely arbitrary, and depends on the fact that 'unsound mind is a legal and not a medical phrase, referring to an incapacity to manage affairs, which insanity in its most enlarged sense, does not always imply. The law, however, appears to admit some sort of distinction: for, according to Chitty, it is a criminal and an indictable act maliciously to publish that any person is afflicted with insanity since it imputes to him a malady generally inducing mankind to shun his society; although it is not libellous to say that a man is not of sound mind, because no one is of perfectly sound mind but the Deity! (Med. Jour.' vol. 1, p. 351.) In reference to the signing of certificates of insanity, it is, however, an error to suppose that the use of one term can involve a practitioner in any greater share of responsibility than the use of the other.

Symptoms of incipient insanity.—The symptoms by which in sanity is indicated at an early stage are liable to great variation according to the sex, age, and social position of the person. It
reference to suicide, the execution of wills, or the perpetration of crime, we often find, after the death of the person, or at the trial which follows the crime, that the most trivial and irrelevant circumstances are brought forward as indications of insanity. This subject has been ably treated by Dr. Forbes Winslow ('Obscure Diseases of the Brain,' p. 88), and to his work I must refer the reader for much useful information. The facts are there gathered chiefly from the accounts furnished to him by those who have recovered. There is great irritability at the most trifling circumstances—impatience of contradiction, loquacity, great difficulty in directing attention to, and steadily occupying the mind with any train of thought, neglect of usual employment, sleeplessness, depression of spirits without reasonable cause, a disposition to seclusion, doubts about personal identity, followed by hallucinations and illusions. A lady, who was gradually affected, remained insane for nearly eleven months: she informed Dr. Winslow that during the whole of that time she fancied she was in hell and tormented by evil spirits; she thought every person near her was the devil. S. sometimes a patient fancies he is continually watched by spies, that policemen are looking after him, and that conspiracies and plots among his relatives or friends are going on secretly against him; he believes that his food is drugged or poisoned, and will refuse to eat. Great anxiety on any subject followed by headache may be the forerunners of an attack; there is generally an entire loss of interest in the usual occupations, a silent manner, and a great desire for solitude. In one instance, fits of immoderate laughter at the most trivial occurrences preceded the attack. Sooner or later these symptoms are attended by perverted taste or smell—by illusions of hearing or sight; voices are heard, and objects are seen, which at first perplex and then confuse the patient; they continue until he feels overpowered mentally and bodily; and he then falls into delusions regarding himself, his friends who are about him, his profession or occupation, and his worldly circumstances.

In incipient insanity delusion does not necessarily exist. There is an antecedent state, in which, according to Dr. C. B. Radcliffe, the most prominent feature is intense self-conceit. A man may retain the knowledge of his personal identity, but he may fancy himself to be wiser, richer, or stronger than he really is. Another feature is misanthropy, a general dislike to others without cause, but especially directed against those who have the greatest claim on his affection. This feeling may after a time become complicated with some delusion. A third symptom is a suspicious disposition. This, after a time, leads to delusion, and the person imagines that there are conspiracies to poison him or to do him some bodily injury. (Croonian Lectures, 'Lancet,' April 1873, p. 471.) Self-conceit, misanthropy, and distrust without delusion, may be regarded as the most marked forerunners of an attack of insanity.
Hallucinations and Illusions.—These are the most striking symptoms which are met with in a confirmed state of insanity. Hallucinations are those sensations which are supposed by the patient to be produced by external impressions, although no material objects act upon his senses at the time: illusions, on the other hand, are sensations produced by a false perception of objects. A man has visions of all kinds, including the forms of the dead and the living, floating before him, when he is gazing upon vacancy. He fancies he hears voices speaking or mysteriously whispering to him, while there is profound silence,—these are hallucinations. Another may erroneously imagine that the taste or smell of his ordinary food is earthy, metallic, or poisonous,—when the perversion is in his own senses—these are illusions. Both conditions depend upon a disordered state of the mind. Instances of hallucination are furnished by the act of dreaming: while illusions occur often during the act of suddenly waking from sleep—giving rise occasionally to serious questions involving criminal responsibility. The state of insanity is in other points of view analogous to dreaming. There is equally a want of power in the two states to change or control the current of thought passing through the mind. Things which are impossible and inconsistent are believed to have an actual existence. A voice heard during the act of dreaming sometimes becomes an illusion connected with a current of thought then passing through the mind; it is the same in a case of confirmed insanity, with this difference in the latter, that some power of will or some exercise of reason may still exist.

Illusions are sometimes met with in the sane, but when arising from external objects, the false perception is soon corrected by a reference to the other senses; and herein consists the main difference between sanity and insanity,—namely delusion, or a misleading of the mind. When the hallucination or illusion is believed to have a positive existence, and this belief is not removed either by reflection or an appeal to the other senses, the person is insane; but when the false sensation is immediately detected by the judgment, and is not acted on as if it were real, then the person is sane. Delusion, therefore, properly refers to the judgment, and illusion to the senses. The meaning of these terms is often confounded; but while delusion is always connected with insanity, illusion is not necessarily indicative of mental disorder. Hallucinations and illusions are the main features of those forms of insanity which are known as mania and monomania. They are rarely met with in cases of idiocy and imbecility, sometimes in dementia, but they are most common in paroxysms of mania. Acts of murder may generally be traced to their existence, for the person labouring under mania or monomania, is unable during a paroxysm to divest his mind of the belief that what he sees has a positive existence before him. He feels impelled to suicide by the hallucination of voices calling to him, and to murder by the illusion that he is not destroying a wife, child, or friend.
ILLUSIONS. LUCID INTERVALS.

but an evil spirit substituted for them. The acts of the insane are
generally connected with their delusions, although it is not easy to
trace the connection except by their own admissions. When the
acts are unusual and strange, it is most probable that they depend
on hallucination, illusion, or both.

Lucid intervals.—By a lucid interval we are to understand, in
a legal sense, a temporary cessation of the insanity, or a perfect
restoration to reason. This state differs entirely from a remission,
in which there is a mere abatement of the symptoms. It has been
said that a lucid interval is only a more perfect remission, and that
although the lunatic may act rationally and talk coherently, yet
his brain is in an excitable state, and he labours under a greater
disposition to a fresh attack of insanity than one whose mind has
never been affected. Of this there can be no doubt, but the same
reasoning would tend to show that insanity is never cured; for the
predisposition to an attack is undoubtedly greater in a recovered
lunatic than in one who is and has always been perfectly sane.
Even admitting the correctness of this reasoning, it cannot be
denied that lunatics do occasionally recover for a longer or shorter
period, to such a degree as to render them perfectly conscious of
and legally responsible for their actions like other persons. The
law intends no more than this by a lucid interval: it does not
require proof that the cure is so complete that even the predispo-
sition to the disease is entirely extirpated. Such proof, if it could
even be procured, would be totally irrelevant. If a man acts
rationally and talks coherently, we can have no better proof of a
restoration to reason. If no delusion affecting his conduct remains
in his mind, we need not concern ourselves about the degree of
latent predisposition to a fresh attack which may still exist.
Lucid intervals sometimes appear suddenly in the insane: the
person feels as if awakened from a dream, and there is often a
perfect consciousness of the absurdity of the delusion under which
he was previously labouring. The duration of the interval is un-
certain: it may last for a few minutes only, or may be protracted
days, weeks, months, and even years. In a medico-legal view,
it's alleged existence must be always looked upon with suspicion
and doubt when the interval is very short.

Lucid intervals are most frequently seen in cases of mania and
monomania; they occasionally exist in dementia when this state
is not chronic, but has succeeded a fit of intermittent or periodical
mania. They are never met with in cases of idiocy and imbecility.
It is sometimes a matter of great importance to be able to show
whether or not there exists or has existed a lucid interval, since in
this state, the acts of a person are deemed valid in law. The mind
should be tested, as in determining whether the patient is labour-
ing under insanity or not. He should be able to describe his feel-
ings, and talk of the subject of his delusion, without betraying any
signs of unnecessary vehemence or excitement. It may happen
that the person who is the subject of a Commission of Inquiry is at
the time of examination under a lucid interval, in which case there may be some difficulty in forming an opinion of the existence of insanity. It has been said that a person in a lucid interval is considered by law to be responsible for his acts, whether these are of civil or criminal nature. In regard to criminal offences committed during a lucid interval, it is the opinion of some medical jurist that no person should be convicted under such circumstances because there is a probability that he might at the time have been under the influence of that degree of cerebral irritation which renders a man insane. (Pritchard.) This remark applies especially to those instances in which the lucid interval is very short. Jurors now seldom convict, however rationally in appearance a crime may have been perpetrated, if it can be clearly proved that the accused was really insane within a short period of the time of its perpetration.

CHAPTER 61.

VARIETIES OF INSANITY.—MANIA.—ABSTINENCE FROM FOOD.—DELUSION REGARDING POISON.—DELIRIUM DISTINGUISHED FROM MANIA.—MONOMANIA.—DEMENTIA.—IDIocy.—IMBECILITY.—HEREDITARY TRANSMISSION.—FEIGNED INSANITY.—APPEARANCES AFTER DEATH.—ECCENTRICITY.

Varieties of insanity.—Medical jurists have commonly recognized four distinct forms of insanity: Mania, Monomania, Dementia, and Idiocy (Amentia). This division was proposed by Esquirre and although of a purely artificial nature, it is highly convenient for the arrangement and classification of the facts connected with the subject. In some instances there is great difficulty in assigning a particular case to either of these divisions, which is owing to the circumstance that these states of disordered mind, if we except idiocy, are frequently intermixed, and are apt to pass and repa into each other. On other occasions a case may represent mixed characters which appertain to all the divisions. Some psychologists have proposed two subdivisions,—namely, Incoherency or Imbecility; but the former is merely a mixed state of mania or dementia, while the latter is a term applied to those cases of idiocy wherein the mental faculties are susceptible of some degree of cultivation after birth, without reaching the normal standard.

Mania.—In this form of insanity there is a general derangement or perversion of the mental faculties, accompanied by greater excitement, sometimes amounting to violent fury. (Page: ‘Med. Jur. of Insanity,’ p. 59; Marc. ‘De la Folie,’ vol. 1, 211.) Ideas flow through the mind without order or connection the person losing all control over his thoughts, and believing acting upon them, however absurd and inconsistent they may be.
Rapidity of utterance and incessant agitation accompany this state; there is also great irritability, so that not the least contradiction can be borne. Mania may take place suddenly, as after a violent moral shock, but in general it comes on slowly. It may be chronic or acute, recurrent or continued. There are very few cases which do not present remissions, more or less complete; and in some instances after a violent attack, the reason appears to be perfectly restored, forming then what is termed a lucid interval, the clear distinction of which, in a legal point of view, is of material importance. In recurrent mania the attack comes on without any obvious cause. It may last for a week, a month, or even longer. There is usually a stage of excitement followed by depression before recovery. Persons labouring under mania, especially when it is associated, as it frequently is, with paralysis, are comparatively insensible to severe injuries. They will bear exposure to cold without complaining, and even conceal the existence of a fracture or other injury which would cause great pain to a sane person. They will also sustain the privation of food for a great length of time without any apparent injury to health. In some instances, owing to a suspicion that the food is poisoned, they refuse to take any; it is then necessary to feed them with a stomach-pump. (Winslow's 'Obscure Diseases of the Brain,' p. 71.) This delusion respecting the poisoning of food is very common in the early stages of mania. The patient will fancy that he himself, or some favourite animal, is undergoing a process of slow poisoning by a secret enemy. In the greater number of cases of mania there is excitement coming on in paroxysms without any obvious cause, and leading the person to acts of violence either towards himself or others.

It is necessary that a medical jurist should be able to distinguish mania from delirium depending on bodily disease. Delirium closely resembles the acute form of mania,—so closely that mistakes have occurred, and persons labouring under it have been improperly ordered into confinement as maniacs. The following are perhaps the best diagnostic differences:—A disordered state of the mind is the first symptom remarked in mania; while delirium is a result of bodily disease, and there is greater febrile excitement in it than in mania. Delirium being a mere symptom attendant on the disease which produces it, exists as long as that disease and no longer; while mania, depending on widely different causes, is persistent. Delirium disappears suddenly, leaving the mind clear; while mania commonly experiences only remissions. (See Pagan's 'Med. Jur. of Insanity,' p. 69.) In delirium there is generally great acuteness of the senses. Inflammation of the brain or its membranes (phrenitis) is distinguished from acute mania by the mode of its attack, the presence of severe pain in the head, and excessive sensibility with intolerance of light and sound.

Monomania.—This name is applied to that condition in which the mental alienation is only partial; in other words, it is nothing
more than partial insanity. In mania the mind is disordered on kinds of subjects; in monomania the disorder is confined chiefly to one subject or to one class of subjects. Monomaniacs are infected with false ideas on certain points, of which they cannot divest themselves, and out of which they cannot be reasoned: the start from false principles, but setting this aside, their inference and deductions from these principles often possess logical accuracy. In every subject not connected with the special delusion, they are as the rest of the world; they talk and reason justly upon far as before the access of their malady, but their general deportment habits, and character are changed. Thus, a miser may become spendthrift, and a hard-working and industrious mechanic may pass his time in idleness; a man of moral habits will become immoral in conversation and conduct, and an abstemious man may become a drunkard.

The monomania may be so slight that the person will have the power of so controlling his thoughts and actions as to appear little one who is sane, provided the subject of his delusion is not referable to. There is no doubt that those who are affected with monomania in an early stage, are frequently able to direct their minds with reason and propriety to the performance of their social duties, as long as these do not involve any of the subjects of their delusion. Their power of controlling their thoughts and feelings, as well as concealing their delusions, implies a certain consciousness of the condition not usually met with in mania; and it also appears to imply the existence of such a control over their conduct as to render them equally responsible with sane persons for many of their actions. In a case of confirmed monomania, however, it is not to be supposed that a man is insane upon one point only, and sane upon all other subjects. The only admissible view of this disorder is that which was taken by Lord Lyndhurst, in one of his judgments. In monomania the mind is unsound; not unsound in one point only, but sound in all other respects, but this unsoundness manifests itself principally with reference to some particular object or person (Pritchard.) There is no doubt that all the mental faculties are more or less affected, but the affection is more strikingly manifest in some than in others.

The delusion of a monomaniac will be generally uppermost in his mind: his will is powerless to dismiss it, just as in mania the will is powerless to stop the continuous and rapid succession of different and incongruous ideas which present themselves to the mind in this form of insanity. In the first stage of monomania the judgment may be strong and the mind apparently sound upon every point except the particular subject of delusion; and even, in some instances, there may be such a control over this delusion, that would be difficult to discover whether or not there was any ground for imputing mental unsoundness; but in a more advanced form of the disease, the delusion, whatever it may be, whether relating to wealth, ambition, religion, or politics, so overpowers the
MONOMANIA AND ECCENTRICITY.

patient that he loses self-control. His character is changed, and his habits are such as to render him unfit for social intercourse; he becomes incoherent; his ideas are perverted on all subjects, and he gradually lapses into mania or dementia. The last condition happens when the monomania is of long standing. Monomania may be remittent or intermittent, and it is sometimes accompanied with lucid intervals. Its progress is rapid, and its termination often unexpected: in some instances the disease ceases suddenly without any previous warning, owing to the effects of a strong moral shock or impression.

Monomania, in its early stage, is liable to be confounded with eccentricity: but there is this difference between them. In monomania there is obviously a change of character,—the person is different from what he was; in eccentricity such a difference is not remarked; he is, and always has been, singular in his ideas and actions—there is no observable change of character. An eccentric man may be convinced that what he is doing is absurd and contrary to the general rules of society, but he professes to set these rules at defiance: a true monomaniac cannot be convinced of his error, and he thinks that his acts are consistent with reason and the general conduct of mankind. In eccentricity there is the will to do or not to do: in real monomania the controlling power of the will appears to be lost. Eccentric habits suddenly acquired are, however, presumptive of insanity. It will be seen hereafter that the distinction of these states is of considerable importance in relation to the testamentary capacity of persons.

Monomania frequently assumes one of two forms: either the thoughts are lively and gay, or they are oppressed with gloomy melancholy. In the first state, the persons will fancy themselves to be kings and queens, and overflowing with wealth, which they are prepared to distribute with regal profusion; in the second state, we find silence, seclusion, and the most heartrending sorrow. The latter condition, by no means uncommon as a form of monomania, is called melancholia (mania with depression), or hypomania (λυπή, sorrow). Those who are affected with it suppose they have committed some unpardonable sin, and pass their hours in silence and in the most gloomy forebodings of temporal and eternal punishment. They do not sleep, and will sometimes neither eat, speak, nor move; force must be used to make them take food and exercise. In some instances no persuasion can conquer their silence; one patient thus affected was not heard to utter a word during four years. If spoken to, they shed tears and violently repulse the person who addresses them. Melancholia frequently leads to an act of suicide or murder, and persons affected with it require very close watching. In the lighter forms of the disease there is no sign of mental aberration, and the patient will go through his usual routine of duty, but always with the same desponding air—so that his occupation seems scarcely to distract his thoughts from the delusion for a single instant. In other cases the delusion is so well concealed that no suspicion exists.
Dementia. —This is a state which, although sometimes confounded with mania, is very different in its characters. Dementia, which confirms, consists in a total absence of all reasoning power, and incapacity to perceive the true relations of things; the language is incoherent, and the actions are inconsistent; the patient speaks without being conscious of the meaning of what he is saying; memory is lost, and sometimes the same word or phrase is repeated for many hours together; words are no longer connected in meaning as they are in mania and monomania. This state is often called fatuity; it is a not uncommon consequence of mania or monomania. Dementia varies in degree. The disordered mind of aged persons is often that of dementia; here we find memory and some mental power, although the memory is restricted to objects long since passed and the exertions of the mind are only momentary. Some persons in dementia are quiet, others are in constant motion as if in search of something. There is generally a strong disposition manifested to collect all kinds of useless articles, which are hoarded up as if they were of great value. In some instances this disease comes gradually—the faculties, both moral and intellectual, decay one by one; while in other instances, although much more rarely, dementia may occur suddenly from a violent shock or impression on the mind. Dementia may be acute or chronic, remittent or intermittent. The countenance of the patient is generally pale, vacant, and with expression, the look vague and uncertain, and tears are abundantly shed from the slightest causes.

The following may be taken as the most striking difference between mania and dementia. In mania there is an incoherence of ideas, but depending on too great rapidity of thought and excitement of the intellectual powers; in dementia there is a want of ideas, and the incoherence depends on the loss of the power of connecting them, owing to defect of memory; volition is lost and the brain seems in a state of collapse. (Esquirol, 'Maladies Mental vol. 2, pp. 224 and 232.) In fact, in dementia there is a more complete abolition of the moral, intellectual, and volitional powers; in mania, and also in monomania, they are in a state of perversion. Dementia is often a consequence of these states, sometimes alternates with them.

Idiocy. Imbecility. —Idiocy is the dementia naturalis of the law; the term idiot is applied to one who from original defect has never had mental power. Idiocy differs from the other states of insanities in the fact that it is marked by a congenital deficiency of the mental faculties. There is not here a perversion or a loss of what has been acquired, but a state in which, from defective structure of brain, the individual has never been able to acquire any degree of intellectual power to fit him for his social position. It commen
with life and continues through it, although idiots are said rarely to live beyond the age of thirty. (Esquirol, 'Maladies Mentales,' vol. 2, p. 284.) The deficiency of intellect is marked by a peculiar physiognomy, an absence of all expression, and a vague and unmeaning look; there is no power of speech, or only the utterance of a cry or sound; there is no will, but the actions of these beings appear to depend upon impulse, a power of imitation; or mere animal instinct; they recognize no one, they remember no one, and the mind seems to be a blank. Such is the picture of what may be termed a complete idiot. In Switzerland this state of idiocy is often accompanied with great bodily deformity and enlargement of the thyroid gland, both in males and females; it is there termed cretinism. Cretins resemble monsters more than human beings. A confirmed idiot may in almost all cases be recognized by the expression of countenance and the form of the skull.

Idiocy is not always so complete as this description implies. There is a state scarcely separable from idiocy in which the mind is capable of receiving some ideas, and of profiting to a certain extent by instruction. Owing, however, either to original defect, or to a defect proceeding from arrested development of the brain as a result of disease or other causes operating after birth, the minds of such persons are not capable of being brought to a healthy standard of intellect, like that of an ordinary person of similar age and social position. This state is called imbecility; it is nothing more than idiocy in a minor degree. In common language, persons labouring under it are often called idiots, but for the sake of precision in medical language they are more correctly described as imbeciles. (Esquirol, op. cit. vol. 2, p. 289.) In imbecility the physical organization differs but little from the ordinary standard; the moral and intellectual faculties are susceptible of cultivation, but to a less degree than in a perfect man, and even this capacity does not exist beyond a certain point. Imbeciles never attain a normal standard of intellect, and when placed in the same circumstances as other men they never make a similar use of their intellectual powers. They can form no abstract ideas, and sometimes their capacity to receive instruction is restricted to a certain subject—as for instance arithmetic. Their memory and judgment are limited, although sometimes the former is remarkably strong. They express themselves in a hesitating manner, and differently from other men; they require time to perceive the relations of objects which are immediately perceived by sane persons. The degree in which imbecility exists is well indicated by the power of speech. In idiots there is no speech, or only an utterance of single words; in the better class of imbeciles the speech is often easy and unaffected, while there is every grade between these two extremes. Some have arranged imbeciles in classes, according to their capacity to receive instruction—others according to their power of speech; but such divisions are practically without value: each case must be judged by itself. The precise boundary between idiocy and im-
Idiocy and imbecility cannot be defined. The major degrees of imbecility approach so closely to those of idiocy, that there is no distinctive between them, and in a practical view no distinction is required. Idiocy has been here described as that condition in which the congenital effect is not susceptible of being removed by any kind of instruction; but many medico-legal writers apply the term idiot to one who does manifest capacity to receive instruction, although in a low degree. The difference is immaterial so long as the meaning of the word is understood.

How are the minor degrees of imbecility to be distinguished fro insanity? This is a question by no means easy to answer, for the reason that sane persons differ remarkably in their mental power to receive instruction, to retain what they have been taught, or to allow them to make a practical use of it in the world for their own benefit. How many persons pass through life and advance in the world who are yet undoubtedly weak-minded, and who have the reputation among all who know them of being so! The truth is, the lowest degrees of intelligence legally constituting sound mind, are not separable from the minor forms of imbecility, far as the moral and intellectual faculties are concerned. I running this distinction too closely, one half of the world might easily reason itself into the right of confining the other half insane.

Idiocy and imbecility must not be confounded with mania, monomania. In idiots and imbeciles ideas are wanting, and the power of thought is absent or defective; in manics and monomaniacs the ideas flow freely, but they are perverted, and the power of thought is irregular and uncontrolled. In idiocy a imbecility we do not meet with the hallucinations and illusory which constitute the main features of mania and monomania. Idiocy is much more likely to be confounded with dementia, a indeed, when dementia is confirmed and complete (futility), there is no appreciable difference, for in neither state is there any evidence of the exercise of mental power. In idiocy, no ideas have ever been formed; in imbecility they have been partially formed but arrested; in dementia they have been more or less completed, but have subsequently become entirely obliterated. It is important to remember that in idiocy and imbecility there is gradual loss or sudden impairment of the mental faculties, as generally observed in dementia; the person is what he always been—mentally weak and unsusceptible of any great degree of improvement by instruction.

From these remarks it will be perceived that imbecility is a state existing from birth or from childhood—for it is possible that it may supervene from disease after birth, in a child in whom there was no reason to suspect its existence—but it is more common to find the deficiency congenital. Still, the term is often applied that weakness of the mental powers which takes place in the at the close of life, even when the mind has been well deve
in maturity. Thus we speak of the imbecility of age: this is truly nothing more than a state of senile dementia, and to apply to it the term ‘imbecility’ tends to create confusion.

Such then are the four forms under which insanity or mental aberration may present itself to our notice, and although there are occasionally mixed states, as of mania and dementia (incoherency), yet it is an important feature in the distinction of mental disorders, to observe that in real insanity the characters presented to us in any given case, do not vary materially from those which have been described as peculiar to each of these states. This medical classification, it must be remembered, is made for the sake of convenience, because by it a practitioner may be led to form a safe diagnosis of the real state of mind of a person. It is not recognized in any of the law-proceedings connected with the insane: for in these the term unsoundness of mind—comprehending lunacy, idiocy, imbecility, and all forms of mental weakness—is almost exclusively employed. In adopting this arrangement, a medical jurist must take care not to fall into an error which has been sometimes committed—i.e. of pronouncing a person to be of sound mind, because his case could not be easily placed in any one of these four great divisions of insanity. This would be as serious an error as that formerly committed by some law authorities—namely, of giving restricted and incorrect definitions of lunacy, idiocy, and imbecility, and then contending whoever was not a lunatic, idiot, or imbecile according to these arbitrary legal definitions, must be a person of sound mind.

Hereditary transmission.—The hereditary transmission of insanity has sometimes presented itself as a medico-legal question in relation to the criminal responsibility of the insane. According to Chitty it is an established rule of law, ‘that proof that other members of the same family have decidedly been insane is not admissible either in civil or criminal cases.’ (‘Med. Jur.’ vol. 1, p. 352.) But recent decisions have shown that this statement is not correct. In Reg. v. Ross Touchet (1844), in which the accused was tried for shooting a man, and acquitted on the ground of insanity, Maule, J., held that evidence that the grandfather had been insane might be adduced, after it had been proved by medical testimony that such a disease is often hereditary in a family. It was also admitted in Oxford’s case,—the prisoner having been tried for shooting at the Queen (‘Law Times,’ Oct. 26, 1844), and since that date it has been admitted in a number of cases in which insanity was urged as a defence on a charge of murder. This kind of evidence has, however, been frequently rejected, and it is not admitted by the law of Scotland. (Gibson’s case, Edinburgh, December 1844.)

Feigned insanity.—Insanity is sometimes feigned by persons accused of criminal offences in order to procure an acquittal or discharge. In the first place, when feigning is suspected, it will
be proper to inquire whether the person has any motive for pretending to be insane. No sane person feigns without a motive. It is necessary to remember that insanity is never assumed unless the commission of a crime and the actual detection of the criminal. No one feigns insanity merely to avoid suspicion. In general, as in most cases of imposture, the part is overacted—the person does either too much or too little, and he betrays himself by inconsistencies of conduct and language which are never seen in cases of real insanity. There is commonly some probable cause to which insanity may be traced, but when the malady feigned there is no apparent cause; in this case the appearance of the assumed insanity is almost sudden—in the real malady, the progress of an attack is generally gradual; and when the attack really begins, then it will be found to be due to some great mental shock or other very obvious cause. We should observe whether for some time previously there has been any marked change in character in the person, or whether his conduct, when he had interest to feign, presented any of the usual indications of a disorder of the mind. Some difficulty may arise when fits of eccentric or strangeness of character are deposed to by witnesses; but the statements may be inconsistent with each other, and the previ-ous acts of the person may bear no resemblance whatever to the performed by him in the recently assumed condition. A difficulty of this kind rarely presents itself, since in an impostor no indicative of insanity, can be adduced for any antecedent period of his life: it is only after the perpetration of a crime and detection, that any action simulating the habits of the insane will be met with. In real insanity the person will not admit that he is insane; in the feigned state all his attempts are directed to make you believe that he is mad; and an impostor may be induced to perform any act, if it be casually observed to another in his hear that the performance of such an act will furnish strong evidence of his insanity.

Mania is perhaps more frequently assumed than any other form because the vulgar notion of insanity is, that it is made up of violent action and vociferous and incoherent language: but mania rarely comes on suddenly, or without some obvious cause. A maniac patient is equally furious day and night, while an impostor is obliged to rest after his violent exertions. Dr. Burrows recommends that close attention should be paid to the expression of the eye. The mobility of the features may be as rapid as the imagination is vivid; but when every feature may vary, or be under control and be steady, the eye will still indicate the errant thought—its expression cannot be easily assumed. There is about the eyes in mania a restlessness which cannot fail to attract attention; the patient sleeps but little, and the sleep is disturbed—impostor sleeps as soundly as a healthy person. The violence of the maniac continues whether he is alone or not, while the impostor acts his part only when he thinks he is observed: hence the
FEIGNED DEMENTIA.

position may be detected by watching him when he is not aware that an eye is directed upon him.

The feigning of monomania is a matter of some difficulty: it would be easily susceptible of detection. As in mania the part would be overacted, and an impostor would thus betray himself. Dementia is more easily feigned: in general this state comes on slowly, and is obviously dependent on organic changes, as old age, apoplexy, paralysis, or hemiplegia; or it is a consequence of recurrent mania or monomania. As this form of insanity consists in an entire abolition of all mental power, so the discovery of any connected ideas, reasoning, or reflection, either by language, writing, or gestures, would at once show that the case was not one of real dementia. Idiocy and Imbecility could hardly be feigned successfully, because these are states of congenital deficiency: they must have existed from birth, of which, of course, there would be some evidence. Among modern cases in which dementia was alleged to have been feigned is that of Lady Mordaunt. (Mordaunt v. Mordaunt, Divorce Court, February 1870.) In consequence of a confession made by this lady soon after her confinement, that she had committed adultery with certain persons, her husband took proceedings against her for a divorce. At the date at which she was served with notice of the writ, the 30th April 1869, it was alleged that she was insane, and that from mental incapacity she was unfit or unable to instruct an attorney for her defence. On the part of the husband, it was alleged that she was really fit and competent, and that the state of insanity was assumed in order to avoid the exposure of a public trial. (‘The Mordaunt Divorce Case, Official Report,’ 1870, p. 108.) The jury, upon hearing a large amount of evidence from medical experts and others, found that this lady was labouring under ‘mental disorder,’ and that she was incompetent to give instructions for her defence.

On the simulation of insanity, see a paper by Dr. Laurent (‘Ann. d'Hyg.’ 1866, 2, 460). He advises the complete isolation of the person, with daily watching for a certain time, as a method which seldom fails to detect the imposition, while it cannot injure the really insane. One remarkable circumstance he points out, namely, the influence of feigning insanity on the feigners. He is of opinion that persons who have for some days or weeks pretended that they were mad, have become so in the end. In support of this view he quotes the cases of two sailors who had feigned madness in order to escape imprisonment in the hulks. The imposture was at first successful, but in the end it had an unfortunate result, for they became really mad. (Op. cit. p. 462.) An impostor must be ever on the watch that he does not fail on any one point. This creates a great strain on the mind, and as a result of the anxiety attendant on the maintenance of such an imposition at all times and under all circumstances, he may suffer from cerebral exhaustion with its worst consequences.

Appearances after death.—In some cases a medical practitioner
INSANITY. APPEARANCES AFTER DEATH.

may be required to state whether certain appearances found in the brain of a deceased person do or do not indicate the past existence of insanity or imbecility. Such a question is only likely to arise in chronic cases, in which the past existence of insanity from o testimony may be disputed. (Case of Stutz, Prerog. Court, 185)

The appearances commonly met with on an inspection of the brain are—thickening of the bones of the skull, close adhesions of the dura mater (the lining-membrane), with great congestion of the pia mater, and opacity and thickening of the arachnoid or internal membrane of the brain. There is a general fulness of the blood vessels of the brain with remains of old cysts, hardened deposits or even abscesses in various parts of the cerebral substance.

References from the existence of these appearances in the brain may however be drawn with caution, because it cannot be said that they necessarily indicate insanity; nevertheless, such chronic changes must be considered as likely to produce greater or less derangements of the mental functions; but the actual degree in which the impairment is alleged to have existed, ought properly to be determined evidence of the conduct and actions of the deceased during life.

a communication made by Dr. Webster to the Medico-Chirurgical Society in April 1865, there is a statistical summary of the appearances met with in the examination of the bodies of 230 insane patients. In 226 cases the pia mater was infiltrated; in 184 effusion had taken place in the ventricles; in 184 fulness of blood vessels in the brain or membranes was observed; in 117 arachnoid membrane was thickened and opaque; in 64 the color of the brain appeared changed from its natural hue; in 51 bloody points (puncta cruenta) were large and numerous upon the cut surface of the medullary substance; while in 40 instances blood was effused, sometimes to a considerable extent, within the cranium. This effusion had evidently been the immediate cause of death in most of the patients. From these data it appears that—first infiltration of the pia mater; secondly, effusion of fluid in the ventricles; and thirdly, fulness of the cranial vessels, are principal, as also the most frequent diseased alterations of structure observed in patients who die whilst suffering under symptoms of mental disorder.

As neither the symptoms nor the duration of the insanity given, it is difficult to apply these results to special instance: In the case of Roberts v. Kerstake (Warwick Aut. Asa., 1854) the main question was whether certain appearances in the brain and its membranes did or did not indicate disease of long standing as well as insanity at the particular date at which a will was made. Dr. Conolly and I considered that the appearances were not consistent with the supposition that the testator was sane at the time of making his will. (‘Journal of Psychological Med.’ 1854, p. 573.)
CHAPTER 62.

MEDICO-LEGAL QUESTIONS IN RELATION TO THE INSANE.—APPLICATION OF RESTRAINT.—ILLEGAL IMPOSITION OF RESTRAINT.—VIOLENCE OF TEMPER.—CERTIFICATES OF INSANITY.—RULES FOR THE DISCHARGE OF LUNATICS.

Among the questions which may come before a medical jurist in relation to the subject of insanity are the following:—A practitioner may be required to say whether a person affected with the malady should or should not be confined in a lunatic asylum,—whether he should be deprived of his civil rights by interdiction, or whether he is so completely cured of his malady as to justify his liberation from confinement. Then again medical evidence may go far to determine whether a will or deed executed by an alleged lunatic should be set aside; whether a marriage-contract or debt should be annulled; and lastly, whether a criminal act was committed by a person while labouring under insanity,—a question involving either the life, or, according to circumstances, the perpetual imprisonment of a person accused of crime.

Application of restraint.—By restraint in a legal sense, we are to understand the placing of attendants to watch or control the actions of an alleged lunatic, or his forcible removal from friends or relatives with or without the confinement of his person by physical force. What are the circumstances which will justify a practitioner in applying restraint to the insane? The law has given great power in this respect to members of the medical profession, but, owing to certain abuses, the power has been of late years much restricted by various Acts of the Legislature. Most medico-legal writers agree that we are not justified in ordering restraint except when, from symptoms witnessed by ourselves, we have reason to apprehend that the lunatic will injure himself or others in person or property. It is then not sufficient to seek merely for evidence of the existence of some delusion, but to determine how far that delusion, if present, affects the conduct of the person. The real question is whether we have reason to apprehend imminent danger. Unless the delusion is such as to render it probable that the patient or his friends may be injured by his insane conduct, careful superintendence will answer all the purposes of the closest restraint. (For some remarks on this subject, see ‘Med. Gaz.,’ vol. 44, p. 1061.) The act of resorting to restraint on all occasions, has been justified on the principle that it may tend to the cure of a patient by removing his delusion. In this point of view the subject has reference to medical practice and not to legal medicine. It may be urged with more plausibility, that by withholding restraint in incipient cases, mischief may be done by the lunatic to himself or others, and that then it will be too late to interfere; but
even here careful superintendence may render close confinement unnecessary.

The legal rule for interference with the liberty of a person, which restraint always implies, may be inferred from the following statement by Mr. J. F. Stephen: 'There is a normal state in which all human creatures act on the same principles, and the general meaning of sanity is, that the person conducts himself in this normal manner; that he is acquainted with the circumstances by which he is surrounded; that he has objects in view in his actions, and that he regulates his conduct with reference to them and to the general considerations which affect matters of that class.' ('General View of the Criminal Law of England,' pp. 87 et seq.) It cannot be too strongly impressed on the mind of a medical man that, before he employs the powers conferred upon him by law to confine a person who is said to be mad, he should well consider what lawyers imply by the term 'madness,' in a practical sense. As defined by Mr. Stephen, it means conduct of a certain character—not as it is usually interpreted by medical men, a certain disease of the brain the existence of which is speculative, but one of the effects of which, if present, is to produce such conduct. In examining an alleged lunatic, with a view of determining whether he should or should not be placed in confinement, his conduct must therefore be compared with that of other men in a normal state; and here, in order to constitute sane behaviour, we must look for a generic and not for a specific resemblance. Any degree of ignorance, vice, or folly is perfectly consistent with sane conduct in a legal sense. The power of restraint is not intended to be applied to such cases as these; they are properly under certain circumstances amenable to the criminal law. An ignorant, vicious, or foolish man may do a great amount of mischief, but he has a liberty of choice and freedom of action; and if from folly or depravity he selects a bad course, he is not therefore insane, but is as much responsible for his actions as a sane man who prefers a good course. Such a man should not be treated as a lunatic or confined in an asylum under a medical certificate. It may be sometimes difficult to define the line which separates acts of depravity from those of insanity; but medical men have not been in many cases sufficiently cautious in endeavouring to make a distinction. Lawyers look closely to conduct as the chief ground of interference with personal liberty: the conduct must be such as to be inconsistent with the usual behaviour of a normally sane person placed under similar circumstances.

In examining a person proposed to be placed under restraint, we must take care not to confound acts depending on violence of temper with those which proceed from unsoundness of mind. A man may have always had a violent temper, subject to occasional fits of aggravation; but this condition must not be mistaken for mental disease. In order to determine whether the acts of a person
be due to violent temper or insanity, it will be proper to ascertain what may have been his natural habits. The great feature of insanity is change of character—a man who is really insane is different from what he has previously been; but it may be proved of a violent-tempered man that he has always been the same. The greatest abuses of the restraint-system have been chiefly observed in respect to monomania, where persons have been forcibly imprisoned and confined in asylums, because they entertained some absurd delusions, over which, however, they had so great a power of control as to render it somewhat difficult even for a shrewd and experienced examiner to detect them. When at last, after many hours’ cross-examination, the existence of a delusion has been made apparent, the result has been looked upon as furnishing matter for triumph and exultation; but, as Dr. Conolly justly remarks, one point in these cases appears to have been wholly lost sight of, namely,—What possible injury could have resulted to the patient or his friends from the existence of a delusion over which he had such complete control and mastery as to render it a most laborious task to obtain any evidence whatever of its existence? (‘Indications of Insanity.’) It may be freely admitted that where delusion does exist, there is reason to suppose that the mind must be more or less disordered in all its faculties; but such patients require only close watching, not a rigorous imprisonment in an asylum. The greatest danger is to be apprehended in those cases in which there is the least power of self-control. The forcible removal of a person from his home to a lunatic asylum, unless the circumstances are of such a nature as to render immediate interference necessary on the ground of admitted or proved insanity, is unjustifiable in law, and may involve those concerned in the removal in a serious responsibility. In cases of incipient insanity such interference would not be legally justifiable, and a practitioner placing restraint on a person so situated, might find himself a defendant in an action for damages.

In *Hill v. Philp* the judges decided that a medical man, when called upon to give a certificate for the confinement of a person, may act upon the directions of a wife, but that the directions must be considered as only guiding his judgment, and not as absolutely dictating to him and justifying his proceedings; that he is still bound to exercise his own professional knowledge and discretion so far as to refrain from doing anything or adopting any course which might be injurious to the patient. A medical man is, therefore, ultimately responsible for his treatment of a lunatic: no person can give him authority to do that which is not in accordance with general practice or the necessity of the case. (For a report of this case, and some judicious remarks upon the decision, see the ‘Legal Examiner,’ May 29, 1862, pp. 307, 318.) In *Scott v. Wakem* (Guildford Summer Ass., 1862), the defendant, a medical practitioner, was sued for damages in placing under restraint and without necessity or authority, a man labouring under delirium
tremens. In this case the wife denied that she had given any aut-
rity for interference, and on this point her evidence conflicted w
That of the defendant, the medical man whom she had consult
Fortunately the facts proved were adverse to her statement;
in future cases of this kind, it would be desirable for a med
man to have a written authority for such proceedings, bearing
mind that he does not exceed what is necessary, proper, or u
for the treatment of the person; and on this he must always e:
cise his own judgment, irrespective of the opinions or sugge
of others. Medical men, even when acting most conscientious;
the discharge of their duties, cannot hope to escape harassing
vexatious actions when they are called upon to deal with case
Delirium tremens. The peculiarity of this disorder is that, v
the cause, it may soon disappear, and thus medical evidence;
be easily procured to show that the person was in a sane stat
mind and not in a condition to justify any interference with
personal liberty, either a short time before or after the imposa
restraint.

In order to provide for the protection of lunatics and for
prevention of undue violence or frequency in the applicatio
restraint, the law compels the keepers of asylums to enter
book a report of each case or of each occasion on which any me
ical restraint is resorted to. An omission to make this entry
madeineanour: and at the Maidstone Lent Assizes, 1861, two me
ical men were convicted and fined for placing patients under rest
without having made the proper entries required by law. (Re
Maddock: see also 'Med. Gaz.' vol. 47, p. 566; and a paper on
'Use and Abuse of Restraint,' in the 'Jour. Psychol. Med.' 1
p. 240.)

Certificates of insanity.—It will here be necessary to state
circumstances which require the attention of a practitioner: he is
called upon to sign a certificate of insanity, where the
person may be placed in confinement in an asylum. The
which specially refer to this subject are the 16 & 17 Vict. c
and 97. These Acts, which came into operation on the 1
November 1853, are a consolidation of the statutes on the
olution of the care and treatment of lunatics. Their provision
very stringent, both with respect to medical men who sign ce
ates, and those who keep asylums for the reception of lun
According to s. 74, c. 97, no person (not a pauper) can be rec
into or detained in any asylum without an order from some pe
(generally the nearest relative) and two medical certificates, v
must be signed by two physicians, surgeons, or apothecaries, a
partnership or an assistant to the other, and each of whom
separately from the other have personally examined the pers
whom it relates not more than seven clear days previously to
reception of such person into such asylum. These certificates
not be filled up, signed, and dated on the day of examination
the examination of the patient must be made in every case within seven clear days before admission.

It follows that, no certificate is valid if signed (a), by a non-registered practitioner, (b) by the partner or assistant of the person signing the other certificate, (c) by the person who signs the order (for admission), or by his father, brother, son, partner or assistant, and lastly that a certificate becomes invalid and useless, if the reception does not take place within seven clear days from the day of the medical examination on which the certificate is granted.

The following is the form of a medical certificate in the case of private patients:—

I, the undersigned, being a (duly registered) physician or surgeon or apothecary [here set forth the qualification], and being in actual practice as such, hereby certify that I, on the day of , at [here insert the street and number of the house (if any), or other like particulars], in the county of &c., separately from any other medical practitioner, personally examined A.B., the person named in the accompanying statement or order, and that the said A.B. is a lunatic [or an idiot, or a person of unsound mind], and a proper person to be taken charge of and detained under care and treatment, and that I have formed this opinion upon the following grounds, viz:—

1. Facts indicating insanity observed by myself [here state the facts].

2. Other facts (if any) indicating insanity, communicated to me by others [here state the information, and from whom].

(Signed) Name.

Place of abode.

Dated this day of , One thousand eight hundred and

Under s. 10, c. 96, no person can be received into any registered hospital or licensed house, or as a single patient, under any certificate which purports to be founded only upon facts communicated by others. A medical certificate may be amended if incorrect or defective. No medical man can receive as a boarder in his house any insane person, whether for medical treatment or otherwise, unless he has previously obtained a licence from the Commissioners of Lunacy, and one certificate duly signed by two other medical men. The certificate is invalid if signed by the person who takes the charge or who receives a percentage on or is otherwise interested in the payments for the patient. No medical man can receive a single patient into his house on a certificate signed by himself, or by his father, brother, son, partner or assistant. In January 1861 a medical practitioner was convicted of misdemeanour for thus receiving illegally a lunatic patient. (Reg. v. Kelly, C.O.C. Jan. 29, 1861.) This was a clear breach of the regulations. The defence was that he was ignorant of the law, but this was no answer to the charge. ('Med. Times and Gaz.' Jan. 28, 1861, p. 105; and 'Lancet,' Feb. 9, 1861, p. 151.)
Dr. Millar, who has had considerable experience as the superintendent of a large lunatic asylum, states that, as a rule, very few of the certificates which are brought with private patients are correctly filled up, notwithstanding the plainness of the instructions. The omission of particulars apparently of no importance has caused them to be rejected as illegal; and it will therefore be use to point out the chief errors which, according to this gentleman, committed by medical men. 1st. A neglect in stating the qua cation which empowers the medical practitioner to practise. It is not unusual for the blank space to be filled up with the words ‘physician,’ ‘surgeon,’ or ‘apothecary,’ instead of inserting qualification which enables him to practise in any of those cities. 2ndly. Omitting the address of the house at which the examination was made. If there should be no number to the house it will be sufficient to state, ‘At the dwelling-house of ——, —— street, village, &c.’ 3rdly. Omitting the address and oration of the person examined. In nine cases out of ten, accord to Dr. Millar, an omission of one of these three simple and obvi particulars, occurs—a degree of carelessness not creditable to profession. Medical men no doubt err from regarding them having no bearing whatever on the sanity or insanity of the patient. (See Millar’s ‘Hints on Insanity,’ p. 78.)

By s. 13, c. 96, a medical practitioner who gives a false certicate, or any person not being a registered physician, surgeon apothecary in actual practice, who gives a certificate as such, is ciated to be guilty of a misdemeanour. For any act done by a registered medical practitioner contrary to any of the provisions of the Act (although not declared to be a misdemeanour), he is subject for each proved offence to a penalty of twenty pounds. s. 36 the words ‘physician,’ ‘surgeon,’ or ‘apothecary’ shall spectively mean one duly licensed or registered to practise as by or as a member of some College, University, Company, or Institution, legally constituted and qualified to grant such author or licence in some part of the United Kingdom, or one who was practice as an apothecary in England or Wales on or before the day of August 1815, and being in actual practice as such physic surgeon, or apothecary.’ (16 & 17 Vict. cap. 96, s. 36.) The cificates of Irish medical practitioners, provided their names are the register, are valid for the confinement of lunatics examined in England and Wales, and those of registered English practitioners are valid for the reception, in asylums, of lunatics examined in Ireland. A special Act has been passed for Scotland (20 & 21 Vict. c. 71): and by sections 34 and 35 the rules regarding these ce cificates are similar to those of the English statute.

The Commissioners in Lunacy have issued the following r for the medical examination of alleged lunatics: ‘The patient shall not be medically examined in the house where he is to remain on the premises. Should he have been living in the house prviously to legalizing the charge, the date of admission given in
notice of admission should be that of the day whereon he returns
to the house after signature of the order, medical examinations,
and signature of the certificates.

'Should it become necessary to obtain fresh certificates the pa-
tient should, as above, be removed for examination. In this case,
and where a fresh order has been required, a fresh notice of ad-
mission must be transmitted.

'Certificates signed, or founded on medical examinations made,
elsewhere than in England or Wales (the extent of the Commission-
ers' jurisdiction) are not accepted as a valid authority for the de-
tention of a patient within that jurisdiction.'

A medical practitioner must not be too ready to lend himself to
the signing of certificates for the confinement of persons who may
be labouring under harmless delusions. In violent mania, or in
monomania with a homicidal or a suicidal propensity, there can be
no doubt of the propriety of applying some degree of restraint, for
here the necessity is imminent. If a remarkable change has sud-
denly taken place in the character of a person,—if he has become
irritable, outrageous, or threatened personal violence to any one,—
or if he has recklessly endangered the interests of himself and family,
he is undoubtedly a fit subject for restraint. (See Pagan, op. cit.
p. 75.) The more he approaches to this condition, the less difficulty we
shall have in coming to a decision, and in a really doubtful instance
there will be no impropriety in employing temporary restraint; since,
although the person is thereby deprived of liberty, it is better that
this should happen than that he or his friends should incur the risk of
suffering severely by his insane conduct.

The 74th section of cap. 97 provides that in cases of emergency a
person (not a pauper) may, under special circumstances (these being
stated in the order), be received into a house or hospital upon a
certificate signed by one medical practitioner only, provided that
within three days two other such certificates are signed by two other
medical practitioners not being connected with such house or hospi-
tal, upon a like examination. The detaining of a person upon one
medical certificate only beyond the period of three days, without
such further certificates, is a misdemeanour in the keeper of the
house or hospital. By s. 67, c. 97, the certificate of one medical
practitioner only, signed according to the above rules, will suffice for
a pauper lunatic, provided the person has been previously examined
by a justice, clergyman, and overseer or relieving officer. By s. 12,
c. 96, no medical practitioner who is interested in or attends a
licensed house or hospital, or whose father, brother, son, partner,
or assistant is wholly or partly the proprietor of, or a regular pro-
fessional attendant in, such house or hospital, shall sign any certi-
ficate for the reception of a patient into it. It is obvious from the
terms of the Act that one person cannot sign a certificate as a sub-
stitute for another, and yet there have been several instances of its
violation under these circumstances. In December 1855 a medical
assistant was committed for trial because he had signed the name
of the surgeon with whom he was living, to a certificate of insanity for the confinement of a pauper lunatic. There was no doubt about the insanity of the person, and the plea urged in defence was that the surgeon whose name was thus forged, was in ill-health and had given the assistant an authority to sign papers for him. This, however, was no justification for a violation of the terms of the Act: the words of the certificate are so explicit on this point that no reasonable person can have any doubt about their meaning. In Reg. v. Ogilvy, C.C.C., September 1872 (‘Lancet,’ 1872, 354, 467, 499), defendant was fined fifty pounds for a breach of the Lunacy Act—i.e. for unlawfully signing a medical certificate by representing that he was a registered medical practitioner when his name was not on the register. In another case which occurred in December 1872, proceedings were taken against a medical man under the following circumstances. He signed a certificate for the confinement of a woman really a lunatic, stating that he had seen and personally examined her on the 9th August 1872, although he had not seen her since March 1869! Further, it was proved that the certificate was signed on the 10th of September, but dated the 9th of August! The medical man pleaded guilty, and was fined ten pounds by the bench of magistrates. These glaring examples of a departure from the explicit terms of the Act relating to lunatics, should convey a caution to medical men that they cannot with impunity infringe the strict letter of the law.

As ignorance of the law is not allowed to be an excuse for its violation, so a medical man unless acquainted with all the particulars above mentioned, may easily subject himself to a prosecution or a civil action; and he is not likely to be spared the disgrace and mortification attendant upon either, should it happen that the case is of a doubtful nature. The law expressly requires from each medical man a separate visit, a separate personal examination of the alleged lunatic, and a separate medical certificate, setting forth the special fact or facts (whether observed by himself or derived from the information of others) upon which his opinion is based. Dr. Conolly has shown that there are objections to the severity of the restrictions regarding these certificates (‘Journal of Medical Science,’ April 1861, p. 127), but some recent cases have proved that they are not even strong enough to prevent sane persons from being wrongfully sent as lunatics to asylums.

Specification of facts.—It will be observed that every medical practitioner signing a certificate of insanity is required to specify the facts upon which his opinion is formed, and whether such facts are derived from his own observation or from the information of any other person. Medical men have had some difficulty in performing this duty—i.e. in assigning the fact or facts upon which their judgment of the insanity of a person was based. (‘Med. Gaz.’ vol. 36, p. 1434; and vol. 37, p. 485.) What will constitute the description of a fact to render a certificate valid? This important question was raised in the case of Shuttleworth (Queen’s Bench, Nov. 17, 1847).
FACTS INDICATIVE OF INSANITY.

An application was made for the discharge of a lunatic on the ground that the medical certificates did not set forth the facts from which the opinion of those who signed them was derived. In one, the medical man stated that the lunatic (a woman) laboured under a variety of delusions, and that she was dirty and indecent in the extreme; in the other, the certifier stated that he had formed his opinion from the conversation which he had that day had with her. It was contended that the statement in the first certificate was not so much a fact as a conclusion drawn from other facts, which ought to have been mentioned in the certificate itself. Lord Denman, in giving the judgment of the Court, held that the certificates were valid—that it was not necessary to have all the delusions of an insane person stated in a certificate. The statement that the lunatic was dirty and indecent in the extreme, was prima facie sufficient to justify the imputation of insanity, even if the certificate did not state that the patient laboured under a variety of delusions. The allegation that the opinion respecting the existence of insanity was founded upon a conversation with the alleged lunatic, was also sufficient to render a certificate valid. ('Med Gaz.' vol. 38, p. 932; also 'Law Times,' Nov. 21, 1846, p. 145.) They, therefore, refused to allow the discharge of the lunatic. This judgment was given by Lord Denman, and was concurred in by those eminent judges—Mr. Justice Erle, Mr. Justice Wightman, and Mr. Justice Coleridge. The late Mr. Justice Patteson dissented to this extent;—he thought a conversation had with the lunatic, could not be received as the statement of a 'fact.' The judgment might have been formed upon many sufficient facts, but the surgeon had not condescended to state what those facts were.

This question of the sufficiency of 'a conversation to constitute a 'fact' ' in drawing up a medical certificate has been recently raised in a case referred to me by Mr. Patteson, a former pupil (September, 1873). This gentleman having duly examined an alleged female lunatic, stated in his certificate as a 'fact' indicative of her insanity, 'from the conversation I have had with her,' following the decision in Shuttleworth's case, and using the same language. He quoted a former edition of this work as his authority, but the Commissioners in Lunacy refused to admit this case as a precedent, and required that some fact or facts should be distinctly stated. The Lunacy Acts' Amendment Act (25 and 26 Vict. c. 3, 1862, section 37) confers a power on the Commissioners to deal according to their own judgment with medical certificates, and practically to set aside a judicial decision of the Court of Queen's Bench, such as that above given in Shuttleworth's case. Thus it is enacted under this statute that 'Where any medical certificate upon which a patient has been received into any asylum, registered hospital, licensed or other house, or either of such certificates, is deemed by the Commissioners incorrect or defective, and the same are or is not duly amended to their satisfaction within fourteen days after the reception (by the superintendent or proprietor of such,
INSANITY. SPECIFICATION OF FACTS.

asylum, registered hospital, or licensed or other house) of a direction in writing from the Commissioners requiring amendment of the same, the Commissioners or any two of them, may if they see fit, make an order for the patient's discharge.'

It would therefore appear, that in order to satisfy the Commissioners, a medical man must state some 'fact,' i.e. some act or deed on the part of the alleged lunatic, on which his opinion is based. The Court of Queen's Bench regarded a certificate based on 'conversation' only, as a substantial although not a literal compliance with the terms of the Act. Lord Denman thought that it would be monstrous to have all the delusions stated upon the document. Many of them were indecent, and many blasphemous! In spite of this reasonable objection to entering into the details of a 'conversation,' it is now clear that nothing less than this will satisfy the Commissioners in Lunacy. A medical man, therefore, in drawing up a certificate, should insert those parts of the conversation on which he relies, as well as a statement of any fact or facts in reference to habits or demeanour, which, in his judgment, may indicate unsoundness of mind.

Dr. Millar has shown how little the words 'Facts indicating insanity observed by myself,' are appreciated or even understood by many medical men, who are legally empowered as registered members of the profession to sign these certificates. The facts are frequently stated in a loose and careless manner, showing a complete misapprehension of their meaning. What is really required by the law is a statement of facts observed or witnessed by the medical man himself, which would carry conviction to the mind of any non-professional man reading it, that the person to whom the statement referred, was of unsound mind. A medical man should in all cases avoid giving as a fact indicating insanity, any delusion which might be reality have some foundation in truth. With respect to the second requirement of the statute,—namely, 'Other facts (if any) indicating insanity communicated by others,'—it may be observed that although these do not supersede the facts observed by the medical man himself, they are of great importance in throwing light upon the propensities or habits of the patient, and thus serve as a guide for treatment. (Op. cit. p. 79.) A medical man must take care to draw a clear distinction between the facts observed by himself and the facts communicated to him by others, and avoid such vague expressions as that he 'thinks' and 'believes' &c.

As every medical certificate, although accepted by the Commissioners of Lunacy, may become at a future time a subject of close and hostile criticism in Court, a medical practitioner should be fully prepared to justify the use of the terms which he has employed. It is therefore desirable that he should studiously avoid any misstatement or exaggeration of the symptoms. One of the facts cited as indicative of insanity in an old lady was that she kept a cockatoo! In the case of Davis, the tea dealer, Lord Brougham, the a counsel at the bar, retained to oppose the commission against the
CERTIFICATES. MEDICAL RESPONSIBILITY. 707

ged lunatic, elicited from one of the witnesses as a fact upon which he relied to indicate insanity—that when asked the question, Davies did not know how much money he had in his pocket! ther relied upon the fact as indicative of weak mind, that the ged lunatic had said he preferred seeing the people returning from Epsom races rather than the racing on the course! Vague and tal facts, which do not indicate insanity, naturally tend to pro a feeling in the minds of a jury the very reverse of that for they are brought forward. Thus in this case, although there d be no doubt, from what subsequently occurred, that Mr. ries was a lunatic and a fit and proper person to be placed under raint, yet the eloquence of Lord Brougham and the result of a ful cross-examination in bringing into prominence the weakness the facts on which the witnesses relied to establish insanity, had an influence with the jury that they returned a verdict in our of the lunatic, and for a time he was considered as the unhappy victim of an unjust persecution on the part of his mother other relatives. In a case referred to by Dr. Bucknill, one of medical men certifying to the insanity of a gentleman, who was hat time undoubtedly insane, had stated as facts observed by self, that 'his (the patient's) habits were intemperate, and that had squandered his property in mining speculations.' But on s-examination in the Queen's Bench, he was obliged to confess: the only act of intemperance he had actually observed was the ent's drinking one glass of beer, and that the squandering of property was the loss of what was to him a mere trifle in a mining speculation, which eventually turned out to be a very good one! Illar's 'Hints on Insanity,' 1861, p. 187.) Counsel properly l a medical practitioner strictly to the common and accepted ning of the words which he uses. If strong points are not hewing, the proof of insanity must fail. Weak points generally n a weak case and should never be brought forward or employed a prudent witness.

A medical man is not compelled to take upon himself the res nonsense duty of signing certificates of insanity; but if he does pake it, he must perform it with reasonable care and ordinary l. If he certifies that a person is labouring under delusions, he e take care that he understands the meaning of the term and at are the delusions: and admitting that he is correct in belief from his own observation that they exist in the mind of the ent, it must be remembered that, in order to justify restraint imprisonment in an asylum, the law looks always to the imme e influence of these delusions upon conduct.

In reference to the important question of medical responsibility, following observations were made by the learned judge in the e of Hall v. Semple (Q. B. Dec. 1862):—'The true ground of plaint is the negligence of the defendant and the want of due in the discharge of the duty thrown upon him; and I think e if a person assumes the duty of a medical man under this.
Discharge of lunatics.—In forming an opinion relative to the propriety of discharging a person who has once been confined as a lunatic in an asylum, it is proper to examine the particulars of his case with the same caution as if the object were to confine him for the first time. The question of liberation is commonly restricted, like that of restraint, to cases of mania and monomania. It may so happen that the person has a lucid interval at the time of examination, in which case it will be necessary to make more than one visit. One who has been guilty of a heinous crime like murder, should never on any pretence be discharged. There are often long lucid intervals in homicidal mania, and it is impossible to be certain that the disease is entirely removed. If the person has manifested the least disposition to suicide, we should be extremely cautious in liberating him: for suicidal mania is often artfully concealed under a cheerful exterior. We cannot always test the propriety of granting liberation by the lightness of the offence for which a criminal lunatic has been confined. The circumstances under which the most trifling offence has been committed, may show that the mind is wholly unsettled with regard to moral responsibility: and such lunatics can never be trusted, even when there is a great improvement in their language and deportment.

The 16th & 17th of Victoria, c. 97, has placed certain restrictions on the power of liberating lunatics. Under ss. 83 and 84, the person originally signing the order which is required in addition to the medical certificates, may write an order for discharge or removal; but under s. 85 this order is of no effect, if a medical practitioner certify that in his opinion such patient is dangerous and unfit to be at large, together with the grounds on which his opinion is founded, unless the Commissioners or Visitors shall, after the production of such certificate, give their consent in writing for the removal or discharge of such patient. Under other clauses,
additional powers of discharge are given to the Commissioners and Visitors, subject to such restrictions as to leave the control for the most part in the hands of professional men. These powers of discharge do not, however, apply either to criminal lunatics, or to those found insane under a Commission issued by the Lord Chancellor.

CHAPTER 63.

LUNATICS AS WITNESSES. — INTERDICTION. — COMMISSIONS OF LUNACY—EXAMINATION OF ALLEGED LUNATICS.—MEDICAL AND LEGAL TESTS OF COMPETENCY.—CONFLICT OF EVIDENCE AND OPINION.

Lunatics as Witnesses.—In regard to the testimonial capacity of lunatics, it may now be considered as settled, that a lunatic who labours under delusions, but who in the judgment of a medical practitioner is capable of giving an account of any transaction that happened before his eyes, and who appears to understand the obligation of an oath, may be called as a witness. (*Reg. v. Hulh, ' Denison's Crown Cases,' 2, p. 254.*) The rule laid down by Baron Parke is in accordance with this view: it is for the judge to say whether the evidence of the witness is admissible, and then his credibility is a question for the jury.

Interdiction.—By interdiction we are to understand the depriving of a person labouring under mental disorder of his civil rights; in other words, preventing him from exercising any control or management over his affairs. It may be with or without restraint, for one condition does not necessarily imply the other although there is a popular idea to the contrary. In *Re Smith* (June 1862) an order for a jury was issued to try the question of sanity or insanity, and in affirming the order, Lord Justice Knight Bruce made the following statement:—‘It is desirable to remove the idea, but too generally entertained by persons (common persons) in different stations of life, that the finding by a jury that a person is of unsound mind necessarily involves an interference with his personal freedom: it does not. The Court places no further restraint upon a lunatic than is necessary for his protection, and I would refer to the fact that there are several lunatics living under the protection of the Court, who reside in their own houses with large establishments.’

When a person, from mental incompetency, is liable to be imposed upon by others, or is guilty of foolish and extravagant acts, whereby his property is wasted, a Commission is commonly granted by the Court of Chancery, in order to determine whether he be ‘compos’ or ‘non compos mentis.’ This writ is well known under the name of ‘de lunatico inquirendo.’ Before it can be issued it is necessary, among other matters, that there should be affidavits made by two or three physicians or surgeons, certifying to the insanity of the person. It has been already explained that the
object of the Commission is to determine whether the incapacity to manage affairs, is owing to some mental defect or disorder, and not merely to want of education or bodily infirmity—otherwise all wealthy minors and infirm persons might be improperly deprived of the control of their property. Formerly Commissions were not issued unless it was evident that lunacy or idiocy existed—for weakness of mind or imbecility was not considered sufficient to justify legal interference. This is no longer the case, ‘unsoundness of mind with incompetency’ being all that the law requires to be established. Thus then, whether the case be one of mania, monomania, or dementia is not now the question, but whether the party be compos or non compos mentis: if the latter, whether it be to a degree to prevent him from controlling his property with careful and provident management. There was a strange contradiction in our system of jurisprudence some years ago. A person who had a delusion on a particular subject, although not affecting his social duties, was deemed a fit subject for a Commission, and deprived of his civil rights merely because his mental disorder would fall under the definition of lunacy. On the other hand, one who had no delusion, but great mental weakness, such as to incapacitate him for properly managing his affairs, was not deemed a fit subject for a Commission; since weakness of mind and insanity were considered to be two entirely different states—the latter alone requiring interference, although the injurious results were the same in both cases.

It is unfortunate that these Commissions have been usually conducted on so expensive a scale as to render them applicable only to the wealthy classes of society: and even here the expenses attending such a simple inquiry as that for which the Commission is issued, have been often of the most ruinous kind, and the results by no means satisfactory. The Lord Chancellor has it now in his power to direct an inquiry to be made before one or two commissioners, in which case a jury is dispensed with. Evidence may then be received, and the decision left with the Commissioner or Commissioners so appointed. The costs of an inquiry by this regulation are greatly reduced; but even under the amended law, no Commission of Lunacy can be had at a less expense than 60l., and this only in uncontested cases. This form of proceeding is now adopted in the greater number of cases, so that out of 575 commissions in ten years only 21 were before juries. The Lunacy Regulation Acts are the 16th & 17th Vict. c. 70 (1853), and the 25th & 26th Vict. c. 86 (August 1862). The last-mentioned Act has greatly improved proceedings in lunacy, and has removed much of the injustice which formerly prevailed. In order to shorten these inquiries and lessen the expenses, the order under s. 3 is to be confined to the question whether or not the person is ‘at the time of unsound mind and incapable of managing himself and his affairs.’ No evidence on his conduct is to be received as a proof of insanity unless it refers to a period within two years of the date of the inquiry. In cases of contested imbecility, this provision might ex-
clude important evidence, but there is a discretionary power in the judge to admit it. Section 4 allows of a case being tried by a jury at common-law. The alleged lunatic is to be examined before the taking of the evidence, as well as at the close of the proceedings before the jury consult on their verdict. Under s. 12, power is given to the Chancellor to dispense with commissions in reference to persons who have but small property, and there are in this statute other strict rules regarding the visiting of lunatics confined in asylums.

One source of difficulty on these occasions is, that medical witnesses are allowed to be separately sought out and summoned by those who are for and against the commission, and the opinions given by them often exactly neutralize each other. Under these circumstances they are converted into partisans in the cause as much as if they were counsel. It has been well remarked, that a man even unknown to himself, with the purest intentions and the most perfect rectitude, will insensibly lean to the side on which he has been consulted or employed. (Pagan, p. 301.) The public are apt to infer from such conflicting opinions emanating from men of equal experience, that the difference cannot depend essentially on the medical facts of a case, and that the question might be as well or even better determined by non-professional persons. See the case of Mrs. Cumming ('Journal of Psychological Medicine' for April 1852), in which the conflict of medical testimony was even greater than usual. A large portion of this lady's property was spent in determining by a verdict that she was insane; and there was an intention that the remainder should be expended in reversing the decision, when the unfortunate lady died!

One remedy for this serious evil would be, that medical experts on such occasions should be selected and appointed by the Lord Chancellor, to examine an alleged lunatic and give evidence on his condition; they should be in all cases made perfectly independent of both parties. At present they rather occupy the position of medical counsel than medical witnesses, for it is quite clear that no one would be summoned whose views did not coincide with those of the party summoning him; and it is an opinion among some solicitors—for which, unfortunately, there is apparent reason—that medical evidence on these occasions is a marketable commodity, and may be purchased at graduated prices! There are some medical men who appear to think that on these occasions they are justified in sinking the witness in the advocate, and that they are bound by a sort of duty to make the best of the case for the person who retains them: but this is a mistaken view of their position. An advocate is not bound by an oath to state 'the truth, the whole truth, and nothing but the truth;' but a scientific witness is placed under this sacred obligation, and it is a duty which he owes to his profession and to society that he should lay aside all personal bias. It may appear an innocent matter to suppress some facts and to exaggerate the importance of others, in order to induce a jury to
pronounce one whose mental soundness is in question to be perfectly sane and competent; but the same mercenary zeal which would thus lead to the civil freedom of an insane person, might on another occasion be employed in unjustly depriving a sane person of his liberty. The confidence of the public in medical opinions in reference to the insane, has been by recent events already much shaken; and it would be altogether destroyed, and such opinions entirely dispensed with, if it were once known that a medical man on these occasions accepted a retaining fee not to speak the whole truth but, rightly or wrongly, to give his evidence in favour of the party who consulted him. Whatever may be the difficulties of the case, experienced solicitors know that if they only search far enough they will generally fall upon some medical men who will adopt their views. (The reader will find some remarks on this subject in the 'Medical Gazette,' vol. 5, p. 719; vol. 11, p. 740; and vol. 17, p. 816.)

Examination of alleged lunatics.—To determine whether a person is or is not a fit subject for interdiction or deprivation of civil rights it is necessary to bear in mind that it is not enough to show there is delusion, as in the lighter cases of monomania; but we are bound to ascertain how far the delusion affects the judgment of the person, so as to prevent him, like other men, from managing his affairs with provident care and propriety. In many instances, however, some proof of delusion only is sought for; and, if this be procured, it is hastily inferred that the person must be entirely incompetent to manage his property. The most difficult cases are those which involve questions of imbecility. In conducting the defence of the Windham case (Dec. 1861), Sir Hugh Cairns was allowed by his medical advisers to make the following strange statement: 'In a case of insanity accompanied by delusions, the mode of investigating it so as to arrive at the truth is a matter of great difficulty and doubt; but in a case of imbecility, where there is either no mind at all or next to none, the task of coming to a right and just decision is comparatively easy.' Such a statement is the reverse of the truth, and must have been made under some hazy notion that the state of imbecility was identical with that of idiocy. One of his own witnesses (Dr. Sutherland) in a subsequent stage of the proceedings corrected this error, by the admission in cross-examination, that 'drawing the line between soundness and unsoundness of mind in cases of imbecility, is one of the most difficult questions of medical science.'

In conducting the examination of an alleged lunatic, we should compare his mind as it is with what it is proved to have been; and if it be a case of supposed imbecility, a proper regard must be had to age, society, education, and general conduct. We should also consider whether the person has been treated by his friends and relations as a lunatic or imbecile prior to the issuing of the commission. A young person whose education has been much neglected, and who has never been entrusted with the care of money, cannot
be expected to have much knowledge of the method of managing a large property. Questions are sometimes put on the moral responsibility of man and the attributes of God, to one who, perhaps, never heard of ethics or metaphysics. Again, mathematical and arithmetical questions, which would embarrass many persons who are set down as sane and competent, are sometimes put on these occasions. In one instance a learned physician gave evidence on a commission that he found the alleged imbecile could not work the first proposition in Euclid, but this person admitted that he had always disliked mathematics. In a case which occurred in Scotland, one examiner asked the alleged imbecile, who said he had 1,200L. in the Bank, and received 20L. for interest,—How much was that per cent.? He said he could not tell: he was no good hand at arithmetic. The counsel who appeared against the brief or commission afterwards put the same arithmetical question to one of the medical witnesses who had deposed to the imbecility of the party; and this witness, an educated man, confessed himself quite unable to answer it—a practical illustration of the impropriety of pronouncing a person to be imbecile or incompetent merely because he is ignorant of that which he has never been taught! (Case of David Yoollow.) If the capacity to manage affairs rested solely upon a knowledge of arithmetic, many now go free who ought to be immediately placed under interdiction. This is rather a commercial test of insanity: but it will be found that it has been applied in a very improper manner to determine the capacity of young and ill-educated women. Unless the questions are confined to those subjects which the person has had either the opportunity or inclination to learn, a medical witness will always incur the risk of confounding mere ignorance with imbecility.

One of the best tests of mental capacity will be found in determining the degree to which, with ordinary opportunities, a person has shown himself capable of being instructed; but too high a standard must not be assumed as a test of capacity. The mind of an alleged imbecile should not be compared with the most perfect mind, but with that of another person of average capacity, of the same age and station in society, and who has enjoyed like opportunities of instruction. It would be difficult to find two sane persons who were exactly equal in mental power: in some, one faculty is prominently developed, in others another. All that we have to look for in these cases of alleged unsoundness is an average degree of intellectual development, so as to qualify the person for performing the duties of his station. To win the confidence of an alleged lunatic for the purpose of examination, we should not treat his observations or delusions with levity, but rather seriously sympathize with him in his troubles; we should listen attentively to all he has to say, for his suspicions will be excited by many questions being put to him. If we cannot agree with his conclusions, we should not contradict him abruptly, but endeavour to draw him out by asking for some corroborative evidence of his statements. Dr.
Millar has properly advised that, before visiting the patient, we should make ourselves thoroughly acquainted with every particular connected with his history and condition, and treat him as much like a sane person as possible. The insane are exceedingly suspicious, and quick to detect any deceit practised on them. They are also jealous of the intrusion of strangers, and, unless great tact is employed, will look upon a medical man as an enemy. ('Hints on Insanity,' p. 58.) The patient should be informed that his perceptions are merely the result of natural disease; it is useless to tell him that he is under a delusion when his perceptions, although sometimes exaggerated, are too real to be doubted. (Op. cit. p. 36.)

The conflicting medical evidence given on Commissions of Lunacy is in great part to be ascribed to the fact, that the whole of the mind of the person is not fairly examined. One physician tests one faculty, another, another; each has his own theory of insanity, and each his own standard of competency. The witnesses in support of the commission do not go so much to test the actual state of mind of the person, as to discover what they deem proofs of insanity: those against the commission take an opposite course—they look only for some proofs of soundness. It cannot therefore happen otherwise than that different conclusions should be drawn under such different modes of investigation. There is another point which requires attention in these cases. Persons labouring under a slight degree of imbecility are very soon irritated; they are easily persuaded that they are ill-used and persecuted; and when they happen to be questioned by parties who are represented as their enemies, they lose their self-command, and are no longer able to answer questions which under their ordinary state of mind they would reply to with perfect accuracy. (Pagan, op. cit. p. 302.)

A defective memory must not be hastily set down as a proof of legal unsoundness. This is more or less the natural result of age. A man may not have a good memory, and yet have a mind sound enough for the management of his affairs. A defective memory in an aged person, taken alone, proves nothing. (See 'Ann. d’Hyg.' 1836, vol. 1, p. 192.)

A medical witness must not allow himself to be embarrassed by medical or legal definitions of insanity. The malady may not assume the form of lunacy or idiocy, in a strictly legal view—nor of mania, monomania, dementia, or idiocy, in a strictly medical view; but still it may be a case of such mental disorder as to create incapacity for managing affairs. This is the point to which a medical examiner has to direct his attention. Cases of imbecility present the greatest difficulty, and create the greatest conflict of opinion among medical witnesses. Imbecility strictly implies a weak or feeble mind, and this term is properly applied to one who has an intellect below par or below the normal average. The vagueness of these terms shows how difficult it is to draw a clear distinction between legal sanity and that degree of mental weakness implied by imbecility which would justify interdiction. Insanity
in the common acceptation of the term cannot be proved in these cases: there will be no evidence of delusion, and there may be such an amount of self-control as to enable a person to maintain a conversation. Memory, judgment, and other faculties, although weak, are still present in a greater or less degree; and from one or two interviews only, an examiner might be disposed to pronounce the person of sound mind and competent to manage his own affairs. There is a wide field for argument here; for it may be said with some truth in a defence, 'that the doctors cannot put their fingers on a single point indicative of insanity.' In short, each fact specified by them may be frittered away with the remark that every one must have known some person who had either a bad memory or a weak judgment; who squandered money, who wasted it on unworthy objects, who hoarded it and refused to pay just debts, or who lost in foolish speculations, &c. All this may be true, and yet the person in question may be legally of unsound mind and properly interdicted. As Dr. Pagan justly remarks, there is a facility of disposition in an imbecile or weak-minded person, which lays him open to be imposed upon by the artful and designing; and our conclusion regarding his competency must therefore be the result of a just appreciation of his general knowledge of affairs, derived from an examination of all his faculties. We have to consider how far his imperfect mind would prevent him from attending to his own interests, not in a manner which would ensure their most profitable application, but in such a way as would prevent his affairs from being involved in ruin. His knowledge and understanding may be so imperfect that his property would necessarily run to waste under his unassisted control. When it is proved that there has been habitual submission to the dictation of others, either from a long habit of being controlled, from indifference, or fear—when a man has allowed himself to be disobeyed or neglected by his servants, and to be openly cheated by tradesmen,—these circumstances furnish evidence of weakness of mind, and a justification of the opinion that there should be interdiction. (Op. cit. p. 293.) On the other hand, if a person when left to himself has managed his affairs with reasonable care and propriety, and has acted independently of others, there can be no stronger proof of his legal competency.

The testamentary capacity of imbeciles may be tried by the same rules. A man who is of such an easy disposition as to be improperly influenced in the use of his property while living, may be equally influenced by fear or control to make an improper disposition of it by his will; but in this case the terms of the will, if drawn up by himself, will allow a fair judgment to be formed of the mental soundness of the testator. There is on these occasions a method of testing the state of mind which has been suggested by Dr. Conolly—namely, by inducing the patient to express his thoughts in writing, as in a letter addressed either to his physician or to some confidential friend. This plan would probably
often succeed in developing the existence of a latent delusion, when an oral examination would wholly fail; the patient would not be led to suspect that he was being subjected to an examination for a hostile purpose. The current of his thoughts would be uninfluenced by the suspicion, that the act of writing was to test the state of his mind; and as no man can long write in a connected manner who does not think collectedly, so we may expect to find ample evidence whether a delusion really exists in his mind or not. There are cases recorded in which the evidence of delusion has been derived from the terms of a will or deed written or dictated by the lunatic himself, when there was great difficulty in obtaining proof by an oral examination.

In idiocy there is no capacity for writing. In dementia, as there is no memory, it commonly happens that the same word is written over and over again. No person in a state of dementia can write a connected sentence, because before the last part of the sentence is completed the first is entirely forgotten. In imbecility we may meet with every variety of mental defect, but the state of the mind is generally well shown by the expression of the thoughts in writing. This method, it must be remembered, cannot show whether or not a person is capable of managing his affairs: it is a mere index of a certain state of the mind, and must be coupled with general habits and conduct, before any conclusion is drawn from it relative to the propriety of interdiction. It will often serve to detect the existence of a delusion when other means fail. Dr. Forbes Winslow attaches some importance to handwriting as foreshadowing the occurrence of general paralysis with softening of the brain. This, however, refers not so much to composition or style as to correct writing and spelling. (Op. cit. p. 484.) The reader will find a complete essay on the writings of the insane, and the medico-legal conclusions to which they lead, by Dr. Marcé, in the 'Ann. D’Hyg. Publique,' 1864, vol. 1. p. 379.

When a verdict of insanity is returned under a commission, it must always represent the person to be of unsound mind and by reason of that unsoundness to be incompetent to manage his affairs. A date must be fixed at which the insanity first appeared, and this date should always be anterior to the issuing of the commission. If there are lucid intervals, the space of time occupied by these should also be defined.

Among cases well calculated to show the conflict of medical evidence on commissions of lunacy, is that of the late Mr. W. F. Windham (December 1861). Fifteen of the relatives of this gentleman petitioned for an inquiry into his state of mind on the ground that he laboured under congenital deficiency of intellect, and this view was supported by strong medical opinions; on the other side it was alleged that the mental condition of Mr Windham, if below the normal standard, was merely the result of a neglected education. The inquiry lasted thirty-three days, during which 140 witnesses were examined—namely, fifty on the part of the petitioners, and
ninety in favour of Mr. Windham, at a cost of about 30,000L. There was no proof of the want of opportunity of education, but strong reason to believe that the alleged imbecile had not, like other boys of his age, made use of the advantages which he had enjoyed. He had been sent to Eton, but had derived little benefit from his connection with that great public school. It seems to have been admitted that, as a boy, he was wholly unlike other boys, and when he attained his majority, in August 1861, his conduct was extravagant, wild, and quite inconsistent with his social position. At the same time he was not entirely deficient in business matters; for it was proved that his uncle, one of the petitioners, had shortly before negotiated with him for the sale of a piece of land of the value of 1,000L, thereby admitting his capacity to transact business. The evidence received on this occasion was allowed to extend to the whole of his life, and it may be observed that in cases of alleged imbecility it is not possible, without doing injustice, to prevent the reception of evidence from a long antecedent date.

The result of this inquiry was that the jury, by a majority of fifteen to eight, returned the following verdict—‘That Mr. Windham is of sound mind and capable of taking care of himself and his affairs.’ After the verdict had been returned pronouncing him sane and competent, he was guilty of many extravagant acts, exhausted a splendid fortune and became a bankrupt; showing that, whatever legal soundness of mind he might possess in the opinion of two-thirds of the jury, he practically did not evince the capacity which by their verdict they declared him to possess, of taking care of himself and his affairs!

A large section of the public joined in the view prominently put forward at this inquiry by his counsel, Lord Cairns, that this unfortunate young man had been made the victim of a charge the most cruel, unjust, and unjustifiable! Insanity, it was urged, in the ordinary acceptation of the word, did not exist in his case. There were no illusions, hallucinations, or delusions; but as these are never met with in the form of unsoundness imputed to Mr. Windham, namely imbecility, their absence proved nothing for or against the existence of imbecility or weakness of mind. But what test is there for imbecility except conduct and conversation? There was no incoherency of language, but there was strong evidence of habits such as we do not meet with among men of really reasonable minds; but opinions were divided on the question, whether these indicated unsoundness of mind, or a mixture of eccentricity and moral depravity from deficient education. A majority of the jury took the latter view; and Lord Chelmsford, in commenting upon this verdict in the House of Lords (March 1862) said:—‘The law as laid down by Lord Lyndhurst applied to cases short of insanity, but they must be cases of unsoundness of mind; and mere extravagance or follies, which indicated imbecility, would not be sufficient unless the imbecility amounted to unsoundness of mind.’ The
legal test of the existence of this state of mind, we are told by high authority, is 'conduct.' A lawyer means by madness 'conduct of a certain character,' while a physician means by it 'a certain disease, one of the effects of which is to produce such conduct.' (Crim. Law of England,' by Fitzjames Stephen, p. 87.) The whole evidence against Mr. Windham bore upon conduct, and from the verdict we learn what sort of conduct does not constitute unsoundness in a legal sense. Thus the marrying of a woman of disreputable character,—the squandering upon her of 14,000l. in jewelry, and settling upon her, without any reasonable grounds, 800l. per annum, with other extravagant acts of a similar kind, do not constitute 'conduct of a certain character' sufficient to render a man non compos mentis in the eye of the law; but if these acts evince soundness of mind and a competency to manage affairs, what are the acts which indicate unsoundness or incompetency? On the other hand, we are told that the physician looks to the existence of a certain disease; but a physician can know nothing about the existence of disease of the brain during life in any case of imbecility, except in so far as its effects may be manifested by conduct. We therefore come round to the legal test of 'conduct,' which in Mr. Windham's case was considered to be quite consistent with the provident management of a large estate and a splendid fortune. That the legal test was here a failure in affording protection from wastefulness is proved by the result—the loss of the whole property from reckless extravagance!

In reference to this and other cases, 'doctors' have been strongly condemned for not agreeing among themselves on the subject of insanity, and it has been suggested that persons of common sense and a practical knowledge of the world, are more qualified to judge of soundness and unsoundness than medical men. In the Windham case, which elicited these censures, the jury, consisting of twenty-three men with a 'practical knowledge of the world,' differed from each other even more than the doctors,—the numbers being fifteen in favour of a verdict of soundness and eight in favour of unsoundness of mind! The minority felt so strongly on the error of the verdict of the majority, that they specially signified their dissent from it to the Lords Justices who had directed the inquiry. This great legal question was therefore simply decided arithmetically by relative numbers, 15 to 8, as in the election of a Member of Parliament!

The chief objections to the evidence of medical experts on these occasions would be removed, if they were nominated by the Lord Chancellor or the Lords Justices, and if they were thus made as independent as special jurors. So strong was the public feeling in reference to medical evidence after this inquiry, that the Lord Chancellor actually proposed to exclude it altogether, in commissions of lunacy, except in so far as it was based on facts within the personal knowledge of the witnesses. It was suggested that the general scientific conclusions of experts should not be received
as evidence. This proposition, which would have been most injurious to the interests of the insane as well as of the sane, did not meet with a favourable reception.

A Commission of Lunacy may be superseded, but the evidence must then be as strongly in favour of sanity as it was before in favour of insanity. The onus of proof is then thrown on the person who has been found lunatic.

CHAPTER 64.

CIVIL RESPONSIBILITY. — TESTAMENTARY CAPACITY. — WILLS MADE BY THE INSANE. — TEST OF CAPACITY. — EVIDENCE OF DELUSION. — ECCENTRICITY.

Testamentary capacity. Wills made by the insane. — Questions involving the testamentary capacity of persons are of very frequent occurrence, and medical evidence is commonly required for their solution. When property is bequeathed by a testator out of the usual order of succession, it may be alleged by the relatives that he was wholly incompetent to understand the nature of the deed—either from actual insanity, the imbecility of age, or that natural failing of the mind which is so often observed to occur from disease or on the approach of death. A disposing mind is what the law requires to render a will valid, and this does not rest so much upon the question of sanity or insanity, as upon the proof of competency or incompetency in the testator. The best test of capacity for this act is that a man, at the time of signing the will, should know the nature and amount of his property and the just claims of those who are nearly related to him. It has been truly said that the evidence of the medical attendant on the state of the testator's mind at the time of the execution of the will, is worth more than the opinions of experts or of witnesses who may have seen the testator at other times and under other circumstances. ('Med. Times and Gaz.' 1871, 2, 203.) A medical man is frequently of necessity a witness to a will. He should always remember that when he signs his name to it as a witness, he is practically testifying to the competency of the testator to make it.

Bodily disease or incapacity does not affect the validity of a will, unless the mind is directly or indirectly disturbed by it. A man's mind, under these circumstances, may not be so strong as in robust health, but still it may retain a disposing power. In Harwood v. Baker, decided by the Privy Council in 1841, a will was pronounced to be invalid owing to the general state of bodily disease in which the testator was, at the time of making it. It appears that he was labouring under erysipelas and fever, and these diseases had produced a degree of drowsiness and stupor which rendered him incompetent to the act. In the case of Day (June 1838), epilepsy
was alleged to have affected the mind; and in the case of Blewitt (March 1833), paralysis was adduced as a ground of incompetency. In all cases of this kind, the law looks exclusively to the actual effect of the bodily disease upon the mind at the time the will is made; and this is commonly a question to be determined by a jury from the testimony of the usual medical attendant of the deceased, as well as from the evidence of medical experts.

Test of capacity.—A person is considered to be of a sane and disposing mind who knows the nature of the act which he is performing, and is fully aware of its consequences. From some decisions that have been made, it would appear that a state of mind for which a party might be placed under interdiction or deprived of the management of his affairs, would not render him incompetent to the making of a will. The validity of the will of a lunatic was once allowed, although made while he was actually confined in an asylum, because the act was rational, and it was such as the lunatic had announced his intention of making, some years prior to the attack of insanity. (Coghlan’s case; see Re Garden, ‘Law Times,’ July 6, 1844, p. 268; also the case of Cartwright, Mayo on ‘Medical Testimony,’ p. 44.) In Nichols and Freeman v. Binns (Probate Court. Aug. 1858), the question was whether the will of a Mr. Parkinson, made in a lunatic asylum near Norwich, was executed during a lucid interval. The jury found a verdict in favour of the will. The insanity of a person when not already found insane under a commission, must not in these cases rest upon presumption or probability, but be established by positive proof. The act of suicide is often hastily assumed to be evidence of insanity; but it would not be allowed as a proof of this state, even when a testator had destroyed himself shortly after the execution of his will. A case has been decided where the testator committed suicide three days after having given instructions for his will; but the act was not admitted as a proof or even as a presumption of insanity at the time, and the will was pronounced to be valid. In another case, Edwards v. Edwards (Prerog. Court, Feb. 1854), it was proved that the testator had committed suicide three days after the execution of his will, and there was some evidence of eccentric habits almost amounting to insanity; but the will was found valid. Suicide is not deemed in law to be a proof of the existence of insanity.

Delusion in the deed.—The validity of deeds executed by persons affected with monomania is often a subject of dispute. The practice of the law indicates that the mere existence of a delusion in the mind of a person does not necessarily vitiate a deed, unless the delusion form the groundwork of it, or unless the most decisive evidence be given that, at the time of executing the deed, the testator’s mind was influenced by it. Strong evidence is often derivable from the act itself, especially when a testator has drawn up the will of his own accord. In the case of Barton (July 1840) the Ecclesiastical Court was chiefly guided in its decision by the
nature of the instrument. The testator, it appeared, laboured under the extraordinary delusion that he could dispose of his own property to himself, and make himself his own legatee and executer! This he had accordingly done. The will was pronounced to be invalid. But a will may be manifestly unjust to the surviving relatives of a testator, and it may display some of the extraordinary opinions of the individual: yet it will not necessarily be void, unless the testamentary dispositions clearly indicate that they have been formed under the influence of a delusion. Some injustice may possibly be done by the rigorous adoption of this principle, since delusion may certainly enter into a man's act, whether civil or criminal, and it may not be always in our power to discover it; but, after all, this is perhaps the most equitable mode of construing the last wishes of the dead. According to Sir John Nichol, it is not necessary in civil suits to connect the morbid imagination with the act itself; if the mind is proved to be unsound the act is void. In Roberts v. Kerslake (Warwick Aut. Assizes, 1854), Lord Wensleydale held that to vitiate a will, if it be a case of delirium, the act must be traced to delirious delusion, but if it be a case of lunacy it need not be traced to a delusion. In Sharpe v. Macaulay (Winchester Aut. Ass. 1856), Martin, B., advised the jury, in coming to a conclusion on the question at issue, whether the testator had a 'sound and disposing mind,' to look not to the opinions of others, but to the man's own acts as well as his correspondence. A disposing mind implied that a man understood the nature of his property, the use and benefits arising from it, and had sense and discretion to select persons to enjoy it after his death. A man may have laboured under delusions and have been confined as a lunatic, yet at the date of his will he may have been sane and have had a disposing power. The main question therefore is—Was the testator of sane mind when the will was executed? This may be deduced from direct evidence of his condition as well as from the provisions of the will itself.

Eccentricity in wills.—The evidence in these cases sometimes amounts to proof of eccentricity only on the part of the testator, or in the deed itself; but a clear distinction must be here drawn. The will of an eccentric man is such as might always have been expected from him: the will of one labouring under insanity (delusion) is different from that which he would have made in an unaffected state—the instrument is wholly different from what it would once have been. It has been justly observed, that the insane are eccentric in their ideas, their language, or their conduct; but the merely eccentric have but a voluntary resemblance to the insane. (Jamieson's Lectures, 'Med. Gaz.' vol. 40, p. 180.) They can if they please alter their conduct and act like other persons, neither eccentric nor insane. In a recent case in the Probate Court, Sir J. Hannen observed that it was impossible to define exactly the distinction between eccentricity and insanity, or to draw
the exact line between sanity and insanity, but for practical purposes we are able to say in a particular instance whether a man is sane or insane.

Wills are sometimes contested more on the ground of eccentricity than of insane delusion; but if eccentricity only be proved, a Court will not interfere. In the case of Morgan v. Boys (1838), it was proved that the testator, by his will, had left a large fortune to his housekeeper. The will was disputed on the ground that it bore intrinsic evidence of the deceased not having been in a sane state of mind at the time of making it. After having bequeathed his property to a stranger, the testator directed that his executors should cause some parts of his bowels to be converted into fiddle-strings, that others should be sublimed into smelling-salts, and that the remainder of his body should be vitrified into lenses for optical purposes! He further added, in a letter attached to his will,—

'The world may think this to be done in a spirit of singularity or whim; but I have a mortal aversion to funeral pomp, and I wish my body to be converted into purposes useful to mankind.' Sir H. Jenner, in giving judgment, held that insanity was not proved: the facts merely amounted to eccentricity, and on this ground he pronounced for the validity of the will. It was proved that the deceased had conducted his affairs with great shrewdness and ability; that he not only did not labour under imbecility, but that he had been always treated during life as a person of indisputable capacity by those with whom he had to deal. The best rule to guide the Court, the Judge remarked, was the conduct of persons towards the deceased; and the acts of his relatives evinced no distrust of his sanity or capacity while he was living. The deceased had always been noted for his eccentric habits, and he had actually consulted a physician upon the possibility of his body being devoted to chemical experiments after death. In the case of Mudway v. Croft (Prerog. Court, Aug. 1843), a will contested on the ground of insanity but defended on the plea of eccentricity, Sir H. J. Fust said,—'It is the prolonged departure, without an adequate external cause, from the state of feeling and modes of thinking usual to the individual when in health, that is the true feature of disorder of the mind.'

Within a recent period two cases have come before the Probate Court, in which it has been necessary to draw the line between eccentricity and insanity in reference to wills. Although the facts proved in reference to insanity in the two cases were somewhat similar, the decision was in favour of the will in one case and adverse to it in the other. In both there was a departure from the rule which has hitherto influenced justly the verdicts of juries, i.e., in the ignoring of the fact that the testator in each case had managed his affairs during life without any imputation on his sanity or competency, or any interference in his affairs on the part of relatives. (Davis v. Gregory, and Boughton v. Knight, Probate Court 1873.)
Wills in senile dementia.—Wills made in incipient dementia arising from extreme age (senile imbecility) are sometimes disputed, either on the ground of mental deficiency, or of the testator, owing to weakness of mind, having been subjected to control and influence on the part of interested persons. If a medical man be present when a will is executed, he may easily satisfy himself of the state of mind of a testator, by requiring him to repeat from memory the mode in which he has disposed of the bulk of his property. A medical man has sometimes placed himself in a serious position by becoming a witness to a will without first assuring himself of the actual mental condition of the person making it (case of the Duchess of Manchester, 1854). It would always be a good ground of justification, if, at the request of the witness, the testator is made to repeat substantially the leading provisions of his will from memory. If a dying or sick person cannot do this without prompting or suggestion, there is reason to believe that he has not a sane and disposing mind. It has been observed on some occasions, when the mind has been weakened by disease or infirmity from age, that it has suddenly cleared up before death, and the person has unexpectedly shown a disposing capacity. (Ann. d'Hyg. 1831, p. 390.) In Durnell v. Corfield (Prerog. Court, July 1844), a case in which an old man of weakened capacity had made a will in favour of his medical attendant, Dr. Lushington held that to render it valid, there must be the clearest proof not only of the factum of the instrument, but of the testator's knowledge of its contents. (Law Times, July 27, 1844.) In West v. Sylvester (Nov. 1864), Sir J. Wilde, in pronouncing judgment against a will propounded as that of the deceased, an aged lady, said:—'At the time she executed the will of October 1863, although for many purposes she might be said to be in her right senses, she was nevertheless suffering from that failure and decrepitude of memory which prevented her from having present to her mind the proper objects of her bounty, and selecting those whom she wished to partake of it.'

Wills made by persons whose capacity during life has never been doubted, while lying at the point of death or, as it is termed, in extremis, are justly regarded with suspicion, and may be set aside according to the medical circumstances proved. Many diseases, especially those which affect the brain or nervous system, directly or indirectly, are likely to produce a dulness or confusion of intellect, under which a proper disposing power is lost. Delirium sometimes precedes death, in which case a will executed by a dying person thus affected, would be at once pronounced invalid.

In examining the capacity of a person under these circumstances, we should avoid putting leading questions—namely, those which suggest the answers 'yes' or 'no.' Thus, a dying man may hear a document read over, and affirm, in answer to such a question, that it is in accordance with his wishes, but without understanding its purport. This is not satisfactory evidence of his having a disposing mind: we should see that he is able to dictate the provisions.
of the document, and to repeat them substantially from memory when required. If he can do this accurately, there can be no doubt of his possessing complete testamentary capacity. But it may be objected that many dying men cannot be supposed capable of such an exertion of memory: the answer is then very simple; it is better that the person should die without a will, and his property be distributed according to the law of intestacy, than that, through any failing of the mind, he should unknowingly cut off the rights of those who have the strongest claims upon him.

Restriction of medical opinions.—In an important case (Bainbrigge v. Bainbrigge, Oxford Summer Ass. 1850), tried before Lord Campbell, in which the testamentary capacity of a man was disputed, it was held that a medical witness, although conversant with cases of insanity, cannot be asked his opinion as to the insanity of a testator founded upon evidence given at the trial in his hearing. (A Cox, ‘Criminal Cases,’ 454: see also on this subject ‘Med Gaz.’ vol. 46, p. 240.) In the case of the Duchess of Manchester, however, the opinions of Drs. Sutherland, Mayo, and Conolly on the competency of the testatrix to make a will were received by the Court although based upon evidence given at the trial.

CHAPTER 65.

THE PLEA OR DEFENCE OF INSANITY.—CIRCUMSTANCES UNDER WHICH IT IS ADMISSIBLE.—HOMICIDAL INSANITY.—MORAL INSANITY.—SYMPTOMS.—LEGAL TESTS.—MEDICAL TESTS.—DELUSION.—TESTS OF IRRESPONSIBILITY.—MEDICAL EVIDENCE.

The plea or defence of Insanity.—Responsibility here signifies nothing more than liability to punishment for crime, and a criminal act implies the existence of intention, will, and malice. (Stephen.) When insanity has reached a certain stage or degree, an act may be perpetrated without malice; and in this sense the person is considered to be irresponsible in law. This is a question of fact, to be determined by a jury from the whole evidence set before them; and the proof rests with those who make the allegation that the act in question, whether murder or arson, was not done wilfully and maliciously. ‘The sanity of a man’s conduct,’ observes Mr. Stephen, ‘involves the presence of intention and will on all ordinary occasions; and if the act is one of those which the law forbids, it is presumed to be malicious and wicked.’ (‘Criminal Law of England,’ p. 89.) This subject is of considerable importance in a medico-legal view; for should a plea of insanity be improperly admitted in any criminal case, then punishment is made to fall unequally on offenders; and if, on the other hand, it be improperly rejected, punishment is administered with undue severity. The
RESPONSIBILITY FOR CRIMES.

rule of law is, that no man is responsible like a sane person for any act committed by him while in a state of insanity. The plea may be raised for the smallest offence up to the highest crime—murder; but it is rarely made a defence in smaller offences, because the close confinement to which an accused person, if found insane, would necessarily be subjected, would often be a heavier punishment than that which the law actually prescribes for the offence which he may have committed. In a case of felonious assault, it was urged by counsel in defence, that the prisoner was insane; but the evidence on this point was not by any means conclusive,—when it was intimated by the Court that, if this plea were admitted, the party would probably undergo a much longer imprisonment than if on conviction he received the legal punishment for the offence! (The Queen v. Reynolds, Bodmin Aut. Ass. 1843.) The judge is reported to have said that there was no proof of insanity. If the prisoner was pronounced insane, he might be imprisoned for life, and therefore he did not think that that finding would benefit him! A verdict of guilty was returned, and the man was sentenced to eighteen months' imprisonment. This case shows that a defence of this kind may be sometimes indiscreetly put forward. Such a mode of dealing with the plea of insanity, i.e. of making it a question of expediency dependent on the amount of punishment for the offence, must be pronounced as unsafe and indefensible. Murder, incendiaryism, and theft are the crimes for which the plea of insanity is commonly raised; and it has been generally confined in this country to those cases in which persons have been charged with murder or attempts at murder.

Murder may be perpetrated by one who is obviously labouring under delirium or violent mania, or by an idiot or imbecile. Apart from the circumstances connected with the criminal act, there may be evidence of such a disordered state of mind in the person, as at once to exonerate him from that amount of responsibility which is exacted from one who is sane. The appearance of the accused, or the testimony of a medical man, renders it unnecessary to go into the evidence, and a verdict is returned accordingly. The cases of difficulty are those in which insanity presents itself in a doubtful aspect, as in mania or imbecility. The mental disorder may be of so slight a nature as not legally to justify an acquittal for murder. In order to exculpate a person it must be proved that insanity in a certain degree existed at the time of the perpetration of the act. Whether the prisoner is or is not insane when placed on his trial is immaterial in reference to the question of responsibility. In the case of Murray (tried before the High Court of Justiciary, Edinburgh, Nov. 1858), it was proved that the accused recovered his sanity eight hours after he had killed the deceased; but he was acquitted on the ground of insanity at the time of committing the act.

The proved existence of mental disease does not necessarily exempt a person from criminal responsibility. Many a man whose
mind is in an unsound state, knows perfectly well whether he is doing wrong; and so long as he knows that, he is considered to be subject to the criminal law. The existence of a morbid delusion cannot always be allowed to screen a criminal from the consequences of his own acts, while on the other hand there are instances in which a plea of insanity may be properly allowed, although no delusion can be proved. Each case must be taken with all its surrounding circumstances.

The great difference of opinion which exists between physicians and jurists in reference to this plea, appears to me to consist in this:—Most jurists aver that no degree of insanity should exempt from punishment for crime, unless it has reached that point that the person is utterly unconscious of the difference between right and wrong at the time of committing the alleged crime. Physicians, on the other hand, affirm that this is not a proper test of the existence of that degree of insanity which should exempt a man from punishment for his acts; that those who are labouring under confirmed insanity, and who have been properly confined in asylums for years, are fully conscious of the difference between right and wrong, and are quite able to appreciate the illegality as well as the consequences of their acts. Again, those who have patiently watched the insane for years, agree that the legal test of utter unconsciousness of right and wrong in the performance of acts, would in reality apply only to persons who were suffering from delirium, from a furious paroxysm of mania, or from confirmed idiocy; and that if the rule suggested—that a person, in order to be acquitted on the ground of insanity, should be first proved to be as unconscious of his act as a baby (Warren)—were strictly carried out, there is scarcely an inmate of an asylum who happened to destroy a keeper or attendant, who might not be executed for murder. Such a rule amounts to a reductio ad absurdum: it would abolish all distinction between the sane and the insane, between the responsible and the irresponsible; and it would consign to the same punishment the confirmed lunatic and the same criminal. This species of baby-unconsciousness of action exists in idiots as well as in furious maniacs, but not in the majority of lunatics; and it may be safely asserted that, if this criterion be the true one, acquittals on the ground of insanity have involved a series of gross mistakes for the last fifty years. It may be said that the consciousness of the insane is an insane consciousness, while the law implies the consciousness of a sound mind; but this involves a petitio principi. There have been numerous cases of acquittal in which, until the act of homicide had been committed, there was no imputation either against the sanity or the same consciousness of the accused. Having pointed out these inconsistencies, it is only proper to acknowledge that in theory the English law would punish a lunatic just as it would punish a sane man, provided the lunatic had that degree of intellect which enabled him to know and distinguish between right and wrong, or between what was lawful and unlawful; if he knew what would be the
effects of his crime, and consciously committed it; and further, if with that consciousness he wilfully and intentionally committed it.

In practice, however, it is placed beyond doubt that some who ought to be convicted under these rules, are acquitted on the legal fiction that they were at the time unconscious (or only insanely conscious) of the wrongfulness of their acts. Dr. Wood states, that of thirty-three men confined as lunatics in Bethlehem who had actually committed murder, not including those where an unsuccessful attempt was made to perpetrate the same crime, three were reported sane; he feels quite satisfied that two of these were not insane at the time they committed the murders, and of the fifteen men who had actually committed murder, five were reported sane, and two of them ought, in his judgment, never to have been acquitted on the ground of insanity. (\'Plea of Insanity,\' p. 50.)

According to the late Sir W. Hood, in the six years from 1852 to 1858, 120 persons who were tried for murder, for attempts at murder, or acts of personal violence, were acquitted on the ground of insanity. Of that number, 79 were received into Bethlehem Hospital, and in several instances they exhibited no symptoms of insanity while they were resident in the asylum. These facts, then, are sufficient to show that the rule of law generally adopted does not err on the side of severity. The only complaint that can be made is, that it operates with some uncertainty. Of late years some learned judges have admitted that there might be a consciousness that the act was wrong and illegal, and yet the person would be exempted from criminal responsibility, provided it was proved by other circumstances, that he laboured under a disease of the mind sufficient to prevent him from exercising a proper control over his actions.

When the defence of insanity is set up on a charge of murder,—in order to warrant the jury in acquitting a prisoner, it must be proved affirmatively that he was insane in a certain legal sense, at the time of perpetrating the act: if this be left in doubt, and if the crime charged in the indictment be proved, it is their duty to convict him. (Reg. v. Stokes, 3 Car. and Kir. p. 185.) It is necessary to impress upon the mind of the medical witness, that it is not medical but legal insanity which is required to be proved on these occasions to the satisfaction of a jury. As no two medical men agree about what is madness in a medical sense, and as some \'mad doctors\' have even held that all great criminals are necessarily insane, it is obvious that the power to absolve from responsibility could not be placed in the hands of the profession with a due regard to the protection of society, or a safe administration of the law. The facts stated by Drs. Hood and Wood, in reference to the admission of alleged criminal lunatics into Bethlehem (supra), show that either by legal or medical ingenuity, or both combined, sane men are incarcerated as irresponsible lunatics!

Homicidal Insanity.—Homicidal mania or monomania is commonly defined to be a state of partial insanity, accompanied by an
impulse to the perpetration of murder; hence it is sometimes called impulsive or paroxysmal mania. There may or may not be evidence of intellectual aberration, but the main feature of the disorder is the existence of a destructive impulse which, like a delusion, cannot be controlled by the patient. This impulse, thus dominating over all other feelings, leads a person to destroy those to whom he is most fondly attached, or any one who may be involved in his delusion. Sometimes the impulse is long felt, but concealed and restrained: there may be merely signs of depression and melancholy, low spirits and loss of appetite, as well as eccentric or wayward habits, but nothing to lead to a suspicion of the fearful contentment which may be going on within the mind. As in suicidal mania, many of those who are in habits of daily intercourse with the patients, have been first astounded by the act of murder, and then only for the first time led to conjecture that certain peculiarities of language or conduct, scarcely noticed at the time, must have been symptoms of insanity. Occasionally the act of murder is perpetrated with great deliberation, and apparently with all the marks of sanity. These cases are rendered difficult by the fact that there may be no distinct proof of the existence, past or present, of any disorder of the mind, so that the chief evidence of mental disorder is the act itself: of the existence of insanity, in the common or legal acceptation of the term, before and after the perpetration of the crime, there may be either no evidence whatever, or it may be so slight as not to amount to proof. Such cases are regarded and described by some medico-legal writers as instances of insanity of the moral feelings only, and this condition has been called 'Moral insanity' (p. 680, ante). Its existence, as a state independent of a simultaneous disturbance of the reason or intellect, is denied by the great majority of lawyers, as well as by some eminent medical authorities. Whether such a condition exists or not is a simple question of fact, to be established if possible by clear and conclusive evidence. Its existence in the case of a person charged with murder appears to have rested hitherto on a mere medical dictum. Intelligible reasons have not been assigned by those witnesses who have sought to satisfy a Court of law that this has as distinct an existence as intellectual insanity; in general, it is only alleged and not proved to exist in a given case. If its existence were satisfactorily established, it would, as Mr. Stephen observes, do away with one of the essential ingredients of crime—malice, and thus justify a jury in acquitting a person charged with murder. The accused on these occasions is assumed to have been an involuntary agent. As Mr. Stephen suggests, it might be a good defence to admit that a man loaded a pistol and pointed it at the head of another, but that it was fired by a sudden involuntary action of the necessary muscles, and not by the prisoner's will. The only difficulty is to get a jury to believe it! The evidence given in support of the assertion that a man is morally insane is, generally speaking, at least as consistent with the theory that he is a great fool and a great
rogue, as with the theory that he is the subject of a special disease the existence of which is doubtful. ('Crim. Law,' p. 95.) There is no doubt that the unrestricted admission of such a theory would go far to do away with all punishment for crime, for it would render it utterly impossible to draw a line between (moral) insanity and moral depravity. What is crime but the perversion of moral feelings? Moral insanity in a person of sound mind is a contradiction in terms; whenever the mind is sound, a man's conscience and sense of right and wrong will always be sufficient to enable him to restrain and control evil desires and impulses.

Symptoms.—Homicidal mania in its more common form, may make its appearance at all ages, even in children:—it is occasion-ally periodical, and the paroxysm of insanity is preceded by symp-toms of general excitement. The patient experiences colicky pains, and a sense of heat in the abdomen or chest,—headache, restlessness, and loss of appetite, with lowness of spirits; the face is flushed or pale, the pulse hard and full, and the whole body is in a state of convulsive trembling. An act of violence is committed without warning, and the patient appears as if relieved from some oppressive feeling. He may be calm, and express neither regret, remorse, nor fear; he may coolly contemplate his victim, confess the deed, and at once surrender himself to justice. In some rare instances he may conceal himself, hide the weapon, and, like a sane criminal, endeavour to obliterate all traces of the crime—thus showing a perfect consciousness of the illegality or wrongfulness of the act, and a desire to evade discovery. These are, however, the main features of crime, and unless there is independent evidence of mental disorder, or of some bodily disease affecting the brain and destroying the power of self-control, the conclusion must be that the person is sane and responsible. The great problem to be solved on these occasions is—What are the plain practical dis-tinctions between defective reasoning power and perverted moral sense? The latter condition alone should not exculpate a person or absolve him from punishment,—or persons undeniably sane who have committed crimes, should be equally exculpated and absolved from punishment.

The symptoms above described have been observed to be more aggravated in proportion as the homicidal impulse was strong. The propensity to kill is sometimes a fixed idea, and the patient can no more banish it from his thoughts than a person afflicted with insanity can divest himself of the delusive ideas which occupy his mind. (Esquirol, vol. 2, p. 105.) It has been supposed that Esquirol here implies a state in which there is no perversion of intellect. The facts which he mentions, however, clearly prove the contrary; for if a patient has not the power to banish from his thoughts this propensity to kill, he has passed beyond the bounds of reason, and is really insane. The admission of this fact proves that his mind must be unsound. Esquirol says—before the perpetration of the act there may be no sign of irrational conver-
nature of insanity; our in cases the assertion—Because there is no
proof of reason or sense we are to assume that these persons possess
none. It is impossible to reconcile the existence of a rational and
mind with the notion of those who are more close to them.

In Esquirol's view, therefore, it may be
taken that more persons or insane insanity, irrespective of
some recent assumption of insanity, there are cases and more
insanity is a condition with the state in which the persons of moral
conduct are not as clear as in the generality of cases.

It appears a fact that produces in the public mind, that a homicidal
insanity is easily to be distinguished from a sane criminal, by some
occasional and distinctive symptoms of character, which it is the duty
of a normal witness to carry as evidence, and of a medical-legal
witness to observe. But a person of the evidence given as a jury
would be surely satisfy those who would this opinion, that each case
aver would have some effect. It is easy to classify homicidal insanity, and
even say that in the instance the murderer the act was committed from a
selfish, revenge, or partiality: in a second from no motive, but
from sense, impulses: in a third from illusion or delusion of
refuge, or mental disease: in a fourth from perversion moral
repose, without any sign of intellectual aberration. This classi-
cation may comprise all the varieties of homicidal insanity, but it
does not help us to ascertain in a doubtful case, whether the act
was or was not committed under any of these psychological cera-
cations. It enables us to classify those who are acquainted on the
ground of insanity, but it entirely fails in giving us the power to
distinguish a sane from an insane criminal, or a responsible from an
irresponsible agent. According to M. Esquirol, whose views, more
or less modified, are adopted by all writers on the medical jurisdic-
tion of insanity, the facts hitherto observed indicate three degrees
of homicidal mania:—

1. In the first degree the propensity to kill is connected with
absurd or irrational motives or with actual delusion. The person
would be at once pronounced insane. Cases of this description are
not uncommon, and they rarely create any difficulty.

2. In the second degree, the desire to kill is connected with some
known motive. It is difficult to imagine a motive for the deed; the
person appears to have been led on by some impulse. There may
have been delusion, but there is no evidence of the pre-existence
of this. With respect to this class of cases, Mr. Stephen observes:
"There are motives for all acts even the maddest, but it is frequently
impossible to assign them specifically. It is, however, generally
possible to form an opinion whether a given act was done from some
unknown mad motive, or from some unknown sane motive." (Op.
cit. p. 88.)

3. In the third degree, the impulse to kill is sudden, instantaneous,
unreflecting, and uncontrollable (plus forte que la volonté). The
act of homicide is perpetrated without interest, without
motive, and often on persons who are most fondly loved by the
perpetrator. (Esquirol 'Maladies Mentales,' vol. 2, p. 834.) It is this form, which has been called 'impulsive insanity,' which has given rise to so much contention on trials for murder in which insanity is set up as a defence, and therefore it will be well to consider this subject in a legal aspect. Mr. Stephen thus comments upon it:—'It is said that on particular occasions men are seized with irrational or irresistible impulses to kill, to steal, or to burn, and under the influence of such impulses they sometimes commit acts which would otherwise be most atrocious crimes. It would be absurd to deny the possibility that such impulses may occur, or the fact that they have occurred and have been acted on. Instances are given in which the impulse was felt and resisted. The only question which the existence of such impulses can raise in the administration of criminal justice, is whether the particular impulse was irresistible as well as unresisted. If it was irresistible, the person accused is entitled to be acquitted, because the act would not then be voluntary and not properly his act. If the impulse was resistible, the fact that it proceeded from disease would be no excuse at all. If a man's nerves were so irritated by a baby's crying that he instantly killed it, his act would be murder; it would not be less murder if the same irritation and corresponding desire were produced by some internal disease. The great object of the criminal law is to induce people to control their impulses; and there is no reason why, if they can, they should not control insane as well as sane impulses. The proof that an impulse was irresistible depends on the circumstances of the particular case. The commonest and strongest cases are those of women who, without motive or concealment, kill their children after recovery from childbirth' (puerperal mania). (Op. cit. p. 95).

The three forms in which a homicidal propensity may thus present itself in cases of insanity, differ from each other only in degree—the first two being strongly analogous to, but lighter modifications of the third. All the cases which came before M. Esquirol had these features in common—an irritable constitution, great excitability, singularity or eccentricity of character; and previously to the manifestation of the homicidal feeling there was a gentle, kind, and affectionate disposition. As in other forms of insanity, there was some well-marked change of character in the mode of life; and this may be taken as a proof that there must have been some degree of intellectual disturbance. The period at which the disorder commenced and terminated could be easily defined, and the attack could be almost always referred to some moral or physical cause. Attempts at suicide preceded or followed the attacks: all wished to die, and some desired to be put to death like criminals. In none of these cases was there any discoverable motive for the act of homicide.

M. Esquirol believes that there are well-marked distinctions between this state and that of the sane criminal. Among these he enumerates: 1. The want of accomplices in homicidal mania. 2. The sane criminal has always a motive—the act of murder is only
a means for gratifying some other more or less criminal passion, and is almost always accompanied by some other wrongful act: the contrary exists in homicidal mania. 3. The victims of the criminal are those who oppose his desires or his wishes—the victims of the monomaniac are among those who are either indifferent to or who are the most dear to him. 4. The sane criminal endeavours to conceal, and if taken denies the crime; if he confesses it, it is only with some reservation, and when circumstances are too strong against him; but he commonly denies it to the last moment: it is the reverse with the monomaniac. The exceptions to which these characters are open will be considered hereafter. They have, undoubtedly, greater value in their combined than in their individual application, and when in any case they coexist, there is strong reason to believe that the person accused of murder is labouring under homicidal mania. The great difficulty in these cases, however, is to distinguish moral depravity from insanity. I agree with a medico-legal writer on this subject, that ‘no hideousness of depravity can amount to proof of insanity, unsupported by some evidence of a judgment incapacitated, or of a will fettered by disease. In those cases in which the emotions are perverted, and where there is no clear proof of deranged intellect,—cases which do from time to time occur,—the presumption of insanity in regard to a criminal action has to be upheld by evidence of a suspension of the will from mental disease. If it can be proved that the act was not voluntary, this does away with its criminal nature.’ (Jamaicas’s Lectures on the Med. Jur. of Insanity, ‘Med. Gaz.’ vol. 48, p. 161.) But it is impossible in many cases to produce satisfactory evidence of the suspension of the will as a result of disordered mind: this suspension can in general be assumed only from the act itself—a dangerous assumption, and one that might lead to the confusion of crime with insanity, and to the exculpation of all criminals.

Legal tests.—Admitting the existence of homicidal mania as thus defined by Esquirol, it may become a question, how, when pleased for one charged with murder, it is to be practically distinguished from a case in which the crime has been perpetrated by a really sane person. Tests, both medical and legal, have been proposed. The legal test was explicitly stated in the following terms by the whole of the judges in conference, in answer to queries put by the House of Lords on the case of M‘Naughten, who was tried and acquitted on the ground of insanity (June 19, 1843):—

‘Notwithstanding a party commits a wrong act while labouring under the idea that he was redressing a supposed grievance or injury or under the impression of obtaining some public or private benefit, he is liable to punishment. The jury ought in all cases to be told that every man should be considered of sane mind until the contrary was clearly proved in evidence; that, before a plea of insanity should be allowed, undoubted evidence ought to be adduced that the accused was of diseased mind, and that at the time he committed the act he was not conscious of right or wrong. Every person wa
supposed to know what the law was, and therefore nothing could justify a wrong act, except it was clearly proved that the party did not know right from wrong; if that was not satisfactorily proved the accused was liable to punishment. If the delusion under which a person laboured were only partial, the party accused was equally liable with a person of sane mind. If the accused killed another in self-defence, he would be entitled to an acquittal; but if the crime were committed for any supposed injury, he would then be liable to the punishment awarded by the laws to his crime. (‘Brit. and For. Med. Rev.’ July 1843, p. 273.)

It would appear that the law, as thus laid down, in order to render a man responsible for crime, looks for a consciousness of right and wrong, and a knowledge of the consequences of the act; while the administration of justice rests on the principle that everyone knows the law and fears its punishment. Thus, the complete possession of reason is not essential to constitute the legal responsibility of an offender; and it is also to be inferred, from the results of several cases, that a man may be civilly incompetent, but sufficiently sane to be made criminally responsible. The proofs required in the two cases are essentially distinct.

It has been objected to this legal test, that it is insufficient for the purpose intended: it cannot, in a large majority of cases, enable us to distinguish the insane homicide from the sane criminal. Many insane persons have committed acts which they knew to be wrong, and of the criminality of which they were at the time perfectly conscious. They have been known to murder others, in order to receive the punishment of death at the hands of the law; and therefore they must have been conscious of the wrongfulness, or rather of the illegality, of the act which they were perpetrating, and have known that they were committing an offence punishable by the law of man. In short, the criminal nature of the act has often been the sole motive for its perpetration! (‘Ann. d’Hyg.’ 1862, vol. 1, p. 363.) It has been suggested, with some truth, that it is rather the imperfect or defective appreciation of the motives to right or against wrong action which leads to crime among the insane, and not the mere ignorance of right and wrong. Most lunatics have an abstract knowledge that right is right, and wrong wrong; but in true insanity the voluntary power to control thought and actions, and to regulate conduct by this standard, is impaired, limited, or overruled by insane motives. A lunatic may have the power of distinguishing right from wrong, but he has not the power of choosing right from wrong. A criminal is punishable not merely because he has the power of distinguishing right from wrong, but because he voluntarily does the wrong, having the power to choose the right.

Medical tests.—The tests which have been proposed by medical jurists for detecting cases of homicidal mania are as follows:

1. The acts of homicide have generally been preceded by other
HOMICIDAL MANIA.

striking peculiarities of conduct in the person,—often by
change of character.

2. Those persons who are affected with it, have in many in
previously or subsequently attempted suicide—they have or
wished to die or to be executed as criminals. These supposed
when tendered as medical proofs of insanity in Courts of law
been repeatedly and very properly rejected. They are of to
be a nature for practical use, and apply as much to cases of m
pravity as of actual insanity: in short, if these were admissible
proofs, they would serve as a convenient shelter from pun
for many sane criminals.

3. Motive for crime.—The acts are without motive; they
opposition to all human motives. A man known to have
tenderly attached to his wife and children murders them,—
mother destroys her infant. It is hereby assumed or implied
persons who are sane, never commit a crime without an a
motive, and that in the perpetration of a criminal act an
person either never has a motive, or has one of a delusive
only. If these propositions were true, it would be easy
tinguish a sane from an insane criminal; but the rule who
define in practice. In the first place, the non-discovery is here tal
proof of the non-existence of a motive; while it is undoubt
motives may exist for many atrocious criminal acts with
being able to discover them—a fact proved by the numer
corded confessions of criminals before execution, in cases in
until these confessions were made, no motive for the perpetra
the crime had appeared to the acutest minds.

4. Confession.—The subsequent conduct of the person: he
no escape, delivers himself up to justice, and acknowledges
crime laid to his charge. This is commonly characteristic of
ical mania; for by the same criminal every attempt is made to conceal all traces of the crime, and he denies it to God
or until he sees that denial can be no longer serviceable to his

5. Accomplices.—The sane murderer has generally accompa
vice or crime; the homicidal maniac has not. Upon
may be observed that some of the most atrocious murders com
modern times have been proved to be the acts of person
had neither accomplices nor any assignable inducements lea
the commission of the crimes. It is, however, a fact so
favour of the existence of homicidal insanity, that the insane
have accomplices in the acts which they perpetrate. These
or hardy be described as medical; they are circumstances
which a non-professional man may form just as safe a judgment
one who has made insanity a special study.

6. Delusion in the act.—The presence of delusion has be
characterize an act of homicidal monomania, while premeditated
precaution, and concealment have been considered to be the t
features of the act of a sane criminal. Some medical men
if they discover anything resembling a delusion in the mind
MEDICAL TESTS OF ITS EXISTENCE. 735

accused person, that he is necessarily irresponsible for the act, but
the theory of the law, as laid down by the judges in M'Naughten's
case is, that notwithstanding a person labours under a delusion, if
he commits an act which he knows to be contrary to law he is liable
to punishment: if the delusion be partial the party accused is still
responsible; and if the crime were committed for an imaginary
injury he would be held equally responsible. (See p. 733, ante.)

Much stress was formerly laid upon the delusion being connected with
the act in cases of alleged insanity; but it must be remembered that,
except by the confessions of insane persons during convalescence, it is
not easy for a sane mind to connect the most simple acts of a
lunatic with the delusion under which he is labouring. Every act of
homicide perpetrated by a really insane person is doubtless connected
with some delusion with which he is affected; but it is not to be
supposed that one who is sane can always make out this connection.

It may be further observed that premeditation, precaution, con-
cealment, and flight are met with in crimes committed by both sane
and insane criminals, although these acts are certainly strong
characteristics of sanity. It should be a question for a jury whether,
when they are proved to have existed in any criminal act, there
might not have been such a power of self-control in the person,
although in some degree insane, as to justify a conviction. It is
not the presence of a slight degree of mental aberration which
necessarily indicates a loss of power of controlling actions. Are such
persons less beyond the influence of example than one-half of the
same criminals who are punished?

7. A number of murders perpetrated at once.—In the acts of same
criminals one person, or at the most two, may be destroyed; but,
in cases of homicidal mania, it is not unusual to find a wife and
several children killed by the husband, or four or five children at
once destroyed by the wife. In these cases no motive but that
which is based on some insane delusion, can be suggested for such a
series of murders. Thus, four infants may be found murdered by
a mother, who admits the act but endeavours to account for it by
asserting that she wished to convert them into angels, or to save
them from destitution and exposure to worldly temptations. It would
be wrong, however, to infer from this statement that because a man
has heaped crime upon crime, he is therefore insane. This would
be equal to making the atrocity of the crime or crimes a test of in-
sanity. In the case of Southey (Reg. v. Southey, Maidstone Winter
Assizes, 1865), it was proved that the prisoner, a man of wicked
and depraved habits, had destroyed three of his children in London,
and had then proceeded to Ramsgate, and there deliberately
destroyed his wife and another child. He pretended to justify
these five murders, and wished to make it appear that he was insane.

In regard to his conduct through life, nothing but moral de-
pravity was proved. Still this man found medical defenders who
brought forward as proofs of 'delirium,' statements which clearly
showed that they did not understand the meaning of the term.
It was admitted that if the man had committed one of the m
he might have been sane, but having committed five in such
he was insane and incompetent to judge of the nature of hi
The fallacy of such an argument needs no exposure.

Summary.—The foregoing considerations lead to the in
that there are no certain legal or medical tests whereby ho
mania can be demonstrated to exist. Each case must be
mined by the circumstances attending it; but the true cri
irresponsible in all ambiguous cases appears to be, whet
person, at the time of the commission of the crime, had or h
sufficient power of self-control to govern his actions; or, it
words, whether he knew the act was wrong, and could avoid t
petration of it. This involves the consideration, not only w
insanity existed in the accused, but whether it had reached
degree as to destroy, not merely a consciousness of the nature
act, but volition—the will to do or not to do it. If from c
stances it can be inferred that an accused person had this;
whether his case falls within the above rules or not, he sho
made responsible and rendered liable to punishment. If, ho
he was led to the perpetration of the act by an insane impul
in other words, by an impulse which his mental condition a
allow him to control (lésion de volonté, Esquirol), he is enti
an acquittal as an irresponsible agent. The power of cont
an act appears to me to imply the existence of such a state of
as to render the party responsible; and when there is thi
control, it may be fairly concluded that there is no sane int
and that the person is irresponsible. A test somewhat simila
is constantly applied by juries, under the direction of our j
to distinguish murder from manslaughter; and it is quite t
that sanity and homicidal mania are not more nicely blende
those shades of guilt whereby manslaughter passes into m
The manner and circumstances under which a crime is com
will often allow a fair inference to be drawn as to how far a
of self-control existed or was exercised. A man in a violen
mania or delirium rushes with a drawn sword into an open
and stabs the first person whom he meets; another, worn
poverty and destitution, murders his wife and children to p
them from starving, and then probably attempts to destroy l
—these are cases in which there is a fair ground to entertain
of irresponsibility. But when we find a man not showing an
ious intellectual disturbance, lurking for many days togeth
particular locality, having about him a loaded weapon,— wi
a particular person who frequents that locality,—not facing th
vidual and shooting him, but coolly waiting until he has an
tunity of discharging the weapon unobserved by his victim or
—the circumstances appear to show such a perfect adaptat
means to ends, and such a power of controlling actions, th
difficult to understand on what principle an acquittal on the
of insanity could have been allowed. I refer here to the
ALLEGED EXISTENCE OF DELUSION.

M'Naughten, tried for the murder of Mr. Drummond, January 1843. The acquittal in this case was the more remarkable because there was no proof of general insanity, and the crime was committed for a supposed injury. According to the rules laid down by the fifteen judges, from questions submitted to them in connection with this case, this man should certainly have been convicted (ante, p. 732). These acquittals on the ground of insanity, contrary to public opinion, are often erroneously ascribed to the crotchets of medical experts. They are, I believe, more commonly due to the powerful and impassioned addresses of counsel, who in civil as well as in criminal cases simply fight for victory, wholly irrespective of any abstract ideas of truth or justice. Medical opinions are brought forward or suppressed in order to complete a sensational picture, which is intended to show to an ignorant jury, either that a lunatic is perfectly sane, or that a sane man who has committed a deliberate act of murder, is beyond any reasonable doubt insane. Every artifice of argument which may raise a doubt in the minds of the jury is resorted to on these occasions, and the last words of the last eloquent speaker have a far greater influence on the verdict than the opinions of 'mad doctors' in the witness-box. These admit of being misrepresented and turned into ridicule without any power of reply on the part of those who gave them.

In cases of alleged homicidal mania very vague meanings have been sometimes assigned to the term delusion. In Reg. v. Burton (Maidstone Lent Assizes, 1863), the prisoner, a youth of 18, was indicted for the murder of a boy at Chatham. There was no motive, but it was argued by his counsel in defence, that he laboured at the time under a delusion—the delusion being a desire to be hanged. Mr. Joy, the surgeon of the prison, stated that he had had frequent opportunities of examining the prisoner while in gaol, and in his opinion he was perfectly sane; so far as witness could judge, he was under no delusion. The jury returned a verdict of 'guilty.' If the youth had believed that he had been already hanged for murder, this might have been considered a delusion; but a desire to be hanged or to die from any violent cause cannot be so regarded. The remarks of the learned judge (the late Mr. Justice Wightman) upon this kind of defence contains all that is necessary to show its fallacy. In passing sentence upon the prisoner he said: 'It is stated that you laboured under a morbid desire to die by the hands of justice, and that for this purpose you committed the murder. This morbid desire to part with your own life can hardly be called a delusion; and, indeed, the consciousness on your part that you could effect your purpose by designedly depriving another of life, for which you knew you would have to suffer the punishment due to the greatest of crimes, shows that you were perfectly able to understand the nature and consequences of the act which you were committing, and that you knew it was a crime for which by law the penalty was capital. This was, in truth, a further, and I may
say a deeper, aggravation of the crime: for you designedly int

to compass your own death by the murder of another.

It has been a disputed question whether a medical witnes
trial in which a defence of insanity is raised, can be ask
opinion from the evidence, respecting the state of a prisoner's
at the time of the commission of the alleged crime, i.e., wi
the accused was conscious at the time of doing the act that h
doing something contrary to law, or whether he was then lab
under any and what delusion. It has been decided, by for
judges out of fifteen, that facts tending to lead to a s
suspicion of insanity must be proved and admitted, befor
opinion of a medical witness can be received on these points.
'Med. Gaz.' vol. 46, p. 240.)

In forming a judgment of the mental condition of an ac
person, it is no part of the province of a witness to modi
opinion according to the punishment which may follow if the p
jected; he should simply base it on the medical facts of the
The legislature only is responsible for the punishment adi
to crimes. Dr. Mayo has justly observed that a medical w
is summoned to a Court of Justice in order to enable the
and jury to arrive at certain practical conclusions. The qu
proposed to him involves a simple fact, and not its conseque
and if the latter consideration be entertained by him, it w
liable to bias his evidence on the fact, which is his legit
opic. The definition of insanity becomes very expansive
its expansion may become protective to a criminal with who
may happen to sympathize. The question whether the ac
is a responsible agent is of a judicial nature: our evidence a
be confined to the question whether the accused is insane in s
tain sense or meaning in which it is understood and define
law. ('Medical Testimony and Evidence in Cases of Lun
1854, p. 9.) A medical witness in these cases generally mou
evidence to a foregone conclusion on the criminal responsi
of the accused, and he thus lays himself open to a remak
the judge that he must not encroach on the functions of the
It is certainly a great evil that, under the present mode of t
this question before a jury, the law operates unequally.
case becomes a subject of prominent public interest, and
exertion is made to construe the most trivial eccentriciti
character into proofs of insanity, and to magnify the effe
an hereditary tendency by proving that a maternal grandmo
sister or some remote relative had been confined as a lunat
an acquittal follows. Another case may excite no interest,-
left to itself: the accused is convicted, and either execut
otherwise punished, although the evidence of insanity, h
been as carefully sought for and brought out, would have
perhaps stronger in this than in the former instance.

The doctrine of 'irresistible impulse' and the theory of imp
insanity, have been strained in recent times to such a degree
create in the public mind a justifiable distrust of medical evidence on these occasions. It is obviously easy to convert this into a plea for the extenuation of all kinds of crimes for which motives are not at once apparent, and thus medical witnesses often expose themselves to severe rebuke. They are certainly not justified in setting up such a defence, unless they are prepared to draw a clear and common-sense distinction between impulses which are 'unresisted' and those which are irresistible. As a learned judge once remarked in his address to a jury: 'What is the meaning of not being able to resist an impulse? Every crime is committed under an impulse, and the object of the law is to compel persons to control or resist these impulses. If it is made an excuse for a person who has committed a crime, that he was goaded to it by some impulse which medical men might choose to say he could not control, such a doctrine would be fraught with very great danger to society.'

While the truth of these remarks is obvious, it must be admitted that the ordinary legal test for responsibility is not satisfactory. In addressing the jury in Reg. v. Cockroft, involving a trial for murder (Leeds Autumn Assizes, 1866), Mr. Justice Mellor made the following observations on the defence of insanity which had been set up: 'It would be dangerous if the idea went abroad that persons committing crime under sudden impulse were therefore to be excused. At the same time, he thought that the definition of insanity which would excuse from criminal responsibility, as given in M'Naughten's case, hardly went far enough. He was of opinion that a man might know that he was doing an act which was wrong, and still he might be labouring under such disease of the mind as not to be able to restrain his impulse to do that act, and he should therefore not be amenable to the criminal law. The mere fact, however, of the prisoner being ignorant and of a low type of mind would be no excuse. If the jury thought that the prisoner knew at the time when he committed the act that he was doing wrong, and was not labouring under such a disease of the mind as incapacitated him from controlling his impulses, he was not entitled to acquittal on the ground of insanity. The doctrine of uncontrollable impulse, as laid down by some writers, was a very dangerous one, and required to be watched with the utmost care. Passion arising from provocation, however trivial, offered to a mind however ill regulated, did not relieve the person from criminal responsibility.'

Hence it follows that a man might know that he was doing wrong and committing an act against the law of God and man, yet if with this consciousness of the illegality of the act, there was a diseased condition of mind which prevented him from controlling his actions, he will be entitled to an acquittal on the ground of insanity. With this admission it appears to me unnecessary to occupy space with metaphysical discussions regarding criminal responsibility: for however objectionable the theory,—if the practice of the law be in any one case in conformity with that which has been advised by
CHAPTER III.

In an examination of the symptoms of mania generally, we may assume any of the other forms of insanity; and, in one half the cases, it may be traced to hereditary tendency. There is a child's disposition for harmless mischief. The woman is gay and joyous, laughing, singing, loquacious, inclined to talk obscenely, and can lose of everything around. She imagines that her food is poisoned; she may conceal the suspicion, and merely avoid taking what is offered to her. She can recognize persons and things; and can, though perhaps, she will not, answer direct questions. Occasionally there are great depression of spirits with melancholia. These facts are of some importance in reference to cases of alleged child-murder. This state may last a few hours, or for some days or weeks. The murder of...
the child is generally either the result of a sudden fit of delirium or a sudden impulse, with the full knowledge of the wickedness and illegality of the act; so that the legal test of responsibility, i.e., a knowledge of right and wrong cannot be applied to such cases, except on the assumption that insanity already exists and affects the consciousness of the individual. A woman has been known to request her attendants to remove the child, but she has afterwards taken an opportunity to destroy it. Such cases are commonly distinguished from deliberate child-murder by there being no motive, no attempt at concealment, nor any denial of the crime on detection. There is in general a full consciousness of the illegality of the act, but apparently an entire want of power to control the murderous feeling.

Women in the pregnant state have been known to perpetrate murder apparently from some sudden perversion of their moral feelings: there has been probably latent intellectual disturbance, but not sufficient to attract the notice of friends. There is a great sympathy between the uterine organs and the brain, which may account for the occurrence of such cases; but I am not aware that irresponsibility on the ground of insanity, unless there were independent proofs of this condition, has been admitted in this country. It would be most unsafe to act on such a principle. On the occurrence of pregnancy, monomania, lypemania, or melancholia, and other disordered and capricious states of mind may show themselves in women, predisposed to attacks of this kind; but it cannot be admitted that the pregnant state produces *per se* a disposition to rob, steal, or murder. There can be no doubt that a pregnant woman possesses a free will just as in the ordinary condition, and that she is as fully conscious of her actions. M. Stolz affirms that since this doctrine of responsibility in reference to pregnant women has been made known by medical men, there has been a cessation of criminal acts on the part of these women. ("Ann. d'Hyg." 1873, 2, p. 149.)

Pyromania.—Propensity to incendiariam.—This is described as a variety of monomania in which there is a morbid disposition of mind leading to impulsive acts of incendiariam without any motive. It is a condition not specially recognized by English jurists or in English Courts of justice.

Kleptomania.—Propensity for thieving.—This term has been applied by Marc to that form of monomania which is said to manifest itself by a propensity to acts of theft. It is alleged by him and others that this propensity has often shown itself in women labouring under disordered menstruation, or among those who were far advanced in pregnancy—the motive being the mere wish of possession. Pregnancy, according to him, should be a good exculpatory plea when a well-educated woman, of strictly moral conduct, steals some unimportant article of no value compared with her worldly means and position in society. There are several instances on record showing that well-educated persons moving in a respectable
sphere of society have been guilty of petty acts of theft. The articles taken have been valueless compared with their means. Instances of this kind have been brought before our Police-courts, and this motiveless impulse to theft has been occasionally pleaded; but in most of them the following facts have been clearly established by evidence:—1. A perfect consciousness of the act and of its illegality. 2. The article, though of trifling value, has still been of some use to the person,—thus women have stolen articles either adapted to female use or on which money could be raised. 3. There have been art and precaution in endeavouring to conceal the theft; and 4, either a denial of the act when detected, or some evasive excuse. When circumstances of this kind are proved, either the persons charged with stealing should be made responsible, or theft should be openly tolerated. The evidence of a disordered state of mind should not be allowed to depend on the nature of the act, or every morally depraved person might bring forward a plea of insanity for any crime or offence. When the facts proved, really justify a plea of insanity in a case of stealing, the rule appears to be (per Tindal, C. J.), there should be proof that the prisoner was incompetent to know that the particular act in question was a wrong one. (Reg. v. Vaughan, Monmouth Sum. Ass., 1844.)

Dipsomania. Drunkenness.—Civil responsibility of drunkards.—This state, which is called in law frenzy or *dementia affectata,* is regarded as a temporary form of insanity. Jurists and legislators have differed widely respecting the degree in which drunkards should be made responsible for their acts. When the mind of a man is completely weakened by habitual drunkenness, the law infers irresponsibility, unless it plainly appears that the person was at the time of the act, whether of a civil or of a criminal nature, endowed with full consciousness and reason to know its good or evil tendency. Any deed or agreement made by a party when drunk is not invalidated by our law, except in a case in which the intoxication has proceeded so far as to deprive him of all consciousness of what he is doing; and a Court of Equity will not interfere in any other cases, unless the drunkenness was the result of collusion by others for the purposes of fraud. When the drunkenness has occasioned a temporary loss of the reasoning powers, the person is incapable of giving valid consent, and therefore cannot enter into a contract or agreement; for this implies *aggregatio mentium,* i.e., a mutual assent of the parties. Partial drunkenness therefore, provided the person knew what he was about, does not vitiate a contract or agreement into which he may have entered. Thus the law appears to define two states in drunkenness:—one in which it has proceeded to but a slight extent, and it is considered that there is still a power of rational consent; another in which it has proceeded so far that the person has no consciousness of the transaction, and therefore can give no rational consent. The proof of the existence of this last state would render all the civil acts of a person void. A confession made by a man while in a state of drunkenness is legally
imissible as evidence against him and others, provided it be cor-
borated by circumstances. In a case tried a few years since, the
prisoner confessed, while drunk, that he had committed a robbery
and murder which had taken place some time before, but of which
had not been suspected. He mentioned a spot where the pro-
erty of the murdered person had been concealed by him, and the
hole of the circumstances of the murder. The property was
und as he had described it, and the case was clearly brought
to me to him, chiefly by collateral evidence from his own confes-
on. He was convicted. In a case tried at the Central Criminal
Court in October 1849, a man pleaded his drunkenness at the time
his first marriage as a defence to a charge of bigamy. There was
me evidence to show that he was partly intoxicated when the cer-
mony was performed; it was proved, however, that he was suffi-
ciently conscious of the whole of the proceedings, and he was con-

Criminal responsibility of drunkards.—When homicide is com-
bmitted by a man in a state of drunkenness, this is held to be no
cause for the crime. If voluntarily induced, whatever may be its
cause, it is not admitted as a ground of irresponsibility, even
though the party might not have contemplated the crime when
er. (Reg. v. Reeves, Derby Winter Assizes, 1844.) Thus it
pears that when the state of drunkenness is such that any civil
t would be void, a person may still be held legally responsible
a crime like murder. Some judges have admitted a plea of
culpation when the crime has been committed in a state of frenzy
ising from habitual drunkenness; but even this is not general.
e question whether the person was or was not drunk at the time
committing the crime may be, however, occasionally of some
portance. It was held by Patteson, J., that although drunken-
ness is no excuse for any crime whatever, yet it is of very great
portance in cases in which there is a question of intention. A
person may be so drunk as to be utterly unable to form any inten-
on at all, and yet he may be guilty of very great violence. (Reg.
Cruse, 8 C. & P. p. 546.) If the drunkenness has produced a
seized state of the mind, then a criminal act perpetrated by the
person, might admit of exculpation either on the ground of insanity
of the want of sane consciousness at the time of the act: but the
difficulty is to prove in such cases the existence of actual disease
a sufficient degree to render the person irresponsible in a legal
use. When it is a question whether the accused was actuated by
lice or not, a jury may under certain circumstances be required
take the fact of drunkenness into their consideration, and this
y have some influence upon their verdict. While, then, drunken-
ess does not furnish any excuse for a crime, it may become
steral with reference to the intent with which a crime has been
perpetrated. (‘Law Times,’ Sept. 27, 1845, p. 542.) It is obvious
at if drunkenness were to be readily admitted as a defence,
ree-fourths of the crimes committed in this country would go
punished!
In cases in which the head has sustained any physical injury among soldiers and sailors, drunkenness, even when existing to slight extent, produces sometimes a fit of temporary insanity, leaving the mind clear when the drunken fit is over. It makes no distinction between this state and ordinary drunkenness, although juries occasionally show by their verdicts that this difference ought to be made. (See cases in Allison, p. 653.)

Hallucinations and illusions are a common effect of drunkenness and may lead to the commission of criminal acts. More recently two friends being intoxicated, one killed the under an illusion that he was an evil spirit. The accused was held to have been voluntary; and he was removed to ten years' imprisonment with hard labour. A case of this description (Reg. v. Patteson) was tried at the Norfolk Assizes, 1840. A man while intoxicated killed his friend, who was also intoxicated, under the illusion that he was some other person who had come to attack him. It is reported that the guilty prisoner was made to rest upon the fact, whether, had he sober, he would have perpetrated the act under a similar illusion. As he had voluntarily brought himself into a state of intoxication, this was no justification: he was found guilty of manslaughter and sentenced to two months' imprisonment.

The proof of drunkenness may fail, but still if the prisoner charged with the death, acted under an illusion, he will be acquitted. In Reg. v. Price (Maidstone Summer Assizes, 1846), it was proved that the prisoner, who had been on friendly terms with the deceased at a public-house. According to the prisoner's statement, a man sprang upon him from the hedge by the roadside, demanded his money and his watch, that he should have the life. The prisoner closed with him and beat him severely, inflicting such injuries that he died shortly afterwards. The supposed robber turned out to be his friend, and it was believed that it was an attempt to rob the prisoner jokingly: the result, however, was that the attempt had ended in this fatal manner. The prisoner throughout told the same story, and there did not appear to be slightest ground for suggesting that it was untrue. Colman after hearing the evidence of the witnesses, said it appeared quite clear that the prisoner had acted under an impression that he was protecting his own life from the attack of a robber, and such circumstances he could not be held to be criminally responsible. The jury accordingly returned a verdict of not guilty, and the prisoner was discharged.

An excessive indulgence in habits of drinking does not sarily derange the mind, but it practically renders a person for the control of himself and the management of his property. It is therefore a question whether it would not be for the ben such persons and of those dependent on them, if the law inter
and placed them under the same restraint as those whose minds had been actually rendered unsound by this pernicious habit.

Delirium Tremens—This is a disordered state of mind which proceeds from an abuse of intoxicating liquors. Habitual drunkenness appears to be the predisposing, while abstinence from drink is the immediately exciting, cause. Thus, the disorder frequently does not show itself until the accustomed stimulus has been withdrawn for a certain period. It commences with tremors of the hands, by which it is known from ordinary delirium and restlessness; and the individual is subject to hallucinations and illusions, sometimes of a horrible kind, referring to past occupations or events. The patients are often violent, and prone to commit suicide or murder—more commonly the former; hence they require close watching. Persons proved to be labouring under this disorder, are incompetent to the performance of any civil act; and they are not responsible for criminal acts, committed while they are suffering from an attack. Acquittals have even taken place on charges of murder, when there was deliberation as well as an apparent motive for the act. Thus then, although this disorder may have been voluntarily brought on by habitual drunkenness, the law admits it as a sufficient plea for irresponsibility, while in a case of confirmed drunkenness it rejects the plea. In delirium there is a formed disease of the brain, while voluntary drunkenness merely produces a temporary disturbance of its functions. In one trial the evidence showed that homicide had been committed by the accused while he was labouring under an attack of delirium tremens. (Reg. v. Simpson, Appleby Summer Assizes, 1845.) The prisoner's mind had become unsettled from this disorder, brought on by habitual drunkenness. In another case the plea was also admitted by the jury, although it was scarcely supported by the medical evidence. (Reg. v. Watson, York Winter Assizes, 1846.) In a case tried at Liverpool Assizes (Reg. v. Burnus, Aug. 1865), a man labouring under delirium tremens was charged with the murder of his wife. After the act, he appeared calm, and said that he knew perfectly well what he had done; 'his wife was in league with men who were hidden in the walls.' Baron Bramwell in charging the jury said, 'there were two kinds of insanity by reason of which a prisoner was entitled to be acquitted; and said that probably the jury would not be of opinion that the prisoner knew not the quality of his act—that it would kill, and was wrong; but it was still open to them to acquit him if they were of opinion that he was suffering from a delusion leading him to suppose that which, if true, would have justified him in the act. One more remark he would make—viz., that drunkenness was no excuse, and that a prisoner cannot by drinking qualify himself for the perpetration of crime; but if through drink his mind had become substantially impaired, a ground of acquittal would then fairly arise.' The prisoner was then acquitted.

An attack of delirium tremens may be brought on by the sudden
withdrawal of alcoholic stimulants from a person long accustomed to take them in excess. The sudden abstinence from other means such as opium and hydrate of chloral, may induce a state of somnambulism. A person might thus be rendered temporarily unconscious of his actions, and therefore legally irresponsible for an act of violence committed while he was in this state. A case had occurred in Canada in which this question arose in reference to the hydrate of chloral. There is reason to believe that this drug operates on the brain and nervous system in the same manner as alcohol and opium.

Somnambulism.—This term applies to sleep-walking, and the medico-legal facts are chiefly confined to acts of violence that are committed unconsciously during the state of sleep, in which it is assumed that malice and intention, the chief ingredients of an act of murder, are wanting. It has been a contested question among jurists, how far a person should be held responsible for an act perpetuated in that half-conscious state which exists when one is usually aroused from sleep. There is no doubt that the individual at this time is subject to hallucinations and illusions, which may be more active and persistent in some persons than in others. It is difficult to suppose, unless we imagine there is a sudden and irresistible impulse, that a person should not recover from the state before he could perpetrate an act like murder. A remarkable case of this description, that of Bernard Schenck, will be reported by Marc. op. cit. vol. 1, p. 56. In this case, a man suddenly awoke at midnight, and saw, as he believed, a frightful phantasm of a phanto twice called out, 'Who is that?' and receiving no answer in return, imagining that the phantom was advancing upon him, he took a hatchet which was beside him, attacked the supposed specter, and was found that he had murdered his wife. He was charged with murder, but pronounced 'not guilty' on the ground that he was not at the time conscious of his actions. A trial involving the question occurred in England. A pedlar in the habit of being on the high road, was roused by a man accidentally passing by and shook him by the shoulders. The pedlar awoke, drew his sword and stabbed the man, who was almost instantly killed. The pedlar was tried for manslaughter. His irresponsibility was strongly urged by his counsel, on the ground that he had been conscious of an act thus perpetrated while in a waking state: and this defence was supported by the opinion of medical witnesses. The prisoner was, however, found guilty. Under such circumstances, it was not unlikely that an idea had a hold on the prisoner's mind that he had been attacked by robbers, and therefore had stabbed the man in self-defence. (Ree v. A Lincoln Autumn Assizes, 1836.) In Reg. v. Byron (Winter Assizes, 1863), it was proved that a blow struck by a drunken person during sleep had caused death. The accused was charged with manslaughter, under the following circumstances:
The prisoner and deceased were soldiers in the same regiment, at Aldershot. The prisoner was in the street drunk, and deceased seeing this took him in, to prevent his being arrested for drunkenness, and placed him on his bed. In this state he lay for some time quite drunk and insensible. In the course of the afternoon deceased went upstairs to see him; he tried to awaken him, when the prisoner suddenly kicked out, and his boot came violently against the lower part of the abdomen of deceased. The prisoner did not awake, but appeared then to be quite insensible. The deceased died, and it was found that the blow had caused rupture of the intestines. As in order to constitute the crime of manslaughter, it must be shown that the person charged did something knowingly, and the prisoner was not in a state to have known anything, it was held that there was no case against him, and he was acquitted. The act was committed during sleep, but the sleep appears to have been the result of voluntary drunkenness.

Somnambulism may become a subject of discussion under a contested policy of life-insurance, in which it may be provided that it shall be vitiated by suicide. If a man falls from a height and is killed while in a state of somnambulism, would this be considered an act of suicide within the meaning of the policy? The proviso against suicide has been held to include only intentional killing (case of Borradaile v. Hunter, 'Med. Gaz.' vol. 36, p. 826), and in death under these circumstances the killing cannot be said to be intentional: it can be regarded only as an accident—therefore it is reasonable to infer that the policy would not be void. It is impossible, however, to lay down any general rules relative to cases of this description; since the circumstances attending each case will sufficiently explain how far the act of murder or suicide has been committed during a state of somnambulism, or under an illusion continuing from a state of sleep.

The Deaf and Dumb.

It was formerly laid down in the old law-books, that a person born deaf and dumb was by presumption of law an idiot, but in modern practice, want of speech and hearing does not imply want of capacity either in the understanding or memory, but only a difficulty in the means of communicating knowledge: and when it can be shown that such a person has understanding, which many in this condition reveal by signs, he may be tried, and suffer judgment and execution. (Archbold.) A deaf-and-dumb person is not incompetent to give evidence, unless he is also blind; he may be examined through the medium of a sworn interpreter who understands his signs. This condition does not justify restraint or interdiction, unless there is at the same time mental deficiency. A deaf-and-dumb person who has never been instructed, is altogether irresponsible for any action civil or criminal. Such a person cannot even be called on to plead to a charge, when there is reason to suppose that he cannot understand the nature of the proceedings.
A deaf-and-dumb woman was charged with cutting off the head of her child. By signs she pleaded 'not guilty,' but she could not be made to understand the nature of the other proceedings against her. Upon this she was discharged, and subsequently confined as a criminal lunatic. In *Reg. v. Goodman* (Stafford Summer Assizes, 1841), a deaf-and-dumb man was convicted of theft and sentenced to imprisonment. He was made to comprehend the proceedings by signs and talking with the fingers. In *Reg. v. Brook* (Buckingham Summer Assizes, 1842), the prisoner could read and write well. He was charged with feloniously cutting and stabbing, proceedings were reported to him in writing. He was convicted and the judge (Alderson B.), having sentenced him to a year's imprisonment, handed down his judgment in writing, which recommended him to read and ponder over in prison! In *Reg. v. Jackson* (Bedford Summer Assizes, 1844), Alderson B. held that before the evidence of a dumb witness can be received, the Court must be satisfied that he understands the obligation of an oath.

It has been decided in the Ecclesiastical Courts that the contract of a deaf-and-dumb person given by signs renders a matrimonial contract valid, provided the person has a full and proper understanding of their meaning. An incompetency to enter into contracts or unsoundness of mind, must not be inferred to exist in consequence of a person being deaf and dumb. In the case *Harrod v. Harrod* (Vice-Chancellor's Court, June 1854), an attempt was made to deprive the plaintiff of his rights on the ground that he was an illegitimate child. The marriage of his parents took place thirty years previously, but the marriage was said to be invalid by reason of the alleged incapacity of his mother to enter into contract; the mother was deaf and dumb, and of more than ordinarily dull intellect. Sir W. P. Wood said there was an important difference between 'unsoundness of mind' and 'dullness of intellect.' The presumption in such cases was always in favour of sanity, and the fact of a person being deaf and dumb, did not exclude a presumption the other way. Experience in asylums showed that deaf and dumb were not necessarily of unsound mind.

A woman had assented to the marriage in form and substance, with a perfect knowledge of what she was doing. In the ceremony of marriage it had never been held that the repetition of the vows was necessary. The woman conducted herself with great propriety before and after the marriage, and a child was born in due course. There was no ground for an issue.

Feigned deafness and dumbness.—From these statements it will be perceived that medical evidence is of but little importance in relation to the deaf and dumb. Indeed there are only two cases in which this kind of evidence is likely to be called for—1st, when there is accompanying mental deficiency, in which case the general rules elsewhere given, are applicable; and 2ndly, when there is suspicion that the deafness and dumbness are feigned.

It will be no great difficulty in detecting an imposition of
kind. It may be found that the alleged deafness and dumbness did not come on until a motive existed, and that there was no apparent cause but the very suspicious one of evading responsibility for some offence committed. The use of ether or chloroform-vapour may be occasionally resorted to with advantage for the detection of such an imposition. In one instance a strong shock of the induced current from a large magneto-electrical apparatus, by means of moistened conductors applied over the larynx, brought out after a few minutes the power of speech in a lad who had successfully imposed on many persons. ('Med. Times and Gaz.' March 30, 1861, p. 339.) It requires great skill to maintain an imposture of this kind. Such persons are immediately thrown off their guard by addressing them in a voice a little above or a little below the common conversational tone; a change in the eye or the features will at once indicate that they hear and understand what is said. An ignorant impostor may be dealt with on the principle of 'ars est celare artem,' by seriously proposing in a low voice to a medical friend who may be present, the necessity for the performance of some formidable surgical operation. The production of amputating instruments has been known to have a wonderful effect!

In Reg. v. Yaquierdo (Herts Summer Assizes, 1854) the prisoner, who was charged with wilful murder, was found by the jury to be wilfully mute. The man refused to plead, although it was obvious that he was well aware of the nature of the proceedings. No counsel could be assigned to him, as this could not be done without the prisoner's consent. He was convicted and sentenced. If the impostor can write, he may perhaps be detected by the ingenious plan adopted by the Abbé Sicard. When the deaf and dumb are taught to write, they are taught by the eye. The letters are only known to them by their form, and their value in any word can be understood only by their exact relative position with respect to each other. A half-educated impostor will spell his words or divide them incorrectly: and the errors in spelling will always have reference to sound—thereby indicating that his knowledge has been acquired through the ear, and not alone through the eye. A man who had defied all other means of detection wrote down several sentences, in which the misspelling was obviously due to errors produced by the sound of the words, thereby showing that he must have heard them pronounced. The Abbé concluded that the man was an impostor without seeing him, and he subsequently confessed the imposition.
INDEX.

ABD

Abdomen, wounds of the . . 317
— sudden death from blows on the . . 318
ABORTION . . 489
— causes of . . 489
— by mechanical means . . 490
— by instruments . . 491
— from drugs . . 493
— from injections . . 502
— signs of in the living and dead . . 503
— feigned . . 504
— law relative to . . 505
— proofs required . . 507
— medical responsibility in cases of . . 509
Abortives, specific . . 498
Absolom v. Statham . . 273
Absorption, poisoning by . . 103, 120
Abstinence, effects of . . 468
Accidental wounds . . 223
Acceleration of death in wounds . . 266
Acetate of baryta . . 95
— of lead . . 127
— of copper . . 131
— of morphia . . 152
Acetic acid . . 91
Acid, sulphuric . . 75
— nitric . . 80
— hydrochloric . . 84
— oxalic . . 85
— tartaric and acetic . . 91
— arsenious . . 101
— arsenic . . 117

ALK

Acid, carabolic . . 146
— meconic . . 156
— prussic . . 156
— carbone . . 419
— sulphurous . . 430
— hydro-sulphuric . . 437
Acid poisons . . 75
Aconitina . . 189
Aconite, poisoning with . . 185
— root mistaken for horsetail . . 187
— analysis of . . 188
— leaves and seeds of . . 188
Aconitum Napellus . . 185
Ethusa cynapium . . 184
Affiliation, evidence in cases of . . 616
Age, medical questions concerning . . 591
— for civil and criminal responsibility . . 592
— for procreative power . . 629, 640
— impotency depending on . . 629
— of the new-born child, rules for determining . . 518
Air, in veins, a cause of death . . 315
— confined, suffocation from . . 432
— of drains and sewers, composition of . . 442
Alcohol, poisoning with . . 164
— analysis . . 165
Algaroth, powder of . . 136
Alienation, mental (see Insanity) . . 679
Alkaline poisons . . 91
Alkalis, poisoning with . . 91
INDEX.

Allotropism or amorphous phosphorus, action of

Allen v. Chester Railway Co. 298

Almond-flavour 162

Almonds, bitter, essential oil of 161

Aloe, noxious effects of 140

Amanita citrina, death from 172

Ambidextrous persons, wounds by 223

Amenorrhoea 403

— a cause of insanity 638

Amentia 686

Ammonia, poisoning with 92

— carbonate of 93

— vapour of, fatal effects of 92

Ammoniated mercury 125

Ammonio-chloride of mercury 125

Ammonium sulphocyanido from conversion of prussic acid 159

Amni, liquor, stains of 510

Amorphous phosphorus 100

Analysis, articles preserved for 10

— fallacies connected with 11

— chemical reports of 14

Anderson, case of 672

Ankers, Reg. v. 208

Androgyni and androgenae 623

Animal irritants 116

Auimurta cucullus 171

Antimony, tartarized, poisoning by 134

— chronic poisoning by 135

— detection of in the tissues 137

— chloride of 138

Apnae, death from 41, 347

Apoplexy 68

— meningeval 303

Aqua fortis 80

Areola of the breasts, in pregnancy 463

Armand, M., case of 217, 400

Arrowroot, detection of 545

Arsenates, alkaline, poisoning with 117

Arsenic, white 101

— eating 53

— symptoms caused by 101

— chronic poisoning with 102

— post-mortem appearances 103

— death from external application of 192

Arsenic, analysis as a soil 100

— fatal dose of 298

— in solution 162

— Marsh's process for 161

— Reinsch's process for 140

— detection of in organic 403

— not a constituent of body 638

— sulphides of 866

— acid 92

— chloride of 93

Arsenious acid (see Arsenous, alkaline, poison by 672

Arsenic of copper 125

— symptoms caused by 14

— in paper-hangings 208

Arsenuretted hydrogen, effects of 159

— tests for 672

Arteries, wounds of 866

Arterial and venous blood 208

Artificial inflation of the 41

Asphyxia, death from 347

— syncope 41

— various forms of 116

— from mechanical cause 347

— from gases 116

Assizes, trial at the 116

Atetasis of the lungs 116

— a cause of still-birth 134

Atropa belladonna 135

Atropia 137

— poisoning with 138

Auscultation in pregnancy 138

Bacon, poisonous 137

Bauchigge, case of 138

Ballottement in pregnancy 138

Balls, apertures produced 172

— deflection of 134

Barber's poisoned wheat 135

Barnett v. Roberts 137

Barium, chloride of 138

Baryta, poisoning by 138

— acute of 172

— carbonate of 137

Bastardy, adulterine 138

Battle's vermin killer 138

Beechess (Hellebore) 138
<table>
<thead>
<tr>
<th>INDEX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEL</td>
</tr>
<tr>
<td>BELLADONNA</td>
</tr>
<tr>
<td>— symptoms and effects</td>
</tr>
<tr>
<td>— appearances</td>
</tr>
<tr>
<td>— analysis</td>
</tr>
<tr>
<td>BERRI, DUC DE, CASE OF</td>
</tr>
<tr>
<td>BESTIALITY</td>
</tr>
<tr>
<td>BETTE v. CLIFFORD</td>
</tr>
<tr>
<td>BICHlorIDE of mercury</td>
</tr>
<tr>
<td>Binoxalate of potash</td>
</tr>
<tr>
<td>Birth, concealment of</td>
</tr>
<tr>
<td>— proofs of, in criminal law</td>
</tr>
<tr>
<td>— date of</td>
</tr>
<tr>
<td>— partial and entire</td>
</tr>
<tr>
<td>— proof of, in civil law</td>
</tr>
<tr>
<td>Births, monstrous</td>
</tr>
<tr>
<td>— plural</td>
</tr>
<tr>
<td>— premature</td>
</tr>
<tr>
<td>— protracted</td>
</tr>
<tr>
<td>— posthumous</td>
</tr>
<tr>
<td>Bitter almonds, essential oil of</td>
</tr>
<tr>
<td>Black hellebore</td>
</tr>
<tr>
<td>Bladder, ruptures of the</td>
</tr>
<tr>
<td>BLAGG, REG. V.</td>
</tr>
<tr>
<td>Bleeding, cæntrices from</td>
</tr>
<tr>
<td>Blistering fly, poisoning by</td>
</tr>
<tr>
<td>Blistering, marks produced by</td>
</tr>
<tr>
<td>— from burns</td>
</tr>
<tr>
<td>Blood, on weapons</td>
</tr>
<tr>
<td>— on clothing and furniture</td>
</tr>
<tr>
<td>— marks of, in death from wounds</td>
</tr>
<tr>
<td>— tests for</td>
</tr>
<tr>
<td>— arterial and venous</td>
</tr>
<tr>
<td>— corpuscles of</td>
</tr>
<tr>
<td>— on linen</td>
</tr>
<tr>
<td>— human and animal</td>
</tr>
<tr>
<td>— optical examination of</td>
</tr>
<tr>
<td>— loss of, a cause of death</td>
</tr>
<tr>
<td>— extravasation of, on the brain</td>
</tr>
<tr>
<td>— in cases of abortion</td>
</tr>
<tr>
<td>— in stomachs of new-born children</td>
</tr>
<tr>
<td>— effusions of, in new-born children</td>
</tr>
<tr>
<td>— menstrual</td>
</tr>
<tr>
<td>— crystals</td>
</tr>
<tr>
<td>— stains, examination of</td>
</tr>
<tr>
<td>— on linen</td>
</tr>
</tbody>
</table>

<p>| BUR |
| Blood-stains, date of | 235 |
| — distinguished from rust and fruit stains | 237 |
| — detection of, on weapons | 238 |
| — microscopic examination of | 241 |
| — spectral examination of | 247 |
| — in cases of abortion | 510 |
| — of rape | 675 |
| Blows or falls, injuries produced by | 210, 300 |
| Blue vitriol | 131 |
| — rocket | 185 |
| Bodies, exhumation of | 9 |
| Body, cooling of the, in death | 43 |
| — putrefaction of the | 45 |
| — destruction of the, by fire | 343 |
| — specific gravity of the | 359 |
| — inspection of the, in cases of poisoning | 7 |
| — position of the, in death from wounds | 227, 230 |
| — position of the, in death from hanging | 381 |
| Bones, fractures of the | 325 |
| Books, quotations from | 29 |
| BORRADAILE v. HUNTER | 747 |
| Born alive, signification of, in criminal and civil law | 540 |
| Boughton, Sir T., case of | 61 |
| Bouyer, Reg. v. | 181 |
| Boyle, case of | 675 |
| Brain, wounds of the | 307 |
| — membranes of the | 305 |
| Brandy, poisoning with | 165 |
| Breasts, changes in pregnancy | 462 |
| Brick-kils, vapour of | 431 |
| BRIEY, CASE OF | 638 |
| BROCK v. KELLY | 586 |
| BROMWICH v. WATERS | 596, 601 |
| BROOK, REG. V. | 748 |
| BROOM-TOPS as an abortive | 494 |
| Bruca, effects of | 180 |
| — tests for | 180 |
| Bullets, examination of | 338 |
| Buoyancy of the body, living and dead | 359 |
| BURKE, CASE OF | 409 |
| Burking, death by | 414 |</p>
<table>
<thead>
<tr>
<th>BUR</th>
<th>CHL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnett's fluid, poisoning with</td>
<td>Carotid arteries, wound</td>
</tr>
<tr>
<td>Burning, homicidal</td>
<td>the</td>
</tr>
<tr>
<td>Burns, Reg. v.</td>
<td>Case, case of</td>
</tr>
<tr>
<td>Burns and scalds</td>
<td>Catamenia (see Ment</td>
</tr>
<tr>
<td>— cicatrizes from</td>
<td>tion).</td>
</tr>
<tr>
<td>— cause of death in</td>
<td>Causes of death</td>
</tr>
<tr>
<td>— on the living and dead body</td>
<td>Caustic alkalies, poison</td>
</tr>
<tr>
<td>— the result of accident, ho</td>
<td></td>
</tr>
<tr>
<td>— by corrosive liquids</td>
<td>with</td>
</tr>
<tr>
<td>— from lightning</td>
<td>Cement-kilns, vapours of</td>
</tr>
<tr>
<td>Burton, Reg. v.</td>
<td>Cephalhematomata in infant</td>
</tr>
<tr>
<td>Butler’s vermin-killer</td>
<td>Cerebral or narcotic poi</td>
</tr>
<tr>
<td>Butter of autony</td>
<td>Cerebro-spinal poisons</td>
</tr>
<tr>
<td>Byron, Reg. v.</td>
<td>Certificates of insanity,</td>
</tr>
<tr>
<td>Cadaveric rigidity</td>
<td>regarding</td>
</tr>
<tr>
<td>Casswegian extraction</td>
<td>Ceruse, poisoning with</td>
</tr>
<tr>
<td>Calder, Reg. v.</td>
<td>Casapools, effluvia of</td>
</tr>
<tr>
<td>Calomel</td>
<td>Charcoal vapour, effects</td>
</tr>
<tr>
<td>Campbell, case of</td>
<td>Cheese, poisoning with</td>
</tr>
<tr>
<td>Camphor, poisoning with</td>
<td>Chest, wounds of the</td>
</tr>
<tr>
<td>Campin, Reg. v.</td>
<td>Child, legal definition of</td>
</tr>
<tr>
<td>Canalis venosus, closure of the</td>
<td>— new-born uterine age</td>
</tr>
<tr>
<td>Canella</td>
<td>— from the sixth to the</td>
</tr>
<tr>
<td>Cantharides, effects of</td>
<td>— month</td>
</tr>
<tr>
<td>— detection of</td>
<td>— evidence from dev</td>
</tr>
<tr>
<td>Cantharidine</td>
<td>ment of</td>
</tr>
<tr>
<td>Capacity, testamentary</td>
<td>— inspection of the body</td>
</tr>
<tr>
<td>— test of</td>
<td>— changes in the body o</td>
</tr>
<tr>
<td>Caput succedaneum</td>
<td>— after birth</td>
</tr>
<tr>
<td>Carboilic acid</td>
<td>— posthumous</td>
</tr>
<tr>
<td>— symptoms and appearances</td>
<td>Children, supposititious</td>
</tr>
<tr>
<td>— analysis</td>
<td>Chloral hydrate</td>
</tr>
<tr>
<td>Carbonates of potash and soda</td>
<td>— symptoms and appear</td>
</tr>
<tr>
<td>— of ammonia</td>
<td>caused by</td>
</tr>
<tr>
<td>— of baryta</td>
<td>— analysis</td>
</tr>
<tr>
<td>— of lead</td>
<td>Chloride of barium</td>
</tr>
<tr>
<td>— of arsenic</td>
<td>— of arsenic</td>
</tr>
<tr>
<td>Carbonic Acid, suffocation by</td>
<td>Chloric ether</td>
</tr>
<tr>
<td>— symptoms caused by</td>
<td>Chloride of mercury</td>
</tr>
<tr>
<td>— appearances in death from</td>
<td>— of antimony</td>
</tr>
<tr>
<td>— analysis</td>
<td>— of zinc</td>
</tr>
<tr>
<td>— diffusion of</td>
<td>— of iron</td>
</tr>
<tr>
<td>— combustion in mixtures of</td>
<td>Chloride of potassium</td>
</tr>
<tr>
<td>— of lime and brick-kilns</td>
<td>mercury as a test</td>
</tr>
<tr>
<td>Carbonic oxide</td>
<td>Chlorodine, poisoning w</td>
</tr>
<tr>
<td>Carburetted hydrogen, suffo</td>
<td></td>
</tr>
<tr>
<td>Caries from phosphorus vapour</td>
<td>Chloroform - vapour,</td>
</tr>
<tr>
<td>Carlo Ferrati, case of</td>
<td>— from</td>
</tr>
<tr>
<td>Carnal knowledge</td>
<td>— poisoning with</td>
</tr>
<tr>
<td></td>
<td>— under operations</td>
</tr>
<tr>
<td></td>
<td>— spirit of</td>
</tr>
</tbody>
</table>
INDEX.

CHO

Cholera mistaken for poison-ing 63
Cholesterine 350
Chronic poisoning 69
— by phosphorus 97
— by arsenic 102
— by mercury 121
— by lead 130
— by copper 131
— by antimony 135
Chronic insanity 687, 696
Cicuta virosa 182
Cider poisoned with lead 131
Circulation, cessation of the, in death 43
— fatal, changes in the 544
Circumstantial evidence, in wounds 226
— in hanging 380
Citrate of iron mistaken for blood 239
Climacteric, menstrual 640
Clarke, Reg. v. 486
Classification of poisons 54
Cobra poison, action of 49
Coal vapour, effects of 430
— gas, suffocation by 433
Cocksft, Reg. v. 739
Coccus Indicus, poisoning with 171
Coke vapour, effects of 431
Colchicina 143
Colchicum, poisoning with 141
Cold, death from 451
— infanticide by 565
Coldness of the body in death 43
Colic, painter’s 130
Colica pictonum 130
Colocynth, effects of 140
Colostrum of milk 546
Coloured cicatrices 289
Colour tests for strychnine 178
Cicatrices from surgical operations 280
— from disease 284
— from vaccination 287
— coloured (see Tattooing) 289
Cicatrix, nature of a 279
— permanency of 280
— age or date of 282
— from a wound or disease 283

COR

Cicatrix, from bleeding and other causes 284
— alleged changes in a 286
— from a burn 288
Cicatrization of wounds 278
Come, or death by the brain 41
Combustion, human, alleged 344
— in carbonic acid and air 428
Commissions of lunacy 710
Compression of the brain 301
Concealment of pregnancy 469
— of delivery 486
— of birth 486
Conception, date of 598
Concussion of the brain 297
— and intoxication 299
Concussion of the spinal marrow 398
Condé, Prince de, case of 381
Confined air, effects of 432
Congenital disease in new-born children 557
Conia 182
Conium maculatum, poisoning with 181
Contused wounds 200
Coutusions on the living and dead 204
Cooling of the body after death 43
Copper, poisoning by salts of 131
— detection of arsenic in 108
— arsenide of 115
— in articles of food 138
— detection of in the tissues 133
Copper, poisoning with 139
Cord, umbilical, death from laceration of the 553
— length of the 577
— strangulation by the 575
Cord, mark of the, in hanging 378
— in strangulation 385
Corn, poisoned 149
Coroners’ inquiries 17
Corpora lutea 483
Corrosion distinguished from ulceration 72
Corrosive liquids, burns from 345
— poisons 56
Corrosive Sublimates, symp-toms of poisoning with 119
— from external application 120
<table>
<thead>
<tr>
<th>COR</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORROSIVE SUBLIMATE, post-mortem appearances</td>
<td>Death, violent causes of:</td>
</tr>
<tr>
<td>- tests for</td>
<td>- muscular irritability after</td>
</tr>
<tr>
<td>- in organic liquids</td>
<td>- reality of</td>
</tr>
<tr>
<td>- in the tissues</td>
<td>- apparent in newborn children</td>
</tr>
<tr>
<td>Counsel, license of</td>
<td>- acceleration of, in person injuries</td>
</tr>
<tr>
<td>- privileges of</td>
<td>- from surgical operations of wounded persons</td>
</tr>
<tr>
<td>Counter-stroke, nature of</td>
<td>- Deadly nightshade</td>
</tr>
<tr>
<td>Courtesy, tenancy by</td>
<td>- Deaf and dumb</td>
</tr>
<tr>
<td>Courvoisier, case of</td>
<td>- Deafness and dizziness feigned</td>
</tr>
<tr>
<td>Cowley, Reg. v.</td>
<td>- Debility, death of a newborn child from</td>
</tr>
<tr>
<td>Cranium, fractures of the</td>
<td>- Decay, food rendered poisonous by</td>
</tr>
<tr>
<td>- accidental in the new-born child</td>
<td>- Declarations of dying person</td>
</tr>
<tr>
<td>Cremate</td>
<td>- Deforation, signs of</td>
</tr>
<tr>
<td>Crectus</td>
<td>- Deformities, personal evidence from</td>
</tr>
<tr>
<td>Cres, Reg. v.</td>
<td>'Delafosse v. Fortescue</td>
</tr>
<tr>
<td>Criminal abortion (see Abortion)</td>
<td>- Delirium, mistaken for insanity</td>
</tr>
<tr>
<td>Criminal responsibility in insanity</td>
<td>- tremens, following wound</td>
</tr>
<tr>
<td>- in drunkenness</td>
<td>- in drunkards</td>
</tr>
<tr>
<td>- somnambulism</td>
<td>- Delivery</td>
</tr>
<tr>
<td>- in deafness and dizziness</td>
<td>- in the living</td>
</tr>
<tr>
<td>Crook, Reg. v.</td>
<td>- at a remote period</td>
</tr>
<tr>
<td>Cross-examination</td>
<td>- feigned and unconscious</td>
</tr>
<tr>
<td>Croton oil, poisoning with</td>
<td>- during sleep</td>
</tr>
<tr>
<td>Curare, Reg. v.</td>
<td>- signs of, in the dead</td>
</tr>
<tr>
<td>Crying, evidence of live birth</td>
<td>- date of</td>
</tr>
<tr>
<td>Cryptsorhides, virility of</td>
<td>- protracted, death of a child from</td>
</tr>
<tr>
<td>Cuts and stabs</td>
<td>- sudden, in the erect posture</td>
</tr>
<tr>
<td>Cupping, cicatrices from</td>
<td>- violence inflicted on a child during</td>
</tr>
<tr>
<td>Cyanide of silver</td>
<td>- locomotion and exertion after</td>
</tr>
<tr>
<td>Cyanide of potassium</td>
<td>- Delusion in insanity</td>
</tr>
<tr>
<td>- symptoms and appearances</td>
<td>- in reference to testamentary capacity</td>
</tr>
<tr>
<td>- analysis</td>
<td>- De lunatico inquisiendo</td>
</tr>
<tr>
<td>Dalby's carminative</td>
<td>Dementia naturalis, accidentalis</td>
</tr>
<tr>
<td>Dalmas, case of</td>
<td>Dementia</td>
</tr>
<tr>
<td>Date of birth</td>
<td>- senile</td>
</tr>
<tr>
<td>- of cicatrices</td>
<td>- affectate</td>
</tr>
<tr>
<td>- of effusions of blood</td>
<td></td>
</tr>
<tr>
<td>- of conception</td>
<td></td>
</tr>
<tr>
<td>Datura stramonium</td>
<td></td>
</tr>
<tr>
<td>Daturia</td>
<td></td>
</tr>
<tr>
<td>Dead, wounds and contusions on the</td>
<td></td>
</tr>
<tr>
<td>- body, examination of the</td>
<td></td>
</tr>
<tr>
<td>- burning of the</td>
<td></td>
</tr>
<tr>
<td>Death, signs of</td>
<td></td>
</tr>
<tr>
<td>- sudden, causes of</td>
<td></td>
</tr>
</tbody>
</table>
INDEX.

DEB

Derangement, mental 679
Destructive things 50
Devonald v. Hope 468
Development of child, evidence from 600
De ventre inspiciendo, writ of 472
Dialysis of poison 79
Diaphragm, wounds and ruptures of the 315
Digitalis, poisoning with 195
Digitaline 195
Dipsomania 742
Direction of wounds 221
— in the chest 317
Discharge of lunatics 708
Diseased flesh, poisonous 149
Disease, influence of, on poison 50
— on wounds 267
— on virility 631
Dislocations 328
Distillation—process for arsenic 109
Divorce, medical evidence in suits of 644
Dixblanc, Reg. v. 390
Docimasia pulmonaris 526
— circulationis 544
Dodd, Reg. v. 210
Donellan, case of 61
Dos Santos, case of 634
Douglas Peerage, case of 614
Doubtful sex 624
Drains and sewers, noxious gases of 440
Dress, examination of the, in wounds 212
Dripping poisoned with lead 181
Drowning, cause of death from 347
— death from secondary causes in 350
— appearances in 351
— medical proofs of 355
— buoyancy of the body in 359
— marks of violence in cases of 361
— homicidal or suicidal 363
— from partial immersion 365
— a cause of death in new-born children 563
Drugs used as abortive 494

DEB

Drunkards, civil and criminal responsibility of 743
— restraint of 744
Drunkenness, concussion mistaken for 209
— responsibility in cases of 743
Ductus arteriosus, closure of 644
Dumb, responsibility of the 747
Dura mater, the 306
Durnell v. Corfield 728
Dyes, red, mistaken for blood 237
Dying declarations, rules respecting 6
Dying persons, wills made by 728

Eager v. Grimwood 601
Earthenware, wounds from 209
Ebermann, case of 294
Eccentricity, mistaken for insanity 689
— in wills 721
Ecchymoses, punctiform in suffocation 406
Ecchymosis, from violence 208
— changes of colour in 204
— production of, after death 205
— not always a result of violence 206
— in hanging 373
— in strangulation by the umbilical cord 574
— natural marks resembling 578
— caused by lightning 450
Ecboles 498
Ecbole 501
Ecblampsia 478
Ecems from arsenic 102
Effusion of blood (see Extravasation) 300
Effulvia of drains and sewers 440
Electric fluid, action of (see Lightning) 443
Embryo, examination of the 484
Emerald green, poisoning with 115
Emetic, tartar, poisoning with 134
Emmenogogues in abortion 493
Enemata, poisonous 61
Epispadia 635
Epithelial scales 547
Ergotine 501
Ergot of rye as an abortive 498
INDEX

ERY

Erysipelas following wounds 269, 297
Essence of arrisbano 163
Essential oil of almonds 161
Esser, Earl of, case of the 222
Ether, poisoning with 165
Evidence and testimony 36
Evidence, medical 27
— rules for the delivery of 35
Evidence of poisoning in the living 58
— in the dead 66
— notes, when and how used in 12
— circumstantial, in wounds 225
Examination in chief 27
— cross 27
Examination of wounds 200
— of the dress in wounded persons 212
— of weapons 228, 238
— of fire-arms 336
— of a woman, in child-murder 581
— of lunatics 712
Excitement a cause of extravasation 303
Exhaustion, death from 253
Exhumation of bodies 9
Exposure, death of new-born children from 565
Extent of wounds 220
Extract, Goulard’s, poisoning with 129
Extravasation of blood on the brain 300
— date of 304
Eyebrows, wounds of the 307

Face, wounds of the 307
Facts, specification of, in insanity 704
Family likeness, evidence from 514
Fasting, long, effects of 458
— pretended 459
Fatuity 690
Fat poisoned by lead glaze 131
Features, evidence from the 615
Fecundity in women 641
Fever, death from, after wounds and operations 262, 271
Feigned poisoning 64

FUN

Feigned wounds 1
— strangulation 1
— pregnancy 1
— menstruation 1
— delivery 1
— abortion 1
— insanity 1
— deafness and dumbness
Fisher, case of
Fire-arms, examination of 1
Fish, poisonous 1
Flagellation, death from 1
Fleming’s tincture of acnin 1
Flesh, diseased, poisoning 1
Fletcher, Reg. v. 1
Flogging, military, death from 1
Fly paper 1
Fly water 1
Fetal circulation, changes the, caused by respiration 1
— stomach, contents of the 1
— heart, sounds of the 1
— changes in the, after breathing 1
Feticide (see Abortion)
Fetus, characters of the, from conception to the sixth month 1
— from the sixth to the ninth month 1
Food, poisonous 64, 1
Food, poison detected in 1
— copper contained in 1
— putrescent 1
— death from privation of 1
Fool’s parsley, poisoning with 1
Forman ovale, closure of the 1
Foreman, Reg. v. 1
Fowler’s mineral solution 1
Foxglove, poisoning with 1
Fractures 1
— of the skull 1
— of the spine 1
— accidental, in the drowned 1
— in new-born children 1
Fragilitas ossium 1
Franklin and Randall, Reg. v. 1
Frazer v. Bagley 61
Fruit-stains resembling blood 1
Fungi, poisoning with 1
INDEX.

Hematin, properties of 234
—— crystals of 245
Hemine, crystals of 245
Hematoidin, crystals of 247
Hemorrhage, death from 250
—— internal, death from 262
—— cerebral 301
—— death of the new-born child 553
Hair, evidence from, on weapons 229
—— the colour of, in paternity 616
Hall v. Semple 707
Halls, the cases of 440
Hallucinations in insanity 684
—— in drunkenness 744
—— in sleep 746
Hanging, death from 365
—— appearances in death from 368
—— evidence of, from mark of the cord 371
—— of the dead body 373
—— marks of violence on the body in 376
—— homicidal 378
—— circumstantial evidence in cases of 380
—— evidence from position of the body in 381
Harmer, Reg. v. 668
Harris, case of 649
Harrod v. Harrod 748
Hartshorn, poisoning with 93
Haymes v. Haymes 642
Head, wounds of the 296
—— injuries to the, in new-born children 568
Heart, wounds of the 311
—— ruptures of the 313
Heat, excessive, death from 454
—— intense, death from 454
Hellebore, poisoning with 143
Hemlock, poisoning with 181
—— water-dropwort 185
Henbane, poisoning with 178
Hepatization of the lungs 527
Hereditary transmission of insanity 693
Hermaphrodites, legal rights of 625
Hermaphroditism 624
Hernia, phrenic 315

GAL
Gall-bladder, wounds and ruptures of the 319
Gamboge, effects of 140
Game, poisoned 149
Gangrene, effects of 47
Garotte robberies 396
Gas, suffocation by 433
Gaseous poisons 415
Gavan, Reg. v. 93
Gardner, case of 231
Gardner v. Llewellyn 589
Gardner Peerage, case of 610
Gelatinized perforation of the stomach 74
Genitals, wounds of the 323
Gestation, natural period of 596
—— duration of, from one intercourse 596
—— short periods of 600
—— protracted 607
—— mistakes in the mode of computation of 599, 609
—— period of, not fixed by law 612
Gin, poisoning with 165
Glanders, poison of 49
Glandular cicatrizes 284
Glass, wounds caused by 209
—— powdered, effects of 52
Godfrey's cordial 152
Goodman, Reg. v. 748
Goerlitz, Countess of, case of the 344, 396
Gonorrhoea discharges 655
Gonorrhoea, in rape 657, 674
Goulard's extract 129
Goulard's water 130
Green, Reg. v. 324
Green vitriol 139
Green hellebore 143
Grievous bodily harm 190
Griffin and Venn, case of 493
Griffiths' mixture 496
Guaiacum test for blood 234
Guelder rose 197
Gunpowder, wounds from 334
Gunshot wounds, nature of 329
—— near or distant 330
—— accidental, homicidal, or suicidal 332
Habit, its influence on poisons 52

HER

759.
<table>
<thead>
<tr>
<th>HEW</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hewitt v. Perry</td>
<td>584, 614</td>
</tr>
<tr>
<td>Hierapiena</td>
<td>211</td>
</tr>
<tr>
<td>— in abortion</td>
<td>494</td>
</tr>
<tr>
<td>Hill v. Phelp</td>
<td>699</td>
</tr>
<tr>
<td>Hill, Reg. v.</td>
<td>709</td>
</tr>
<tr>
<td>Holly, poisonous effects of</td>
<td>197</td>
</tr>
<tr>
<td>Holly’s, Reg. v.</td>
<td>592</td>
</tr>
<tr>
<td>Homicidal Monomania</td>
<td>727</td>
</tr>
<tr>
<td>— symptoms of</td>
<td>729</td>
</tr>
<tr>
<td>— varieties of</td>
<td>730</td>
</tr>
<tr>
<td>— legal tests</td>
<td>732</td>
</tr>
<tr>
<td>— medical tests of</td>
<td>733</td>
</tr>
<tr>
<td>— medical evidence in cases of</td>
<td>724</td>
</tr>
<tr>
<td>Homicidal wounds, characters of</td>
<td>218</td>
</tr>
<tr>
<td>— burning mistaken for spontaneous</td>
<td>344</td>
</tr>
<tr>
<td>Honeycombe, Reg. v.</td>
<td>488</td>
</tr>
<tr>
<td>Hopley, Reg. v.</td>
<td>260</td>
</tr>
<tr>
<td>Horseradish, aconite mistaken for</td>
<td>187</td>
</tr>
<tr>
<td>Howes v. Barber</td>
<td>663</td>
</tr>
<tr>
<td>Huclin, Mr., case of</td>
<td>386</td>
</tr>
<tr>
<td>Hunger, death from (see Starvation)</td>
<td>455</td>
</tr>
<tr>
<td>Hunt, case of</td>
<td>186</td>
</tr>
<tr>
<td>Hunt v. Hunt</td>
<td>663</td>
</tr>
<tr>
<td>Hutchins v. Hutchins</td>
<td>622</td>
</tr>
<tr>
<td>Hydrate of chloral, poisoning with</td>
<td>167</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>84</td>
</tr>
<tr>
<td>— symptoms and appearances in poisoning with</td>
<td>84</td>
</tr>
<tr>
<td>— analysis of</td>
<td>85</td>
</tr>
<tr>
<td>— detection of on clothing</td>
<td>85</td>
</tr>
<tr>
<td>Hydrocyanic acid (see Prussic Acid)</td>
<td>156</td>
</tr>
<tr>
<td>Hydrogen-test for arsenic</td>
<td>107</td>
</tr>
<tr>
<td>Hydrostatic Test</td>
<td>526</td>
</tr>
<tr>
<td>— objections to the, from sinking of the lungs</td>
<td>557</td>
</tr>
<tr>
<td>— erroneous inferences from</td>
<td>534</td>
</tr>
<tr>
<td>— effects of putrefaction on the</td>
<td>532</td>
</tr>
<tr>
<td>— artificial inflation</td>
<td>534</td>
</tr>
<tr>
<td>— general conclusions respecting the employment of</td>
<td>539</td>
</tr>
<tr>
<td>Hydroxysulphate of ammonia</td>
<td>442</td>
</tr>
<tr>
<td>Hydroxysulphuric acid, poisoning with</td>
<td>437</td>
</tr>
<tr>
<td>Hymen, evidence derived from the, in rape</td>
<td></td>
</tr>
<tr>
<td>— as a sign of virginity</td>
<td></td>
</tr>
<tr>
<td>Hyoscyamus, poisoning with</td>
<td></td>
</tr>
<tr>
<td>Hyoscymia</td>
<td></td>
</tr>
<tr>
<td>Hypoesthiasia</td>
<td></td>
</tr>
<tr>
<td>Identity of substances</td>
<td></td>
</tr>
<tr>
<td>Identity, personal, from tritces</td>
<td></td>
</tr>
<tr>
<td>— mistaken</td>
<td></td>
</tr>
<tr>
<td>— sexual</td>
<td></td>
</tr>
<tr>
<td>Idiocy</td>
<td></td>
</tr>
<tr>
<td>Idiosyncrasy in poisoning</td>
<td></td>
</tr>
<tr>
<td>Idiots, rape on</td>
<td></td>
</tr>
<tr>
<td>Illusions in insanity</td>
<td></td>
</tr>
<tr>
<td>— in drunkenness</td>
<td></td>
</tr>
<tr>
<td>Imbeciles, wills made by</td>
<td></td>
</tr>
<tr>
<td>Imbecility</td>
<td></td>
</tr>
<tr>
<td>— senile</td>
<td></td>
</tr>
<tr>
<td>Immaturity of the fetus venter</td>
<td></td>
</tr>
<tr>
<td>— of the partus, in cases of legitimacy</td>
<td></td>
</tr>
<tr>
<td>— death of the child from Impediments, canonical marriage</td>
<td></td>
</tr>
<tr>
<td>Impotency, causes of</td>
<td></td>
</tr>
<tr>
<td>— from age</td>
<td></td>
</tr>
<tr>
<td>— from local disease and formation</td>
<td></td>
</tr>
<tr>
<td>— from general disease</td>
<td></td>
</tr>
<tr>
<td>— as a ground for divorce</td>
<td></td>
</tr>
<tr>
<td>Impulse to crime</td>
<td></td>
</tr>
<tr>
<td>Imputed poisoning</td>
<td></td>
</tr>
<tr>
<td>— wounds</td>
<td></td>
</tr>
<tr>
<td>— cicatrices</td>
<td></td>
</tr>
<tr>
<td>— strangulation</td>
<td></td>
</tr>
<tr>
<td>Inanition, death from Incapacity, sexual (see Potency)</td>
<td></td>
</tr>
<tr>
<td>Incediarism, propensity to</td>
<td></td>
</tr>
<tr>
<td>Incised wounds</td>
<td></td>
</tr>
<tr>
<td>Incoherency</td>
<td></td>
</tr>
<tr>
<td>Incompetency, mental, medical tests of</td>
<td></td>
</tr>
<tr>
<td>Indian tobacco</td>
<td></td>
</tr>
<tr>
<td>Indigo, sulphate of</td>
<td></td>
</tr>
<tr>
<td>Infanticide</td>
<td></td>
</tr>
<tr>
<td>— inspection of the body in</td>
<td></td>
</tr>
</tbody>
</table>
INDEX.

INF

INFANTICIDE, proofs of life before respiration in. 518
— after respiration 620
— static test in 522
— Plouquet's test in 624
— legal proofs of 641
— proofs of live birth in 643
— natural causes of death in 651
— violent causes of death in 658
— summary of medical proofs in 581
— frequent acquittals in cases of 565
— examination of women in cases of 561
Infants in law 591
Infantile leucorrhoea 656
Infans 591
Infants, action of opium on 152
— rape on 647
Inflation, artificial, of the lungs 533
Inheritance, medical questions relating to 584
Injections, poisoning by 61
Inquests, coroners' 17
Insane, responsibility of the 724
INSANITY, medical definitions of
— moral and intellectual 680
— legal definitions of 681
— early symptoms of 682
— hallucinations and illusions in 684
— lucid intervals in 685
— various forms of 686
— hereditary transmission of 688
— feigned 694
— post-mortem appearances in 695
— rules for applying restraint in 697
— signing certificates of 700
— interdiction in cases of 709
— evidence of from written documents 716
— plea of, in criminal cases 724
— homicidal 727
— puerperal 740
Insect powders 176
Insemination 596
Inspection of the body, in poisoning 7

KXI

Inspection of the body, in wounds 200
— in child-murder 516
— for coroners' inquests 9
Intellectual insanity 680
Intercourse, duration of gestation after 596
— carnal, legal proofs of 647
Interdiction in insanity 709
Intervals, lucid, in insanity 685
— validity of acts performed during 686
Intestines, wounds and ruptures of the 320
Intoxication mistaken for concussion 299
Iron, salts of, poisoning with 139
Iron-moulds mistaken for blood stains 237
Iron filings 495
Iron, muriated tincture of 498
Irritant poisons 70
Irritants, mechanical 52
— mineral 75
— non-metallic 75
— metallic 101
— vegetable 140
— animal 146
Irwin, case of 568
Isgate, Reg. v. 338

Jalap, effects of 140
Jackson, Reg. v. 748
Jacobs, Reg. v. 460
Jersey, case of 337
Jones, Reg. v. 269
Juniperus Sabina, poisoning with 141
— in abortion 496
Jury of matrons 472
K.

Kelly, Reg. v. 32, 272, 701
Kennedy v. Brown 23
Kent, Constance, case of 638
Kidneys, ruptures of the 320
King's yellow 117
Kingston, Duchess of, case of the 24
Kleptomania 741
Knight, Reg. v. 741
INDEX.

LAB

Labour, premature, induction of 509
Labrie, case of 286
Laburnum, poisoning with 197
Lacerated wounds 209
Lacy, Reg. v. 740
Lactation, a cause of puerperal insanity 740
Laflarge, case of 114
Lamb v. Barton 274
Latent disease, death from in wounds 257
Laudanum, poisoning with 151
Laurel-water, poisoning with 61
Larynx, spasm of the 556
Lead, poisoning by acetic acid of 127
— tests for the salts of 128
— detection of in the tissues 129
— chronic poisoning by 130
— carbonate of 130
— mepacrin of 156
Lead-glaze, poisonous effects of 131
Lead pylpy 130
Legal tests of insanity 732
LEGALITY, legal presumption of 595
— period of gestation in reference to 596
— disputed, from shortness of gestation 600
— viability in reference to 603
— proofs of, from the state of the offspring 600, 604
— disputed, from long periods of gestation 607
— in what cases admitted 612
— inferred from paternal likeness 614
Lesargues, case of 287
Leucorrhoea, infantile 656
Levant-nut 171
L’Hotellier, case of 390
Libbey, Reg. v. 244
License of counsel 23
Life, legal and medical 517
— tests of 43, 586
Lightning, death from 443
— post-mortem appearances 445
— action for damage from 451
Likeness, parental, evidence from 615

MAC

Limekilns, vapours of 2
Liquids, corrosive, burns by 1
Liquor amnii 49
— arsenicalis 580
Litharge, poisoning with 306, 31
Live birth in civil suits 300
— proofs of, in child-murder 303
— summary regarding 304
Liver, ruptures and wounds of the 31
lobelia, poisoning with 31
Lobelia 31
Lochia, evidence of delivery from the 31
Lockjaw, death from, in wounds 31
Locomotion after severe injuries 306, 31
— after fractures 306, 31
— after delivery 306, 31
Long fasting, effects of 306, 31
Lord v. Colvin 306, 31
Lozenges, poisonous 306, 31
Lucid intervals 306, 31
Lucifer-matches, poisoning with 306, 31
Lunacy 306, 31
— commissions of 306, 31
Lunacy-acts, branches of the 306, 31
— legal provisions of the 70
Lunatics, wounds inflicted by 287
— restraint applied to 306, 31
— discharge of 306, 31
— as witnesses 306, 31
— testamentary capacity of 306, 31
— interdiction of 306, 31
— examination of alleged 306, 31
— wills made by 306, 31
Lunos, wounds and ruptures of the 287
— examination of the, in new-born children 287
— specific gravity of the 287
— atelectasis of the 287
— variably affected by respiration 287
— putrefaction of 287
— artificial inflation of 287
Lung-tests 287
Lypemania 294
Macnaughten, case of 287
<table>
<thead>
<tr>
<th>MAC</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrae, case of</td>
<td>Medico-legal reports</td>
</tr>
<tr>
<td>Maddock, Reg. v.</td>
<td>— for coroners’ inquests</td>
</tr>
<tr>
<td>Magnetic sleep, rape during</td>
<td>Melted metals, burns from</td>
</tr>
<tr>
<td>Majority, questions relative to</td>
<td>Melancholia</td>
</tr>
<tr>
<td>— when attained</td>
<td>Membranes, child born in the</td>
</tr>
<tr>
<td>Malapraaxis</td>
<td>Meningeal apoplexy</td>
</tr>
<tr>
<td>Malformation, death of the child from</td>
<td>Menses, suppression of in pregnancy</td>
</tr>
<tr>
<td>— sexual</td>
<td>Menses (see Menstruation)</td>
</tr>
<tr>
<td>— a cause of impotency</td>
<td>Menstrual blood, characters of</td>
</tr>
<tr>
<td>Manchester, Duchess of, case of the</td>
<td>Menstrual climacteric</td>
</tr>
<tr>
<td>Mania</td>
<td>Menstruation, suppression of a sign of pregnancy</td>
</tr>
<tr>
<td>— suicidal</td>
<td>— feigned</td>
</tr>
<tr>
<td>— homicidal</td>
<td>— appearances of, after death</td>
</tr>
<tr>
<td>— puerperal</td>
<td>— relation of gestation to</td>
</tr>
<tr>
<td>Mania sine delirio</td>
<td>— age at which it appears</td>
</tr>
<tr>
<td>Marriage, impediments to</td>
<td>— appearance of, in infants</td>
</tr>
<tr>
<td>Marsh’s process for arsenic</td>
<td>— age at which it ceases</td>
</tr>
<tr>
<td>Martin, Reg. v.</td>
<td>— absence of, a cause of sterility</td>
</tr>
<tr>
<td>Maskerry v. O’Connor</td>
<td>— fallacies in calculating pregnancy from</td>
</tr>
<tr>
<td>Matrons, jury of</td>
<td>— in hermaphrodites</td>
</tr>
<tr>
<td>Maturity of the new-born child, signs of</td>
<td>— pregnancy before</td>
</tr>
<tr>
<td>Marsted v. Morris</td>
<td>— pregnancy after cessation of</td>
</tr>
<tr>
<td>Meadow saffron (see Colchicum)</td>
<td>— suppressed, crimes committed during</td>
</tr>
<tr>
<td>Meat, unwholesome</td>
<td>Mentha Pulegium</td>
</tr>
<tr>
<td>Meconic acid, tests for</td>
<td>Mental alienation</td>
</tr>
<tr>
<td>Meconium</td>
<td>Mercurius vitreus</td>
</tr>
<tr>
<td>— microscopical characters of</td>
<td>Mercury, poisoning by the salts of</td>
</tr>
<tr>
<td>Mechanical injury, death from</td>
<td>— ammonio-chloride of, or white precipitate</td>
</tr>
<tr>
<td>— irritants</td>
<td>— chronic poisoning by</td>
</tr>
<tr>
<td>Medical evidence</td>
<td>— metallic, effects of</td>
</tr>
<tr>
<td>— in cases of insanity</td>
<td>— oxide of</td>
</tr>
<tr>
<td>Medical witnesses</td>
<td>— perchloride of</td>
</tr>
<tr>
<td>— presence of, in courts</td>
<td>— sulphates and nitrates of</td>
</tr>
<tr>
<td>Medical jurisprudence defined</td>
<td>Metallic irritants</td>
</tr>
<tr>
<td>Medical jurists, duties of</td>
<td>Microscopical evidence</td>
</tr>
<tr>
<td>Medical witnesses’ act</td>
<td>Milligan, Reg. v.</td>
</tr>
<tr>
<td>Medical secrets</td>
<td>Miller, Reg. v.</td>
</tr>
<tr>
<td>Medical privilege</td>
<td>Milk, detection of, in the stomach</td>
</tr>
<tr>
<td>Medical etiquette</td>
<td>Mind, unsoundness of</td>
</tr>
<tr>
<td>Medical responsibility, in wounds</td>
<td>Mineral green, poisoning with</td>
</tr>
<tr>
<td>— in cases of insanity</td>
<td>— solution, Fowler’s</td>
</tr>
</tbody>
</table>
INDEX.

MIN

Minimum (red lead), poisoning with 130
Minor (see Minority) 501
Minority, questions relating to 163
Misanthropia 683
Miscarriage, legal meaning of 489
Mole, nature of a 485
Moles
— in cases of identity 287
— abortion of 508
Mole-pregnancy 485
Monkshood, poisoning with 185
Monomania 687
— homicidal 727
— suicidal 689
Monochromorchi, virility of 631
Monsters, legal definition of 594
— do not inherit 591
— destruction of, not permitted 555
— sexual 622
Monstrality, death of the child from
— sexual 555
— sexual 622
Montgomery, case of 200, 232
Moore, Reg. v. 497
Moral insanity 680, 728
Morphia and its salts, poisoning with
— nitrate of 152
— hydrochlorate of 162
— tests for 153
Mortality of wounds 254
Moreland, Reg. v. 270
Morlan v. Boys 722
Motives for crime 734
Mucous-purulent discharges in
rape 630
Mucous discharges, characters of
Muriate of iron 636
— of morphia 162
MURIATIC ACID, poisoning with 84
Murray, case of 725
Mushrooms, poisoning with 171
Mussels, poisoning with 64
Nævi mistaken for marks of violence 670
— as proofs of identity 287

OIL

Narcotic poisons 5
Narcotico-irritants, effects of 3
Navel-string (see Umbilical Cord)
Neck, twisting of the, in newborn children
Necrosis, from phosphorus vapour
Needles and pins, action of
Nepenthis, poisoning with
Neurotic poisons 5
New-born child, legal meaning of
Newton, Reg. v.
Nictina, poisoning with tests for
Nichols v. Bianca
Nitrous oxide
Nightshade (see Belladonna)
Nitrate of potash
Nitre, death from
NITRIC Acid, poisoning with
— fatal effects of the vapour of
— appearances and fatal dose
— analysis and dialysis of
— detection on clothing
Nitrobenezole, poisoning with
Noma pudendi
Non-metallic irritants
Non compos mentis
Norman, Reg. v. 41
Notes, use of, in evidence
Noxious substances, legal meaning of 5
— animal food 6
Nux vomica, poisoning with
— illustrations of, and test for
Nullity, suits of

Edema of the lungs
Enanthe crocata, poisoning with
Ogilvy, Reg. v.
Oil of eroto
— vitriol
— far
— bitter almonds
— savin
INDEX

OIL

Oil of tansy 497
Operations, surgical, death from 270, 274
Operation, Caesarean 589
Opium, symptoms caused by 150
— appearances in death from 151
— fatal dose of 152
— process for detecting 153, 155
Orbit, wounds of the 307
Opriment, poisoning by 117
Osmosis, separation of poisons by (see Dialysis) 79
Overlaying of children 413
Ovum, examination of the 484
Oxalate of potash, acid 90
Oxalic Acid, symptoms and appearances caused by 85
— fatal dose of 87
— analysis of 88
— dialysis of 89
— in clothing 90
Oxide of carbon 428

Painter's colic 130
Palmer, W., case of 69
Palsy from lead 130
Paper-hangings, detection of arsenic in 117
Papier Mâché 115
Paraplegia, virility in cases of 636
Parergic elixir 152
Parental likeness 615
Parturition (see Delivery) 473
Partus, the new-born child 512
Pascoe, Reg. v. 496
Paternity, questions on 614
Paterson, Reg. v. 744
Peanut oil 162
Perilous, poisoning with 91
Penis, absence of the — duplex 634
— Pennyroyal in abortion 495
Perforation of the stomach from poison and disease 73
— spontaneous 74
Personal injuries 193
— death from sight 259
Peters, Mrs., case of 69
Petty, Reg. v. 836
Phosphorus, poisoning by 96

POS

Phosphorus, symptoms and appearances from 97
— chronic poisoning by 97
— vapour, effects of 97
— fatal dose of 99
— detection of 100
— red or amorphous, action of 100
Phrenic hernia 317
Phrenitis 687
Pia mater, the 306
PicROTOXINE, effects of 170
Pilacotia 494
Pins and needles, administration of 52
Plouquet's test 524
Plural births 593
Poison, definition of 48
— law respecting the administration of 50
— influence of habit on 52
— of idiosyncrasy on 54
— irritant and corrosive 55
— noxious 56
— narcotic and narcotic-irritant 57
— effects modified by disease 59
— substituted for medicine 62
— slow and rapid death from 68
— gaseous 416
Poisoned game 149
— grain 171
Poisoning, evidence of, in the living 58
— disease mistaken for 63
— feigned and imputed 64
— evidence in the dead 66
— acute and chronic 68
— ulceration, corrosion, and softening, in cases of 72
— rules for investigating cases of 7, 65
— infanticide by 580
Poisonous food 148
— fungi or mushrooms 171
— gases 416
Poppies, syrup of 152
Pork, diseased, poisoning with 64, 149
Porphyrium cruentum mis-taken for blood 243
Posthumous births 618
POT
Parish and its carbonates, 91
— salting with 91
— oxalate of 90
— citrate of 94
— sulphate of 94
— nitrate of 111
— acetate of 117
B. as an oxalate of 160
P. Dunce de, case of 203
Precipitate, white and red 126
Pregnancy, signs of 461
— figured 468
— proof of, in bars of execution 472
— concealment of 469
— decisions 470
— in the dead 471
— proof of, in cases of abortion 508
— longest duration of 610
— before menstruation 639
— following rape 670
— earliest age for 610
— later age for 611
— crimes perpetrated during 741
Precipitate births 489, 600
— fever, induction of 509
— puberty 629
P. Rq. v. 714
Prettard, Dr., case of 27
Privy 197
Prescriptive power, age for, in the male 629
— in the female 640
Preservers, fiscal 18
Preservatives 337
Premature, rape on 665
Premature births 607
— gestation 608
Pus, Act, symptoms caused by 136
— appearances 137
— fatal doses of 138
— analysis 138
— tests for the vapour of 139
— detection of, in the tissues 160
Pygalism, mercurial (see Salivation) 121
Puberty in males 627
— in females 637
— premature 639
INDEX.
RED
Puerperal mania 110
Pugilistic violence, death from 200
Pulmonary tests 3
Puncta punctata 3
Punctiform ecchymoses 3
Punctured wounds 3
Purulent discharges in alleged rape 3
Puteation, effects of 3
— changes in the visera, caused by 3
— gases of 3
— of the lungs 3
— Puteation food 3
Pyemia, a cause of death in wounds 3
Pyne, Reg. v. 3
Pyromanias 3
Quickening a sign of pregnancy 3
Quicksilver (see Mercury) 3
Quotations from books 3
Rabies, poison of 3
Rape, definition of 3
— proofs of, in children under puberty 6
— vulvar and vaginal evidence from marks of 6
— loss of physical evidence in cases of 630, 6
— gonorrheal discharge in 635, 6
— false charges of 6
— on girls after puberty 6
— on adults 6
— male narcoths 6
— on idiots 6
— during sleep 6
— pregnancy following 6
— microscopical evidence in 671, 6
— evidence of, in the dead body 6
— by females on males 6
Recurrent mania 6
Red dye 6
Red lead in snuff 6
— phosphorus 6
<table>
<thead>
<tr>
<th>RED</th>
<th>SNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red paint mistaken for blood</td>
<td>Sanguineous tumours in new-born children</td>
</tr>
<tr>
<td>Red precipitate</td>
<td>Savin, poisoning with</td>
</tr>
<tr>
<td>Redness of the stomach in poisoning</td>
<td>— as an abortive</td>
</tr>
<tr>
<td>— of the skin from burns</td>
<td>— oil of</td>
</tr>
<tr>
<td>Reduction-process for arsenic</td>
<td>Sausages, poisonous</td>
</tr>
<tr>
<td>Reed and Donelan, case of</td>
<td>Scalds and burns</td>
</tr>
<tr>
<td>Reeves, Reg. v.</td>
<td>Sculp, wounds of the</td>
</tr>
<tr>
<td>Re-examination</td>
<td>Sculp-tumour in new-born children</td>
</tr>
<tr>
<td>Regularity in wounds</td>
<td>568</td>
</tr>
<tr>
<td>Reid, case of</td>
<td>Scoammony</td>
</tr>
<tr>
<td>Reinsch's process for arsenic</td>
<td>140</td>
</tr>
<tr>
<td>108, 113</td>
<td>Scars (see Cicatrix)</td>
</tr>
<tr>
<td>Reports, medico-legal</td>
<td>Scheidmaizig, Bernard, case of</td>
</tr>
<tr>
<td>Respiration, cessation of the, in death</td>
<td>746</td>
</tr>
<tr>
<td>— signs of, in the new-born child</td>
<td>Scheele's green</td>
</tr>
<tr>
<td>— imperfect</td>
<td>— prussic acid</td>
</tr>
<tr>
<td>— before birth</td>
<td>Scirrhus of the lungs</td>
</tr>
<tr>
<td>Responsibility, medical</td>
<td>Scott, case of</td>
</tr>
<tr>
<td>263, 276, 295, 549, 581</td>
<td>Secale cornutum</td>
</tr>
<tr>
<td>Restraint in insanity</td>
<td>Secondary causes of death in wounds</td>
</tr>
<tr>
<td>Reynolds, case of</td>
<td>— in drowning</td>
</tr>
<tr>
<td>Rich v. Pierpoint</td>
<td>Self-delivery, violence in</td>
</tr>
<tr>
<td>Richardson, Reg. v.</td>
<td>Sellis, case of</td>
</tr>
<tr>
<td>Ricel, Madame, case of</td>
<td>221, 223</td>
</tr>
<tr>
<td>Rigidity, cadaveric</td>
<td>Self-inflicted wounds</td>
</tr>
<tr>
<td>Rigor mortis</td>
<td>Senile dementia</td>
</tr>
<tr>
<td>Robertz v. Kerelake</td>
<td>Senior, case of</td>
</tr>
<tr>
<td>Ross, E., case of</td>
<td>558</td>
</tr>
<tr>
<td>Ross Touchet, case of</td>
<td>Sewer gases, noxious effects of</td>
</tr>
<tr>
<td>Rue in abortion</td>
<td>440</td>
</tr>
<tr>
<td>Rules for the delivery of evidence</td>
<td>Sex, distinction of</td>
</tr>
<tr>
<td>35</td>
<td>— mixed and doubtful cases</td>
</tr>
<tr>
<td>Rumtle, Reg. v.</td>
<td>— civil rights depending on</td>
</tr>
<tr>
<td>140, 493</td>
<td>Sexual identity</td>
</tr>
<tr>
<td>Rush, case of</td>
<td>— malformation, varieties of</td>
</tr>
<tr>
<td>337</td>
<td>— influence of, on electoral rights</td>
</tr>
<tr>
<td>Russell, case of</td>
<td>— a cause of impotency</td>
</tr>
<tr>
<td>67</td>
<td>— proof of in cases of divorce</td>
</tr>
<tr>
<td>Rust, stains of, mistaken for blood</td>
<td>643</td>
</tr>
<tr>
<td>Ruta graveolens</td>
<td>Shellfish, poisoning by</td>
</tr>
<tr>
<td>Ryan, Reg. v.</td>
<td>64</td>
</tr>
<tr>
<td>667</td>
<td>Shock, death from</td>
</tr>
<tr>
<td>Rye, ergot of, action of</td>
<td>253</td>
</tr>
<tr>
<td>Saffron as an abortive</td>
<td>Shot, wounds from</td>
</tr>
<tr>
<td>498</td>
<td>333</td>
</tr>
<tr>
<td>Salivation, arsenical</td>
<td>Simpson, Reg. v.</td>
</tr>
<tr>
<td>— mercurial</td>
<td>745</td>
</tr>
<tr>
<td>Sal polychrest</td>
<td>Skull, fractures of the</td>
</tr>
<tr>
<td>— volatile</td>
<td>— accidental fracture of, in parturition</td>
</tr>
<tr>
<td>29</td>
<td>569</td>
</tr>
<tr>
<td>Salt of sorbel</td>
<td>Sleep, delivery during</td>
</tr>
<tr>
<td>20</td>
<td>— rape during</td>
</tr>
<tr>
<td>Saltpetre, action of</td>
<td>— homicide during</td>
</tr>
<tr>
<td>94</td>
<td>746</td>
</tr>
<tr>
<td></td>
<td>Slow poisoning</td>
</tr>
<tr>
<td></td>
<td>Small-shot, wounds produced by</td>
</tr>
<tr>
<td></td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Smethurst, case of</td>
</tr>
<tr>
<td>STU</td>
<td>769</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>Stuhl, case of</td>
<td>696</td>
</tr>
<tr>
<td>Subacetate of lead</td>
<td>120</td>
</tr>
<tr>
<td>— of copper</td>
<td>131</td>
</tr>
<tr>
<td>Subchloride of mercury</td>
<td>125</td>
</tr>
<tr>
<td>Sublimate, corrosive, poisoning with</td>
<td>110</td>
</tr>
<tr>
<td>Subpoenas, rules respecting</td>
<td>19</td>
</tr>
<tr>
<td>Sudden death</td>
<td>30, 68</td>
</tr>
<tr>
<td>— causes of</td>
<td>42</td>
</tr>
<tr>
<td>Suffocation</td>
<td>401</td>
</tr>
<tr>
<td>— cause of death in</td>
<td>405</td>
</tr>
<tr>
<td>— post-mortem appearances</td>
<td>406</td>
</tr>
<tr>
<td>— evidence of death from</td>
<td>408</td>
</tr>
<tr>
<td>— accidental cases of</td>
<td>409</td>
</tr>
<tr>
<td>— of children</td>
<td>411</td>
</tr>
<tr>
<td>— homicidal</td>
<td>411</td>
</tr>
<tr>
<td>— from gases</td>
<td>416</td>
</tr>
<tr>
<td>— by carbonic acid</td>
<td>410</td>
</tr>
<tr>
<td>— by charcoal vapour</td>
<td>424</td>
</tr>
<tr>
<td>— by carbonic oxide</td>
<td>428</td>
</tr>
<tr>
<td>— by coal vapour</td>
<td>430</td>
</tr>
<tr>
<td>— by vapours of lime and brick-kilns</td>
<td>431</td>
</tr>
<tr>
<td>— by confined air</td>
<td>432</td>
</tr>
<tr>
<td>— by coal-gas</td>
<td>433</td>
</tr>
<tr>
<td>— by nitrous oxide</td>
<td>436</td>
</tr>
<tr>
<td>— by sulphuretted hydrogen</td>
<td>437</td>
</tr>
<tr>
<td>— by sewer gas</td>
<td>440</td>
</tr>
<tr>
<td>— of new-born children</td>
<td>559</td>
</tr>
<tr>
<td>Sugar, detection of, in the fetal stomach</td>
<td>546</td>
</tr>
<tr>
<td>— of lead, poisoning with</td>
<td>127</td>
</tr>
<tr>
<td>Suggestion (Eccymosis)</td>
<td>203</td>
</tr>
<tr>
<td>Suicidal wounds</td>
<td>222</td>
</tr>
<tr>
<td>Suicidal mania</td>
<td>689</td>
</tr>
<tr>
<td>Suicide and insanity</td>
<td>720</td>
</tr>
<tr>
<td>Sulphate of indigo</td>
<td>76</td>
</tr>
<tr>
<td>— of potash</td>
<td>94</td>
</tr>
<tr>
<td>— of copper</td>
<td>131</td>
</tr>
<tr>
<td>— of zinc</td>
<td>138</td>
</tr>
<tr>
<td>— of iron</td>
<td>139</td>
</tr>
<tr>
<td>Sulphide of arsenic</td>
<td>117</td>
</tr>
<tr>
<td>— of ammonium</td>
<td>442</td>
</tr>
<tr>
<td>Sulphomolybdic acid as a test</td>
<td>154, 180</td>
</tr>
<tr>
<td>Sulphovinate of soda</td>
<td>95</td>
</tr>
<tr>
<td>SULPHURIC HYDROGEN,</td>
<td>231</td>
</tr>
<tr>
<td>— appearances in death</td>
<td>437</td>
</tr>
<tr>
<td>— detection of</td>
<td>441</td>
</tr>
<tr>
<td>SULPHURIC ACID, symptoms and appearances caused</td>
<td>75</td>
</tr>
<tr>
<td>— by fatal dose of</td>
<td>77</td>
</tr>
<tr>
<td>— analysis of</td>
<td>78</td>
</tr>
<tr>
<td>— dialysis of</td>
<td>79</td>
</tr>
<tr>
<td>— detection of on clothing</td>
<td>79</td>
</tr>
<tr>
<td>— burns from</td>
<td>345</td>
</tr>
<tr>
<td>Sulphurous acid, action of</td>
<td>430</td>
</tr>
<tr>
<td>Sunstroke, death from</td>
<td>455</td>
</tr>
<tr>
<td>Superconception</td>
<td>619</td>
</tr>
<tr>
<td>Superfetation</td>
<td>619</td>
</tr>
<tr>
<td>Supposititious children</td>
<td>621</td>
</tr>
<tr>
<td>Surgical operations, responsibility for</td>
<td>270</td>
</tr>
<tr>
<td>Surydam Levi, case of</td>
<td>626</td>
</tr>
<tr>
<td>Syncope, death from</td>
<td>40</td>
</tr>
<tr>
<td>Syphilis, a cause of abortion</td>
<td>480</td>
</tr>
<tr>
<td>— in cases of rape</td>
<td>657</td>
</tr>
<tr>
<td>Syphilitic cicatrices</td>
<td>284</td>
</tr>
<tr>
<td>Syrup of poppies</td>
<td>152</td>
</tr>
<tr>
<td>Talbot, case of</td>
<td>272</td>
</tr>
<tr>
<td>Tansy, oil of</td>
<td>497</td>
</tr>
<tr>
<td>Tar, oil of</td>
<td>145</td>
</tr>
<tr>
<td>TARTAR EMETIC, poisoning with</td>
<td>134</td>
</tr>
<tr>
<td>— symptoms and appearances in poisoning with</td>
<td>135</td>
</tr>
<tr>
<td>— chronic poisoning by</td>
<td>136</td>
</tr>
<tr>
<td>— tests for</td>
<td>138</td>
</tr>
<tr>
<td>Tartarated antimony</td>
<td>134</td>
</tr>
<tr>
<td>Tartaric acid</td>
<td>91</td>
</tr>
<tr>
<td>Tartarized antimony</td>
<td>134</td>
</tr>
<tr>
<td>Tattoo-marks</td>
<td>289</td>
</tr>
<tr>
<td>— durability of</td>
<td>290</td>
</tr>
<tr>
<td>— colouring material in</td>
<td>201</td>
</tr>
<tr>
<td>— removal of</td>
<td>202</td>
</tr>
<tr>
<td>— on the dead</td>
<td>293</td>
</tr>
<tr>
<td>— personal identity from</td>
<td>294</td>
</tr>
<tr>
<td>Tattooing, process of</td>
<td>289</td>
</tr>
<tr>
<td>Taylor, Reg. v.</td>
<td>507</td>
</tr>
<tr>
<td>Technical terms</td>
<td>15, 37</td>
</tr>
<tr>
<td>Tenancy by courtesy</td>
<td>587</td>
</tr>
<tr>
<td>Teratology (see Monsters)</td>
<td>594</td>
</tr>
<tr>
<td>Test hydrostatic, the</td>
<td>526</td>
</tr>
<tr>
<td>Testamentary capacity</td>
<td>719</td>
</tr>
<tr>
<td>Testicles, period at which they descend</td>
<td>514</td>
</tr>
<tr>
<td>— non-descent of the</td>
<td>631</td>
</tr>
</tbody>
</table>
TES

Testicles, supernumerary 634
Testimonial, competency from... 591
— in cases of insanity 709
Tetanus, from wounds 268
Thief, insane propensity to 741
Thomas, Reg. v. 265
Thornapple, poisoning with 106
Thornhill, case of 592
Throat, wounds of the 220
Thugs, murder by 106
Teckhorne case, the 295, 583
Tin-foil, spurious 181
Tobacco, poisoning with... 189
— Indian 194
Teacher in pregnancy 486
Townshend perage case 61
Traumatic tetanus 288
Trial at the Assizes 10
Trichina spiralis in pork 140
Trichomonas 675
Tumours sanguineous 568
Tunica arachnoidea 305
Twisting of the neck, death from... 571

VIT

Ulceration of the stomach from poison and disease 72
— distinguished from corrosion 72
Umbilical cord, evidence of live birth from the... 543
— laceration of the 553
— death from compression of the... 554
— strangulation by the 575
Unconsciousness, acts in a state of 746
Unconscious pregnancy 470
— delivery 477
— intercourse 469, 666
Unnatural offences 677
Unsoundness of mind 682, 693
Uterine age of fetus 513
Uterus, changes in the, from pregnancy 406

Vaccine ciatrices, identity from... 287
Vaginismus, cases of 645

Vagina, wounds of the
— purulent discharges from the... 571
Vaginitis in infants
Vagitus uterinus
— vaginalis
Vamplew, Reg. v.
Vapours of chloroform
— of ether
— noxious effects of
— of charcoal, effects of
— of coal and coke
— of lime, brick, and cement kilns
Vaugha, Reg. v.
Vegetable irritant poisons
Veins, wounds of
— death from entrance of into, during operation
Venereal disease in cases of rape
Ventre, inssequens et vice versa
Veratrum viride
Verdrigis
Venter (see OYUM OR EMER
Vermin powder or killer
Vertebrae, fractures of the
— in drowning
— injuries to the, in hang
— in cases of child-murder
Vesications from burns; scalds
Vesical mole
Viable in reference to infanticide
— in monstrosity
— in legitimacy
— in concealment of birth
Violation (see Raps)
Viper poison
Virginity, signs of
Virgo intacta
Virtue, proofs of
Viscers, preservation of the
— effects of putrefaction of
Vitriol, oil of, poisoning by (SULPHURIC ACID)
<table>
<thead>
<tr>
<th>VIT</th>
<th>WOU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitriol, blue, poisoning by</td>
<td>Witnesses, rules respecting the</td>
</tr>
<tr>
<td>— white</td>
<td>examination of</td>
</tr>
<tr>
<td>— green</td>
<td>— lunatics as</td>
</tr>
<tr>
<td>Vonica, nux, poisoning with</td>
<td>Wolfebane, poisoning by</td>
</tr>
<tr>
<td>Vulva, wounds of the</td>
<td>Wood, smouldering, death from</td>
</tr>
<tr>
<td>Vulval rape</td>
<td>Wood v. Hotham</td>
</tr>
<tr>
<td></td>
<td>Woodman, Reg. v.</td>
</tr>
<tr>
<td></td>
<td>Worm-lozenges</td>
</tr>
<tr>
<td></td>
<td>Wounds, medico-legal definition of</td>
</tr>
<tr>
<td></td>
<td>— effects of putrefaction on</td>
</tr>
<tr>
<td></td>
<td>— danger to life</td>
</tr>
<tr>
<td></td>
<td>— producing grievous bodily harm</td>
</tr>
<tr>
<td></td>
<td>— examination of</td>
</tr>
<tr>
<td></td>
<td>— description of</td>
</tr>
<tr>
<td></td>
<td>— vital and post-mortem</td>
</tr>
<tr>
<td></td>
<td>— without hemorrhage</td>
</tr>
<tr>
<td></td>
<td>— produced by weapons</td>
</tr>
<tr>
<td></td>
<td>— incised and punctured</td>
</tr>
<tr>
<td></td>
<td>— lacerated and contused</td>
</tr>
<tr>
<td></td>
<td>— from glass or earthenware</td>
</tr>
<tr>
<td></td>
<td>— through the dress</td>
</tr>
<tr>
<td></td>
<td>— self-inflicted or imputed</td>
</tr>
<tr>
<td></td>
<td>— evidence from situation</td>
</tr>
<tr>
<td></td>
<td>— nature and extent of</td>
</tr>
<tr>
<td></td>
<td>— direction and shape of</td>
</tr>
<tr>
<td></td>
<td>— suicidal and accidental</td>
</tr>
<tr>
<td></td>
<td>— by right or left hand</td>
</tr>
<tr>
<td></td>
<td>— two or more mortal</td>
</tr>
<tr>
<td></td>
<td>— presence of several</td>
</tr>
<tr>
<td></td>
<td>— circumstantial evidence in</td>
</tr>
<tr>
<td></td>
<td>— produced simultaneously or at different times</td>
</tr>
<tr>
<td></td>
<td>— foreign substances in</td>
</tr>
<tr>
<td></td>
<td>— in what position inflicted</td>
</tr>
<tr>
<td></td>
<td>— direct cause of death</td>
</tr>
<tr>
<td></td>
<td>— fatal from hemorrhage</td>
</tr>
<tr>
<td></td>
<td>— fatal from mechanical injury</td>
</tr>
<tr>
<td></td>
<td>— from shock</td>
</tr>
<tr>
<td></td>
<td>— mortality of</td>
</tr>
<tr>
<td></td>
<td>— death from latent disease</td>
</tr>
<tr>
<td></td>
<td>— in cases of</td>
</tr>
<tr>
<td></td>
<td>— which of two caused death</td>
</tr>
<tr>
<td></td>
<td>— death from slight wounds</td>
</tr>
<tr>
<td></td>
<td>— fatal after long periods</td>
</tr>
<tr>
<td></td>
<td>— secondary causes of death</td>
</tr>
<tr>
<td></td>
<td>— from</td>
</tr>
<tr>
<td></td>
<td>— fatal from unskilful treatment</td>
</tr>
</tbody>
</table>

Waddings, wounds from	334
Wall-papers, arsenical effects of	116
Wallis, Reg. v.	495, 507
Warboy, Reg. v.	505
Warner, Dr., case of	178
Water-hemlock	182
Waters, potable, poisoned with lead	130
Watson, Reg. v.	745
Weapons, whether used in producing	207
— definition of	212
— evidence from position of	227
— found in the hands after death	228
— blood and other substances on	228, 229, 238
Webb v. Page	20
Weir v. Hodson	582
Welsh Fasting girl, case of the	459
West v. Sylvester	723
Wheat, poisoned	171
Whisky, poisoning with	164
Whisker, Reg. v.	506
Whitby v. Hodson	502
White, Reg. v.	140, 667
White precipitate, poisoning with	125
— vitriol	138
— hollobore	144
— lead	130
Wills of the insane, law regarding	719
— proofs of eccentricity in	722
— in senile dementia and in extrems	723
— made in drunkenness	742
Wilson, C., Reg. v.	142
Winsham, Mr., case of	717
Wine of colchicum	142
Winslow, Reg. v.	69
Witnesses, medical	22
— admitted in court	30
771	
WOU
Wounds fatal from imprudence 264
— from unhealthy state of body 265
— acceleration of death from 266
— fatal from abnormal conditions 267
— tetanus following 268
— fatal, from erysipelas 269
— from delirium tremens 270
— from surgical operations 270
— fatal, from chloroform under operations 273
— fatal, from pyaemia 275
— cicatrisation of 278
— of the head 296
— struggling after severe 314
— of the face 307
— of the spine and spinal marrow 308
— of the chest 310
— of the lungs and heart 311
— of the arteries and veins 314

ZOO
Wounds and rupture
diaphragm
— of the abdomen
— of the liver
— of the intestines and
— of the spleen and
— of the urinary bladder
— of the genitals
— gunshot
— from wadding an powder
— caused by lightning
— on the new-born or
— infanticide
Wright v. Wilkin

Yaquierdo, Reg. v.
Yellow arsenic, poison
Yew, poisoning with
Zinc, poisoning by the
Zoosperms (see Spermat...